
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2006

SyncSQL: A Language to Express Views over Data Streams SyncSQL: A Language to Express Views over Data Streams

Thanaa M. Ghanem

Per-Ake Larson

Walid G. Aref
Purdue University, aref@cs.purdue.edu

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

Report Number:
06-012

Ghanem, Thanaa M.; Larson, Per-Ake; Aref, Walid G.; and Elmagarmid, Ahmed K., "SyncSQL: A Language
to Express Views over Data Streams" (2006). Department of Computer Science Technical Reports. Paper
1655.
https://docs.lib.purdue.edu/cstech/1655

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SYNCSQL: A LANGUAGE TO EXPRESS
VIEWS OVER DATA STREAMS

Thanaa M. Ghanem
Per-Ake Larson
Walid G. Aref

Ahmed K. Elmagarmid

CSD TR #06-012
July 2006

SYNCSQL: A LANGUAGE TO EXPRESS
VIEWS OVER DATA STREAMS

Thanaa M. Ghanem
Per-Ake Larson
Walid G. Aref

Ahmed K. Elmagarmid

CSD TR #06-012
July 2006

SyncSQL: A Language to Express Views over Data Streams

Thanaa M. Ghaneml p e r - h e Larson2 Walid G. ref' Ahmed K. Elmagarmid1

Department of Computer Science, Purdue University. ghanemtm.aref.ake@cs.purdue.edu

2 ~ i c r o s o f t Research. pala~~son@n~icrosof~.com

Abstract

Prior rvork on languages to e-xpress co~~tinuous queries
over streatns has dejrled a stream as a sequetlce of tu-
ples that represents an i~zj~zite appetld-only relation. 111
this paper, rve sl~o\.v that cornposition of queries is not
possible in the appetzd-onlj. model. Query compositiorz
is a fundamerztal properh of nrzy query language - cotn-
position makes it possible to build up cornplex queries
from sbnpler queries. We tlze~z propose a query language,
ternzed Synchron i z e d SQL (or syncSQL), tlm t defines
a stream as a sequerzce of modifi. operatiotzs (i.e., insert, up-
date, and delete) agaitlst a relatio~z wit11 a specijed schema.
lr~puts and outputs in airy SyncSQL query are interpreted
in the same rvay and, hence. SyncSQL e.xpressions can be
cornposed. Coarser periodic refresh requirements are h p -
ically expressed as sliding-wirzdocv queries. We generalize
this approach by i~ltroduci~zg the synclzronizatior? principle
that etnpocvers SyncSQL with a fortnal meclznnism to ex-
press queries rvitlz arbitrary refresh conditions. Afrer intro-
ducing the setnuntics and s).ntax. we Iny the algebraic fou~z-
datiorl for SyncSQL arzd propose a quen. matching algo-
rithm for deciding cotltain~netzt of SyncSQL expressions.

1 Introduction

Query languages in the streaming literature (e.g., [2, 7,
8, 1 I, 241) define a stream as a sequence of tuples that rep-
resents an infinite append-only relation. Languages based
on the append-only model are not closed, that is, the re-
sult of a query expression is not necessarily an append-only
relation. This has the effect thar query expressions cannot
be freely composed, that ist expressing a query in terms of
one or more sub-queries as can be done, for example, with
SQL queries in relational databases. Composition is a fun-
damental property of any queiy language but it requires that
query inputs and outputs are interpreted in the same way.
However, in the append-only stream model a continuous
query may not be able to produce an append-only output

even when input streams represent append-only relations.

For example. consider an application monitoring a park-
ing lot where two sensors continuously monitor the lot's
entrance and exit. The sensors generate two streams of
identifiers, say S1 and S2, for cars entering and exiting the
lotl respectively. A reasonable query in this environment is
Q1 : "Contirzuously keep track of the ident$ers of all cars in-
side tlieparking lot". The answer of Q1 is a view that, at any
time point T, contains the identifiers for cars that are inside
the parking lot. S1 can be modeled as a stream that inserts
tuples into an append-only relation, say sR (Sl) and, simi-
larly. S2 inserts tuples into the append-only relation 8 (S2) .
Then, Q1 can be regarded as a materialized view that is de-
fined as the set-difference between the two relations sR (S1)
and 3? (S2) . As tuples arrive on S1 and S2, the correspond-
ing relations are modified, and the relation representing the
result of Q1 is updated to reflect the changes in the inputs.
The result of Q1 is updated by inserti~zg identifiers of cars
entering the lot and deleting identifiers of cars exiting the
lot. Notice that, although the input relations in Q1 change
by only inserting tuples (i.e., append only), the output of Q1
changes by both inse~tions and deletions.

The answer to query Q1 can be output either as (1) a
cornplete answer, or (2) an incretnental answer. In the first
case, at any time point T, the issuer of Q1 sees a state, i.e.,
a relation containing identifiers of all cars inside the lot
at time T. In the second case, the issuer of Q1 receives a
stream that represents the changes (i.e., insertions and dele-
tions) in the state. The output in the incremental case is
interpreted in the same way as the inputs. namely, as a
stream that represents modifications to an underlying re-
lation. However, Ql's incremental answer cannot be pro-
duced or consumed by a query in a language that models a
stream as an append-only relation. Existing languages may
produce output streams from Q1 but the output streams are
interpreted differently from the input streams. For exam-
ple, the output may be modeled as a stream representing a
concatenation of sel-ializations of the complete answer (e.g.,
RStream in CQL [2]. and the output of window queries in
TelegraphCQ [8]). As another alternative, CQL divides the

SyncSQL: A Language to Express Views over Data Streams

Thanaa M. Ghanem1 Per-Me Larson2 Walid G. Arefl Ahmed K. Elmagarmid 1

1 Department of Computer Science, Purdue University. ghanemtm.areLake@cs.purdue.edu

2 Microsoft Research. palarson@microsofLcom

Abstract

Prior work on languages 10 express continuous queries
over streams has defined a stream as a sequence of tu­
ples that represents an infinite append-only relation. In
this paper, we show that composition of queries is not
possible in the append-onl)' model. Query composition
is a fundamental property of an)' query language - com­
position makes it possible to build up complex queries
from simpler queries. We then propose a query language,
termed Synchroni zed SQL (or SyncSQL), tlwt defines
a stream as a sequence ofmodify operations (i.e., insert, up­
date, and delete) against a relation with a specified schema.
Inputs and outputs in any SyncSQL query are interpreted
in the same way and, hence. SyncSQL expressions can be
composed. Coarser periodic refresh requirements are typ­
ically expressed as sliding-window queries. We generalize
this approach by introducing the synchronization principle
tlwt empowers SyncSQL with a formal mechanism to ex­
press queries with arbitrary refresh conditions. After intro­
ducing the semantics and synrax. we lay the algebraic foun­
dation for SyncSQL and propose a query matching algo­
rithm for deciding cOlltainl1lenr ofSync SQL expressions.

1 Introduction

Query languages in the streaming literature (e.g., [2,7,
8, 11, 24]) define a stream as a sequence of tuples that rep­
resents an infinite append-only relation. Languages based
on the append-only model are not closed, that is, the re­
sult of a query expression is not necessarily an append-only
relation. This has the effect that query expressions cannot
be freely composed, that is, expressing a query in terms of
one or more sub-queries as can be done, for example, with
SQL queries in relational databases. Composition is a fun­
damental propelty of any query language but it requires that
query inputs and outputs are interpreted in the same way.
However, in the append-only stream model a continuous
query may not be able to produce an append-only output

even when input streams represent append-only relations.

For example, consider an application monitoring a park­
ing lot where two sensors continuously monitor the lot's
entrance and exit. The sensors generate two streams of
identifiers, say Sl and S2, for cars entering and exiting the
lot, respectively. A reasonable query in this environment is
Q1: "Continuously keep track of the identifiers ofall cars in­
side the parking lot". The answer of Q1 is a view that, at any
time point T, contains the identifiers for cars that are inside
the parking lot. Sl can be modeled as a stream that inserts
tuples into an append-only relation, say ~ (S 1) and, simi­
larly, S2 inserts tuples into the append-only relation ~ (S2) .
Then, Q1 can be regarded as a materialized view that is de­
fined as the set-difference between the two relations ~ (Sl)
and ~ (S2) . As tuples anive on Sl and S2, the conespond­
ing relations are modified, and the relation representing the
result of Q1 is updated to reflect the changes in the inputs.
The result of Q1 is updated by inserting identifiers of cars
entering the lot and deleting identifiers of cars exiting the
lot. Notice that, although the input relations in QI change
by only inserting tuples (i.e., append only), the output of Ql

changes by both inseltions and deletions.

The answer to query Q1 can be output either as (I) a
complete answer, or (2) an incremental answer. In the first
case, at any time point T, the issuer of Q1 sees a state, i.e.,
a relation containing identifiers of all cars inside the lot
at time T. In the second case, the issuer of Q1 receives a
stream that represents the changes (i.e., insertions and dele­
tions) in the state. The output in the incremental case is
interpreted in the same way as the inputs. namely, as a
stream that represents modifications to an underlying re­
lation. However, Q1'S incremental answer cannot be pro­
duced or consumed by a query in a language that models a
stream as an append-only relation. Existing languages may
produce output streams from Q1 but the output streams are
interpreted differently from the input streams. For exam­
ple, the output may be modeled as a stream representing a
concatenation of serializations of the complete answer (e.g.,
RStream in CQL [2], and the output of window queries in
TelegraphCQ [8]). As another alternative, CQL divides the

output into two append-only streams such that one stream
represents the insertions in the output and the other stream
represents the deletions (i.e., IStream and DStream).

The different interpretation and the division of an out-
put stream prevents composition of queries, that is, using
the output of a query as the input to another queries or
building up complex query expressions from simpler ex-
pressions. Composition is a fundamental requirement on
any query language and particularly important in streaming
environments that are characterized by concurrent, overlap-
ping queries. For example, consider the following query,
Q2, from the same application: "Group the cars itzside the
parking lot by type (e.g., trucks, cars, or buses). Continu-
ously keep track of the nuinber of cars in each group". By
analyzing the two queries, Q1 and Qa, it is obvious that Q2 is
an aggregate query over the output of Q1. This observation
motivates the idea of defining Q1 as a view, say Vl and then,
expressing both Q1 and Q2 in terms of vl. However, realiz-
ing this requires a language that allows query composition.

In streaming applications with high tuple arrival rates,
an issuer of continuous queries may not be interested in re-
freshing the answer in response to every tuple arrival. In-
stead, coarser refresh periods may be desired. For example,
instead of reporting the count of cars with every change in
the parking lot. Q2 may be interested in updating the count
of cars in each group evevfive in i~~ i~ tes . This refresh condi-
tion is based on time but a powerful language should allow
a user to express more general refresh conditions based on
time, tuple arrival: events, relation state, and so on.

In addition to preventing query composition, the append-
only model limits the applicability of the language because
streams may have denotations other than the append-only
relation [22]. For example, update streams are used in appli-
cations where objects continuously update their values. For
example, consider a temperature-monitoring application in
which sensors are distributed in rooms and each sensor con-
tinuously repol-ts the room temperature. A reasonable query
in this environment is, Q3 : " C O M ~ ~ ~ I U O U S ~ ~ keep track of the
roorns that have temperature greater than 80". Neither the
input nor the output streams in Q3 represent append-only
relations. The input in Q3 is an update stream in which,
a room identifier is considered a key and an input tuple is
an update over the previous tuple with the same key value.
The output tuples from QCj represent incremental changes in
the answer and include insertions and deletions for rooms
that switch between satisfying and not satisfying the query
predicate.

1.1 Our Approacll

We can suinmarize the limitations of the existing con-
tinuous query languages as follows. (a) Cannot express
queries over streams other than the append-only relation

representation. (b) Cannot produce incremental answer for
queries that do not produce an append-only output. (c) Can-
not always compose queries because of the different inter-
pretation and/or division of the output streams. (d) Refresh
condition are restricted to be either time or tuple-based.

In this paper, we introduce a continuous query lan-
guage for data streams: termed Synchronized SQL
(SyncSQL for short), that avoids the previous limitations.
In contrast to other languages, SyncSQL defines the stream
as a sequence of modify operations (i.e., insert: update, and
delete) against a relation with a specified schema. Basically,
a continuous query in SyncSQL is semantically equivalent
to a materialized view where the inputs are relations that are
modified by streams of modify operations. The answer of
the query is another stream of modify operations that repre-
sent changes in the result of the view. This is equivalent to
incremental maintenance of materialized views [17]. The
unified representation of query inputs and outputs enables
the composition of SyncSQL expressions, and as a result,
gives the ability to express and exploit views over streams.

To cope with the coarser refresh requirement of con-
tinuous queries, we introduce the s~~ncl7ronisatiorl prii~ci-
ple. The idea is to formally specify synchronization time
points at which the input tuples are processed by the query
pipeline. Input tuples that arrive between two consecu-
tive synchronization points are accumulated and reflected
in the output at once at the next synchronization point. The
synchronization principle makes it possible to (1) express
queries with arbitrary refresh conditions, and (2) folmally
reason about the containment relationship among queries
with different refresh periods.

The contributions of this paper are summarized as fol-
lows:

SyncSQL semantics and syntax: We define concise
semantics and syntax for continuous queries and views
over streams.

SyncSQL algebra: We lay the algebraic foundation
for SyncSQL by providing data types, operators, al-
gebraic laws and transformation rules that are needed
to enumerate query plans.

Shared execution using query composition: Based
on the algebraic framework. we propose a query
matching algorithm that is used to deduce the contain-
ment relationships among query expressions. The con-
tainment relationship is used to achieve shared execu-
tion using query composition.

Execution model: We present a pipelined and
incremental executioil model to efficiently realize
SyncSQL queries in a data stream management sys-
tem.

output into two append-only streams such that one stream
represents the insertions in the output and the other stream
represents the deletions (i.e., IStream and DStream).

The different interpretation and the division of an out­
put stream prevents composition of queries, that is, using
the output of a query as the input to another queries or
building up complex query expressions from simpler ex­
pressions. Composition is a fundamental requirement on
any query language and particularly important in streaming
environments that are characterized by concun-ent, overlap­
ping queries. For example, consider the following query,
Q2, from the same application: "Group the cars inside the
parking lot by type (e.g., trucks, cars, or buses). Continu­
ously keep track of the number of cars in each group". By
analyzing the two queries, QI and Q2, it is obvious that Q2 is
an aggregate query over the output of QI. This observation
motivates the idea of defining QI as a view, say VI and then,
expressing both QJ and Q2 in terms of VI. However, realiz­
ing this requires a language that allows query composition.

In streaming applications with high tuple an-ivaI rates,
an issuer of continuous queries may not be interested in re­
freshing the answer in response to every tuple an-ivaI. In­
stead, coarser refresh periods may be desired. For example,
instead of reporting the count of cars with every change in
the parking lot Q2 may be interested in updating the count
of cars in each group every five minutes. This refresh condi­
tion is based on time but a powerful language should allow
a user to express more general refresh conditions based on
time, tuple arrival, events, relation state, and so on.

In addition to preventing query composition, the append­
only model limits the applicability of the language because
streams may have denotations other than the append-only
relation [22]. For example, update streams are used in appli­
cations where objects continuously update their values. For
example, consider a temperature-monitoring application in
which sensors are distributed in rooms and each sensor con­
tinuously repol1s the room temperature. A reasonable query
in this environment is, Q3: "Continuously keep track of the
rooms that have temperature greater than 80". Neither the
input nor the output streams in Q3 represent append-only
relations. The input in Q3 is an update stream in which,
a room identifier is considered a key and an input tuple is
an update over the previous tuple with the same key value.
The output tuples from Q3 represent incremental changes in
the answer and include insertions and deletions for rooms
that switch between satisfying and not satisfying the query
predicate.

1.1 Our Approach

We can summarize the limitations of the existing con­
tinuous query languages as follows. (a) Cannot express
queries over streams other than the append-only relation

2

representation. (b) Cannot produce incremental answer for
queries that do not produce an append-only output (c) Can­
not always compose queries because of the different inter­
pretation and/or division of the output streams. (d) Refresh
condition are restricted to be either time or tuple-based.

In this paper, we introduce a continuous query lan­
guage for data streams, termed Synchronized SQL

(SyncSQL for Sh0l1), that avoids the previous limitations.
In contrast to other languages, SyncSQL defines the stream
as a sequence of modify operations (i.e., insert, update, and
delete) against a relation with a specified schema. Basically,
a continuous query in SyncSQL is semantically equivalent
to a materialized view where the inputs are relations that are
modified by streams of modify operations. The answer of
the query is another stream of modify operations that repre­
sent changes in the result of the view. This is equivalent to
incremental maintenance of materialized views [17]. The
unified representation of query inputs and outputs enables
the composition of SyncSQL expressions, and as a result,
gives the ability to express and exploit views over streams.

To cope with the coarser refresh requirement of con­
tinuous queries, we introduce the synchronization princi­
ple. The idea is to formaJJy specify synchronization time
points at which the input tuples are processed by the query
pipeline. Input tuples that an-ive between two consecu­
tive synchronization points are accumulated and reflected
in the output at once at the next synchronization point The
synchronization principle makes it possible to (I) express
queries with arbitrary refresh conditions, and (2) fOimaJJy
reason about the containment relationship among queries
with different refresh periods.

The contributions of this paper are summarized as fol-
lows: 0

• SyncSQL semantics and syntax: We define concise
semantics and syntax for continuous queries and views
over streams.

• SyncSQL algebra: We lay the algebraic foundation
for SyncSQL by providing data types, operators, al­
gebraic laws and transformation rules that are needed
to enumerate query plans.

• Shared execution using query composition: Based
on the algebraic framework, we propose a query
matching algorithm that is used to deduce the contain­
ment relationships among query expressions. The con­
tainment relationship is used to achieve shared execu­
tion using query composition.

• Execution model: We present a pipelined and
incremental execution model to efficiently realize
SyncSQL queries in a data stream management sys­
tem.

1.2 Paper Outline

The rest of the paper is organized as follows. Section 2
introduces the semantics and syntax of SyncSQL. The syn-
chronization principle is explained in Section 3. In Sec-
tion 4-, we lay the algebraic foundation for SyncSQL. The
shared query execution algorithm is given in Section 5.
In Section 6, we give an incremental execution model for
SyncSQL queries. Section 7 surveys the existing works
for continuous queries and contrasts our approach with the
other approaches. Finally, Section 8 concludes the paper.

2 SyncSQL Semantics and Syntax

In short, a continuous SyncSQL query is semantically
equivalent to a materialized view over one or more relations
where the input relations are updated by strearm of modify
operations.

2.1 Stream, Query, and View Semantics

Stream semantics. We distinguish between two types
of streams: raw input streams and tagged streams. A rarv
input stream is a sequence of tuples (or values) that are sent
by the remote data sources (e.g., sensors). On the other
hand. a tagged stream is a stream of modify operations over
a specified schema where the modify operations can be ei-
ther insert (+), update(u) or delete(-). A raw input stream is
transformed into a tagged stream before being used as input
in a query. This is similar to the relational model in tradi-
tional databases where the raw data has to be transformed
into relations before being used in a query.

The function that transforms a raw input stream to
a corresponding tagged stream is application-dependent
where the same raw input stream can produce differ-
ent tagged streams under different transformation func-
tions. For example, in a temperature-monitoring appli-
cation, a raw input stream, say TemperatureSource,
is sent by remote sensors where an input tuple in the
saw stream reports a room temperature. A tuple in the
TemperatureSource stream consists of two attributes:
RoomID and Temperature. One application, say
Applicat ionl, may consider TemperatureSource
as an update stream over the various rooms temperature. In
this case, RoomID is considered a key and a tuple is con-
sidered an update over the previous tuple with the same
key value. On the other hand, another application, say
Applicationa: may view the TemperatureSource
stream as just a sequence of temperature readings and ig-
nore the RoomID attribute.

Assume that an input tuple in TemperatureSource
is denoted by "<RoomID, Temperature>Time-
stamp". In Applicationl, TemperatureSource

represents an update stream over the various room tem-
peratures and the corresponding tagged stream. say
RoomTempStr, consists of irisert and update opera-
tions. Basically the tagging procedure takes an input
TemperatureSource tuple and ploduces a colre-
sponding tagged tuple in RoomTempS t r as follows:
the first tuple in TemperatureSource with a cer-
tain RoomID value is transformed into a co~~espondlng
inserl operation "+<RoomID, Temperature>Time-
stamp" in RoomTempStr. A subsequent lu-
ple in TemperatureSource with the same
RoomID is transformed ~ n t o an update tuple
"u<RoomID, Temperature>Times tamp" in
RoomTempStr. Notice that the tagging function
needs to keep a list of the observed key (i.e.. RoomID)
values so far.

On the other hand. in the case of Application2.
TemperatureSource represents an infinite append-
only relation and the corresponding tagged stream. say
TempStr, is a sequence of irzsert operations where each
tuple "<RoomID, Temperature>Timestamp" in
TemperatureSource is transformed to a corresponding
insert operation "+<RoomID,Temperature>Time-
stamp" in TempStr.

In the query processing phase, the transformation (or
tagging) function is implemented inside an operator, called
Tagger, that is placed at the bottom of a query pipeline.
In Applicat ionl. the functionality of the Tagger op-
erator is similar to that of the MERGE (or UPSERT) op-
erator in the SQL: 2003 standard [12]. Basically, in
Applicationl, Tagger needs to keep a list of all the
observed key values (i.e., RoomID) so far. The size of
the key list has an upfier bound that is equal to the max-
imum number of rooms. However. implementing the tag-
ging function as an operator opens the room for the query
optimizer to re-order the pipeline and optimize the mem-
ory consumption. For example. the Tagger operator can
be pulled above the Select operator so that only qualified
rooms are stored in the key list. The details of query pro-
cessing and optimization is beyond the scope of this paper.

Example 1 This example demonstrates the syntax for
defining streams and the mapping from raw to tagged
streams. The raw TemperatureSource stream is de-
fined in SyncSQL by the following statement:
REGISTER SOURCE TemperatureSource

(char RoomID, int Temperature) From
port5501
where RoomID and Temperature represent the stream
schema and port5501 is the port at which external
sources report tuples. The tagged streams are defined over
the source TemperatureSource as follows:
RoomTempStr: CREATE STREAM

RoomTempStr

1.2 Paper Outline

The rest of the paper is organized as follows. Section 2
introduces the semantics and syntax of SyncSQL. The syn­
chronization principle is explained in Section 3. In Sec­
tion 4, we lay the algebraic foundation for SyncSQL. The
shared query execution algorithm is given in Section 5.
In Section 6, we give an incremental execution model for
SyncSQL queries. Section 7 surveys the existing works
for continuous queries and contrasts our approach with the
other approaches. Finally, Section 8 concludes the paper.

2 SyncSQL Semantics and Syntax

In short, a continuous SyncSQL query is semantically
equivalent to a materialized view over one or more relations
where the input relations are updated by streams of modify
operations.

2.1 Stream, Query, and View Semantics

Stream semantics. We distinguish between two types
of streams: raw input streams and tagged streams. A raw
input stream is a sequence of tuples (or values) that are sent
by the remote data sources (e.g., sensors). On the other
hand, a tagged stream is a stream of modify operations over
a specified schema where the modify operations can be ei­
ther insert (+), update(u) or delete(-). A raw input stream is
transformed into a tagged stream before being used as input
in a query. This is similar to the relational model in tradi­
tional databases where the raw data has to be transformed
into relations before being used in a query.

The function that transforms a raw input stream to
a corresponding tagged stream is application-dependent
where the same raw input stream can produce differ­
ent tagged streams under different transformation func­
tions. For example, in a temperature-monitoring appli­
cation, a raw input stream, say TemperatureSource,
is sent by remote sensors where an input tuple in the
raw stream reports a room temperature. A tuple in the
Temperat ureSource stream consists of two attributes:
RoomID and Temperature. One application, say
Applicationr, may consider TemperatureSource
as an update stream over the various rooms temperature. In
this case, RoomID is considered a key and a tuple is con­
sidered an update over the previous tuple with the same
key value. On the other hand, another application, say
Application2, may view the TemperatureSource
stream as just a sequence of temperature readings and ig­
nore the RoomID attribute.

Assume that an input tuple in TemperatureSource
is denoted by "<RoomID, Temperature>Time­
stamp". In Application!> TemperatureSource

3

represents an update stream over the various room tem­
peratures and the corresponding tagged stream, say
RoomTempStr, consists of insert and update opera­
tions. Basically the tagging procedure takes an input
TemperatureSource tuple and produces a COlTe­
sponding tagged tuple in RoomTempStr as follows:
the first tuple in Tempera tureSource with a cer­
tain RoomID value is transformed into a cOiTesponding
insert operation "+<RoomID, Tempera ture>Time­
stamp" in RoomTempStr. A subsequent LU­

pIe in TemperatureSource with the same
RoomID is transformed into an update tuple
"u<RoomID, Tempera ture>Times tamp" In

RoomTempStr. Notice that the tagging function
needs to keep a list of the observed key (i.e., RoomID)
values so far.

On the other hand, in the case of Application2,
TemperatureSource represents an infinite append­
only relation and the corresponding tagged stream, say
TempStr, is a sequence of insert operations where each
tuple "<RoomID, Temperature>Timestamp" in
TemperatureSource is transformed to a corresponding
insert operation "+ <RoomID, Tempera ture>Time­
s tamp" in TempStr.

In the query processing phase. the transformation (or
tagging) function is implemented inside an operator, called
Tagger, that is placed at the bottom of a query pipeline.
In Application], the functionality of the Tagger op­
erator is similar to that of the MERGE (or UPSERT) op­
erator in the SQL: 2003 standard [12]. Basically. in
Applicationr, Tagger needs to keep a list of all the
observed key values (i.e., RoomID) so far. The size of
the key list has an upper bound that is equal to the max­
imum number of rooms. However, implementing the tag­
ging function as an operator opens the room for the query
optimizer to re-order the pipeline and optimize the mem­
ory consumption. For example, the Tagger operator can
be pulled above the Select operator so that only qualified
rooms are stored in the key list. The details of query pro­
cessing and optimization is beyond the scope of this paper.

Example 1 This example demonstrates the syntax for
defining streams and the mapping from raw to tagged
streams. The raw TemperatureSource stream is de­
fined in SyncSQL by the following statement:

REGISTER SOURCE TemperatureSource
(char RoomID, int Temperature) From
port5501
where RoomID and Temperature represent the stream
schema and port 5 501 is the port at which external
sources report tuples. The tagged streams are defined over
the source TemperatureSource as follows:

RoomTempStr: CREATE STREAM
RoomTempStr

T e m p S t r :

OVER T e m p e r a t u r e s o u r c e
KEY RoomID

CREATE STREAM T e m p S t r
OVER T e m p e r a t u r e s o u r c e
KEY NULL

Running example: Assume the following tuples arrived
at T e m p e r a t u r e s o u r c e : < a , 1 0 0 > 1 , < b , 7 5 > 2 ,
<c , 8 0 > 3 , < a , 9 5 > 4 , < b , 85>5 .
RoomTempStr: The following tuples represent
the corresponding tagged RoomTempStr stream:
+ < a , 1 0 0 > 1 , + < b , 7 5 > 2 , + < c , 8 0 > 3 ,
u < a , 9 5 > 4 , u < b , 85>5 . Notice that the tuple
< a , 1 0 0 > 1 ismapped to + < a , 1 0 0 > 1 while < a , 9 5 > 4
is mapped t o u < a , 95>4 .
T e m p S t r : The following tuples represent the correspond-
ing T e m p S t r tuples: + < a , 1 0 0 > 1 , + < b , 7 5 > 2 ,
+ < c , 8 0 > 3 , +<a, 9 5 > 4 , +<b, 85>5 . Notice that
all the tuples in T e m p S t r are insert operations.

The relational view of a tagged stream: All in-
put and output streams in a SyncSQL query are tagged
streams. An input tuple in a tagged stream is denoted by
"Type<Attributes>Timestamp where type can be
one of three values: +: u: or -. Any tagged stream, say S, has
a corresponding continuous relational view, termed R (S) .
The relational view of a tagged stream is a time-varying re-
lation that is continuously modified by the arriving S's tu-
ples. % (S) 's schema consists of two parts as follows: (I) a
set of attributes that corresponds to S's underlying schema,
and (2) a timestamp attribute, termed TS, that corresponds
to the T i m e s t a m p field of S's tuples. For example, the re- -
lational view of the RoomTempStr, stream that is defined
in Example 1, is denoted by %(RoomTempStr) and the re-
lation's schema consists of th-ee attributes: RoomID, Tem-
perature, and TS. Notice that although T i m e s t a m p is not
a part of S's schema, T i m e s t a m p is mapped to %(S) in or-
der to be able to express time-based windows over S as will
be shown in Section 2.2. At any time point: say T, sR (S)
is denoted as R [S (T)] and is the relation resulting from
applying the modify operations with timestamps less than
or equal to T in an increasing order of timestamp. Accord-
ing to the underlying application, % (S) can be modified
by either inserting tuples (i.e., append-only), or by general
modify operations.

Definition 1. Time-varying relation. A time-varying
relation X (S) is the relational view of a tagged stream S
s u c h t h a t % (s) = R [S (T)] b' T . w h e r e ~ i s a n y p o i n t i n
tlme.

Example 2 This example illustrates the mapping from an
input stream. say S, to the corresponding time-varying re-
lation relation % (S) . Assume that S's underlying schema

Figure 1. Illustrating Time-varying Relations.

has only one attribute. say A t t r l . that is considered a
key. Figure la shows the following S's tuples: + < a > l ,
+ < b > 3 , - < a > 4 , + < c > 5 . Figure Ib shows the cor-
responding time-vary ing relation, % (S) where each record
in % (S) has two attributes, A t t r l and TS. The relation
R [S (T) I is the relation that reflects the input stream tuples
that have T i m e s t a m p less than or equal T. For example.
R [S (1)] reflects the insertion of one tuple with value "a"
and R [S (3)] reflects, in addition to "a"? the insertion of
"bt' and so on.

Query semantics. A continuous query over n tagged
streams. S1 . . . S,. is semantically equivalent to a ma-
terinliled view that is defined by an SQL expression over
the time-vary ing relations, % (S1) . . . R (S,,) . At any
time point, TI the query answer reflects the contents of
the underlying relations at time T, (i.e., R [S1 (T) I . . .
R [S,, (T)]). Whenever any of the underlying relations is
modified by the ai~ival of a stream tuple, the modify op-
eration is propagated to produce the corresponding set of
modify operations in the query answer in a way similar to
incremental maintenance of materialized views [17].

Query outputs. The output of a query can be provided
in two forms as follows:
(1) STREAMED output where the output is a tagged stream
that consists of modify operations that represent the delras
in the answer. The output of a STREAMED query is incre-
llzenml in the sense that a modify operation is produced in
the output whenever a modification (i.e., insert, update, or
delete) takes place in the query answer. As will be discussed
in Section 3.1, timestamps are attached to the output stream
tuples so that the output stream can be used as input in an-
other query (i.e., query composition).
(2) COMPLETE output where the output of the query is
stored in a time-varying relation. The time-varying relation
is modified by the query pipeline whenever any of the input
relations is modified. In this case, at every time point, the
query issuer gets a non-incremental conzplere query answer.

Example 3 This example demonstrates the semantics and
syntax of SyncSQL queries. The temperature monitor-
ing query Qs that is used in Section 1 , is expressed in
SyncSQL as follows:

Running example: Assume the following tuples arrived
at TemperatureSource: <a,100>1, <b,75>2,
<c,80>3, <a,95>4, <b,85>5.
RoomTempStr: The following tuples represent
the corresponding tagged RoomTempStr stream:
+<a,100>1, +<b,75>2, +<c,80>3,
u<a,95>4, u<b,85>5. Notice that the tuple
<a, 100>1 is mapped to +<a, 100>1 while <a, 95>4
is mapped tou<a, 95>4.
TempStr: The following tuples represent the correspond­
ing TempStr tuples: +<a,100>1, +<b,75>2,
+<c, 80>3, +<a, 95>4, +<b, 85>5. Notice that
all the tuples in TempStr are insert operations.

Figure 1. Illustrating Time-varying Relations.

6543

+3 -<n>..t +<c>5

• • • I· s

RIS(1)l.[ilJJ
(b) I

+<0>1
(a) •0 2

has only one attribute, say At trl, that is considered a
key. Figure la shows the following S's tuples: +<a>l,
+3, -<a>4, +<c>5. Figure Ib shows the cor­
responding time-varying relation, !R (S) where each record
in !R (S) has two attributes, At trl and TS. The relation
R [S (T)] is the relation that reflects the input stream tuples
that have Timestamp less than or equal T. For example.
R [S (1)] reflects the insertion of one tuple with value "a"
and R [S (3)] reflects, in addition to "a", the insertion of
"b" and so on.

.--. --

: RIS(3)1: : RISI5lJ'

tffiJ~tffij
I I I I ~

OVER TemperatureSource
KEY RoomID

CREATE STREAM TempStr
OVER TemperatureSource
KEY NULL

TempStr:

The relational view of a tagged stream: All in­
put and output streams in a SyncSQL query are tagged
streams. An input tuple in a tagged stream is denoted by
"Type<Attributes>Timestamp where type can be
one of three values: +, u, or -. Any tagged stream, say S, has
a conesponding continuous relational view, termed !R (S) .
The relational view of a tagged stream is a time-varying re­
lation that is continuously modified by the arriving S's tu­
ples. !R (S) 's schema consists of two parts as follows: (I) a
set of attributes that corresponds to S's underlying schema,
and (2) a timestamp attribute, termed TS, that corresponds
to the Timestamp field of S's tuples. For example, the re­
lational view of the RoomTempStr, stream that is defined
in Example 1, is denoted by !R(RoomTempStr) and the re­
lation's schema consists of three attributes: RoomID, Tem­
perature, and TS. Notice that although Timestamp is not
a part of S's schema, Timestamp is mapped to !R(S) in or­
der to be able to express time-based windows over S as will
be shown in Section 2.2. At any time point, say T, !R (S)
is denoted as R [S (T)] and is the reI ation resulting from
applying the modify operations with timestamps less than
or equal to T in an increasing order of timestamp. Accord­
ing to the underlying application, !R (S) can be modified
by either inserting tuples (i.e., append-only), or by general
modify operations.

Definition 1. Time-varying relation. A time-varying
relation !R (S) is the relational view of a tagged stream S
suchthat!R(S)= R[S(T)] V T, whereT is any point in
time.

Query semantics. A continuous query over n tagged
streams, 5\ ... 5", is semantically equivalent to a ma­
terialized view that is defined by an SQL expression over
the time-varying relations, !R (51) '.' !R (5"). At any
time point, T, the query answer reflects the contents of
the underlying relations at time T, (i.e., R [51 (T)] ...
R [5" (T)]). Whenever any of the underlying relations is
modified by the anival of a stream tuple, the modify op­
eration is propagated to produce the conesponding set of
modify operations in the query answer in a way similar to

• incremental maintenance of materialized views [17].
Query outputs. The output of a query can be provided

in two forms as follows:
(1) STREAMED output where the output is a tagged stream
that consists of modify operations that represent the deltas
in the answer. The output of a STREAMED query is incre­
mental in the sense that a modify operation is produced in
the output whenever a modification (i.e., insert, update, or
delete) takes place in the query answer. As will be discussed
in Section 3.1, timestamps are attached to the output stream
tuples so that the output stream can be used as input in an­
other query (i.e., query composition).
(2) COMPLETE output where the output of the query is
stored in a time-varying relation. The time-varying relation
is modified by the query pipeline whenever any of the input
relations is modified. In this case, at every time point, the
query issuer gets a non-incremental complete query answer.

Example 2 This example illustrates the mapping from an
input stream, say S, to the corresponding time-varying re­
lation relation !R (S) . Assume that S's underlying schema

Example 3 This example demonstrates the semantics and
syntax of SyncSQL queries. The temperature monitor­
ing query Q3 that is used in Section 1 , is expressed in
SyncSQL as follows:

4

+<a.78>1 u<a.105>2 +<b.70>3 +<c.95>4 u<a.76>5 u<c.103>6

I-++-+--&&+- s , n

0 1 2 3 4 5 6 Time

Figure 2. Q~ Running Example.

s e l e c t STREAMEDRoomID, Tempera tu r e
f rom !T?(RoomTempStr) R
where R.Temperature > 80

where RoomTempStr is the input tagged stream that is
defined in Example 1. !T? (RoomTempStr) is the corre-
sponding time-varying relation. The keyword STREAMED
indicates that the output needs to be another stream of
modify operations. The output stream of this query in-
cludes i~zsert (or update) operations for rooms that qualify
the predicate "R.Temperature > 80" and/or delete
operations for previously qualified rooms that disqualify
the predicate due to a temperature update.
Running example. Assume the following
RoomTempSt r 's tuples have arrived at Q3: +<a, 7 8>1,
u<a, 105>2, +<b, 70>3, +<c, 95>4,
u<a,76>5, u<c,103>6. Figure 2 shows the in-
put and output streams in Qg are as follows. The input
tuple +<a, 78>1 does not result in producing any out-
put tuples, while u<a, 105>2, which alrives at time
2, results in i~zserti~ig Room "a" in the answer via the
output tuple +<a, 105>2. Similarly, when +<c, 95>4
arrives, Room "c" is inserted in the query answer via
+<c, 95>4. Later, when u<a, 76>5 arrives, Room "a"
is deleted from the output via -<a>5. Notice that the
"Attributes" part of the delete tuple -<a>5 specifies
only the key value which is enough to perform deletion.
Finally, when u<c, 103 >6 arrives, a corresponding tuple
u<c, 103>6 is produced in the query answer to report
that Room "c" still qualifies the query predicate, but with a
new temperature.

Views over streams. The unified interpretation (as
tagged streams) of SyncSQL query inputs and outputs en-
ables SyncSQL to define and exploit views over streams.
Basically, a view over streams is a named SyncSQL query
expression that is defined once and, then, can be used as in-
put in any other query. For example, a view; say V,, can be
used as input in a query, say Qi, if Qi's expression (or part
of it) is equivale~zt or is co~ltni~ied in v,'s expression. In
Section 5 , we give an algorithm to deduce the containment
relationships among SyncSQL expressions.

Figure 3. Query Composition.

Example 4 This example demonstrates answering queries
using views. Consider the following query, Q4 (from the
same temperature-monitoring application as Q3): "COIZ-
tinuouslj keep track of the roo~ns that /lave telnperature
greater t l~n~z 100". Similar to Q3, Q4 can be expressed over
RoomTempStr as follows:

s e l e c t STREAMEDRoomID. Tempera tu r e
f rom 'li(RoomTempStr) R
where R.Tempera ture > 100

It is obvious that Qq is contained in Q3. As a result we can
benefit from query composition by defining Qg as a view,
say HotRoomsl, as follows:

createSTREAMEDviewHotRoomsl as
s e l e c t RoomID: Tempera tu r e
f rom !T?(RoomTempStr) R
where R.Temperature > 80

Then, the two queries Q3 and Q4 can be re-written in terms
of HotRoomsl as follows:
Q3: s e l e c t STREAMEDRoomID, Tempera tu r e

f rom !T?(HotRoomsl) R
Q.4: s e l e c t STREAMED RoomID. Tempera tu r e

f r om R(HotRoomsl) R
where R.Temperature > 100

Running example. Figure 3 shows the execution of Q4 over
the output of HotRoomsl. Notice that the output stream
from HorRoomsl is the same output stream from Q3 that is
shown in Figure 2. Basically, when the tuple +<a, 105>2
alrives at Q4 at time 2, a corresponding tuple +<a, 10 5 >2
is produced in the output. In contrast, +<c, 95>4 does
not result in producing any output tuples since 95 does not
qualify Q4's predicate. Later, u<c , 103>6 results in in-
serting Room "c" in Q4's answer via +<c, 103>6.

2.2 Window Queries

In addition to expressing queries over non append-only
streams? SyncSQL still can express sliding-window queries
over append-only streams. The sliding-window query
model is the most widely used window model in the exist-
ing streaming literature. A sliding window is defined by two
parameters: (1) r a q e that specifies the size of the window,

~_+_+_+__+_._+-+s out

~

+<a. J05>2 +<c.95>4 -<a.J05>5 u<c.J03>6

S
out

+<a.105>2 -<a.105>5 +<c.103>6

7 Time65432

+<a,105>2 +<c.95>4 -<a.105>5 u<c,103>6
S

in

o6 Time543

+<a,78>1 u<a.J05>2 +<b,7o>3 +<c.95>4 u<a,76>5 u<cJ03>6
~~- ~-----tI________ Sin

o 2

Figure 2. Q3 Running Example. Figure 3. Query Composition.

select STREAMED RoomID, Temperature
from~(RoomTempStr)R

where R.Temperature > SO
where RoomTempStr is the input tagged stream that is
defined in Example I. ~ (RoomTempStr) is the corre­
sponding time-varying relation. The keyword STREAMED
indicates that the output needs to be another stream of
modify operations. The output stream of this query in­
cludes insert (or update) operations for rooms that qualify
the predicate "R. Temperature > SO" and/or delete
operations for previously qualified rooms that disqualify
the predicate due to a temperature update.
Running example. Assume the following
RoomTempStr's tuples have arrived at Q3: +<a, 7 S>1,
u<a,105>2, +<b,70>3, +<c,95>4,
u<a,76>5, u<c,103>6. Figure 2 shows the in­
put and output streams in Q3 are as follows. The input
tuple +<a, 7S>1 does not result in producing any out­
put tuples, while u<a, 105>2, which aITives at time
2, results in inserting Room "a" in the answer via the
output tuple +<a, 105>2. Similarly, when +<C, 95>4
arrives, Room "c" is inserted in the query answer via
+<c, 95>4. Later, when u<a, 76>5 arrives, Room "a"
is deleted from the output via - <a> 5. Notice that the
"Attributes" part of the delete tuple -<a>5 specifies
only the key value which is enough to perform deletion.
Finally, when u<c, 103>6 arrives, a corresponding tuple
u < c, 103> 6 is produced in the query answer to report
that Room "c" still qualifies the query predicate, but with a
new temperature.

Views over streams. The unified interpretation (as
tagged streams) of SyncSQL query inputs and outputs en­
ables SyncSQL to define and exploit views over streams.
Basically, a view over streams is a named SyncSQL query
expression that is defined once and, then, can be used as in­
put in any other query. For example, a view, say Vi, can be
used as input in a query, say Qi, if Q;'s expression (or part
of it) is equivalent or is contained in Vi'S expression. In
Section 5, we give an algorithm to deduce the containment
relationships among SyncSQL expressions.

Example 4 This example demonstrates answering queries
using views. Consider the following query, Q4 (from the
same temperature-monitoring application as Q3): "Con­
tinuously keep track of the rooms that have temperature
greater than ZOO". Similar to Q3, Q4 can be expressed over
RoomTempStr as follows:

select STREAMED RoomID. Temperature
from~(RoomTempStr)R

where R.Temperature > 100
It is obvious that Q4 is contained in Q3. As a result we can
benefit from query composition by defining Q3 as a view,
say HotRooms 1, as follows:

create STREAMED view HotRoomsl as
select RoomID, Temperature
from~(RoomTempStr)R

where R.Temperature > SO
Then, the two queries Q3 and Q4 can be re-written in terms
of HotRoomsl as follows:
Q3: select STREAMED RoomID, Temperature

from ~(HotRoomsl)R
Qj: select STREAMED RoomID. Temperature

from ~(HotRoomsl)R
where R.Temperature > 100

Running example. Figure 3 shows the execution of Q4 over
the output of HotRoomsl' Notice that the output stream
from HorRooms 1 is the same output stream from Q3 that is
shown in Figure 2. Basically, when the tuple +<a, 105>2
aITives at Q4 at time 2, a corresponding tuple +<a, 105>2
is produced in the output. In contrast, +<c, 95>4 does
not result in producing any output tuples since 95 does not
qualify Q4'S predicate. Later, u<c, 103>6 results in in­
serting Room "c" in Q4 's answer via +<c, 103 >6.

2.2 Window Queries

In addition to expressing queries over non append-only
streams, SyncSQL still can express sliding-window queries
over append-only streams. The sliding-window query
model is the most widely used window model in the exist­
ing streaming literature. A sl iding window is defined by two
parameters: (I) range that specifies the size of the window,

5

and (2) slide that specifies the step by which the window
moves over the stream.

Windows may be assigned to streams (e.g.. (2, 81) or to
operators (e.g., [7, 241). However. the same relational op-
erator (e.g., join) may have different semantics under the
different window usages. For example. if we consider the
window-per-operator usage, a window join with window
size ,u!, joins the input stream tuples that are within at most
IL- time units from each other [7]. On the other hand, if
we consider the window-per-stream usage. a binary win-
dow join has two different window sizes, ' ~ I ' J and . ~ ~ 2 ~ one
for each stream [2].

The difference ir? window semantics makes it difficult
for a language that is defined by one window semantics
to expl-ess queries from the other window semantics. To
overcome this difficulty: SyncSQL does not assume spe-
cific window semantics. Instead, SyncSQL uses a general
window model that can be used to express the various win-
dows.

2.2.1 Expressing Window Queries in SyncSQL

In SyncSQL: raw input streams that represent append-only
relations are mapped to tagged streams of ir~sert operations
(e.g.. the TempStr stream in Example 1) . SyncSQL does
not use specific constructs to express sliding windows over
the append-only streams. Instead, SyncSQL elnploys the
predicate-window query model [I51 in which the window
range is expressed as a regular predicate in the \vllere clause
of the query. The window's slide is expressed using the
synchronization principle as will be explained in Section 3.

The predicate-window model is a generalization of
the existing window models. since all types of windows
(e.g., window-per-stream, window-per-operator) can be ex-
pressed as predicate windows. A time-based sliding win-
dow over an append-only stream, say s, is expressed as a
predicate over 8 (S)'s TS attribute. For example, a win-
dow join between two streams, S1 and S2, where two tuples
are joined only if they are at most 5 time units apart. can be
expressed by the following predicate:
B(S2). TS - 5 < 8(SI) . TS < 8(S2). TS+5. The
window predicate can be expressed over any attribute in
the input stream tuple (ordered or non-ordered). For exam-
ple: the temperature monitoring query, Qsl is a predicate-

stream S of car identifiers represents an append-only rela-
tion. A sliding window over S of size 5 time units is es-
sentially a view that, at any time point T, contains the car
identifiers that are reported between times T - 5 and T.
Such window view is expressed in SyrlcSQ~ as follows:

createSTREA!lEDviewFiveUnitsWindowas
s e l e c t *
from R(S) R
where Now - 5 < R.TS 5 Now

The view FiveUnitsWindow is refreshed when either
8 (S) is modified or Now is changed. 8 (S) is modified
by the arrival of S tuples where new S tuples produce ill-
sert operations in the view's output. On the other hand.
Now is continuously changing to indicate the current time,
and, as a result, delete opesations are produced in the out-
put to represent expired tuples that fall behind the window
boundaries. Notice that even if S consists of only insert
operations, FiveUni tswindow's output stream includes
both insert and delete operations. In Section 3.3 we show
that the value of Now can be represented as a view that is
continuously updated to reflect the current time.

Example 6 This example demonstrates query composition
by using of FiveUni tswindow as input in another con-
tinuous query. Assume the following continuous query
from the road monitoring application, Q4: "Group the ill-
put cars by type (e.g., trucks, cars, or buses). Then con-
tinuouslj report the nui7zber of cars passed in the last five
time units in each group". The query Q4 is expressed over
FiveUni tswindow as follows:

s e l e c t STREAMED COUNT(*)
from %(FiveUnits~indow)
groupby CarType

Carcount 'output is a stream of update operations that
represents the incremental query answer. An update opera-
tion is produced for a group, G, only whenever a car enters
and/or expires from G. Notice that if the same query is ex-
pressed using COMPLETE output, then whenever the query
is refreshed, the query issuer sees the non-incremental an-
swer that includes the count of cars in each group indepen-
dent from whether the group has been changed or not. The
non-incremental output of aggregate queries is the approach
that is followed by most of the existing systems to evaluate
aggregates over data streams (e.g., [7,20]).

window in which the predicate is defined over the
unordered Temperature attribute. Mol-eover, sliding- 3 The Synchronization principle
window queries in which a separate window is attached to
each input stream can be expressed using predicate win- If we follow the traditional materialized view semantics,
dows as shown by the following example. a SyncSQL query answer is refreshed whenever any of the

input relations is modified. Unlike materialized views, in
Example 5 Consider a road-monitoring application in streaming applications, modifications may arrive at high
which sensors are distributed to report car identifiers for rates. Usually, a continuous query issuer is interested in
cars passing through a specified intersection. The input having coarser refresh periods for the answer. For examplel

and (2) slide that specifies the step by which the window
moves over the stream.

Windows may be assigned to streams (e.g., [2, 8]) or to
operators (e.g., [7, 24]). However, the same relational op­
erator (e.g., join) may have different semantics under the
different window usages. For example, if we consider the
window-per-operator usage, a window join with window
size 'W, joins the input stream tuples that are within at most
1[' time units from each other [7]. On the other hand, if
we consider the window-per-stream usage. a binary win­
dow join has two different window sizes, 'U'J andw2, one
for each stream [2].

The difference in window semantics makes it difficult
for a language that is defined by one window semantics
to express queries from the other window semantics. To
overcome this difficulty, SyncSQL does nol assume spe­
cific window semantics. Instead, SyncSQL uses a general
window model that can be used to express the various win­
dows.

2.2.1 Expressing Window Queries in SyncSQL

In SyncSQL, raw input streams that represent append-only
relations are mapped to tagged streams of insert operations
(e.g., the TempStr stream in Example I). SyncSQL does
not use specific constructs to express sliding windows over
the append-only streams. Instead, SyncSQL employs the
predicate-window query model [15] in which the window
range is expressed as a regular predicate in the where clause
of the query. The window's slide is expressed using the
synchronization principle as will be explained in Section 3.

The predicate-window model is a generalization of
the existing window models, since all types of windows
(e.g., window-per-stream, window-per-operator) can be ex­
pressed as predicate windows. A time-based sliding win­
dow over an append-only stream, say S, is expressed as a
predicate over ~ (S) 's TS attribute. For example, a win­
dow join between two streams, SJ and S2, where two tuples
are joined only if they are at most 5 time units apart can be
expressed by the following predicate:
~(S2).TS - 5 < ~(SJ).TS < ~(S2).TS+5. The
window predicate can be expressed over any attribute in
the input stream tuple (ordered or non-ordered). For exam­
ple, the temperature monitoring query, Q3, is a predicate­
window query in which the predicate is defined over the
unordered Temperature attribute. Moreover, sliding­
window queries in which a separate window is attached to
each input stream can be expressed using predicate win­
dows as shown by the following example.

Example 5 Consider a road-monitoring application in
which sensors are distributed to report car identifiers for
cars passing through a specified intersection. The input

6

stream S of car identifiers represents an append-only rela­
tion. A sliding window over S of size 5 time units is es­
sentially a view that, at any time point T, contains the car
identifiers that are reported between times T - 5 and T.
Such window view is expressed in SyncSQL as follows:

create STREAMED view FiveUni tsWindow as

select *
from ~(S) R
where Now - 5 < R.TS ::::: Now

The view FiveUni tsWindow is refreshed when either
~ (S) is modified or Now is changed. ~ (S) is modified
by the arrival of S tuples where new S tuples produce in­
sert operations in the view's output On the other hand,
Now is continuously changing to indicate the current time,
and, as a result, delete operations are produced in the out­
put to represent expired tuples that fall behind the window
boundaries. Notice that even if S consists of only insert
operations, FiveUni tsWindow's output stream includes
both insert and delete operations. In Section 3.3 we show
that the value of Now can be represented as a view that is
continuously updated to reflect the current time.

Example 6 This example demonstrates query composition
by using of FiveUni tsWindow as input in another con­
tinuous query. Assume the following continuous query
from the road monitoring application, Q4: "Group the in­
put cars by type (e.g., trucks, cars, or buses). Then con­
tinuously report the number of cars passed in the last five
time units in each group". The query Q4 is expressed over
FiveUni tsWindow as follows:

select STREAMED COUNT(*)
from~(FiveUnitsWindow)

groupby CarType
CarCount 'output is a stream of update operations that
represents the incremental query answer. An update opera­
tion is produced for a group, G, only whenever a car enters
and/or expires from G. Notice that if the same query is ex­
pressed using COMPLETE output, then whenever the query
is refreshed, the query issuer sees the non-incremental an­
swer that includes the count of cars in each group indepen­
dent from whether the group has been changed or not. The
non-incremental output of aggregate queries is the approach
that is followed by most of the existing systems to evaluate
aggregates over data streams (e.g., [7,20]).

3 The Synchronization Principle

If we follow the traditional materialized view semantics,
a SyncSQL query answer is refreshed whenever any of the
input relations is modified. Unlike materialized views, in
streaming applications, modifications may arrive at high
rates. Usually, a continuous query issuer is interested in
having coarser refresh periods for the answer. For example,

as we discussed in Section 1. the issuer of the query Q2 may
be interested in getting an update of the answer every five
minutes independent of the rate of changes in the parking
lot state. The coarser refresh period is achieved via special
constructs in other query languages. for example, the slide
parameter in the sliding-window query model [3? 201 and
the for loop in [8].

In this section, we introduce the synchronization princi-
ple as a generalization for sliding windows. The idea of
the synchronization PI-inciple is to formally specify syn-
chronization time points at which the input stream tuples
are processed by the query pipeline. Input tuples that ar-
rive between two consecutive synchronization points are
not propagated immediately to produce query outputs. In-
stead, the tuples are accumulated and are propagated simul-
taneously at the following synchronization point. In the
rest of the paper. we show that the synchronization prin-
ciple distinguishes SyncSQL by being able to: (1) express
queries with al-bitrary refresh conditions, and (2) formally
reason about the containment relationships among continu-
ous queries with different refresh periods.

3.1 Synchronized Relations

We introduce the sj.r7chr-or7i:otior principle as a means
for expl-essing coarser refresh periods in SyncSQL. The
purpose of the synchronization principle is to define specific
synchronization time points at which the query answer is re-
freshed in response to the input stream tuples. Input stream
tuples that arrive between two consecutive synchronization
points are not propagated immediately to produce query

,outputs. Instead. the tuples are accumulated and propagated
simultaneously at the following synchronization point.

Similar to the slide parameter. the synchronization time
points are specified independently for each input stream in
the query. Each input stream. say S. is mapped to a corre-
sponding sj~r7clironized relotior7 %sync (S) that is modified
by the input stream tuples onlj. at the time points that are
specified by the synchronization stream: Sync. For exam-
ple, a slide parameter of two time units is specified by the
synchronization stream Sync2: 0 , 2 , 4 , 6 , In
Section 3.2 we show how to define and construct synchro-
nization streams.

Definition 2. Synchronized relation. A synchronized
relation Rs,,, (S) is a time-varying relation such that
%s,nc(S) = R [S (T)] V ~ € S y n c .

Example 7 This example illustrates the mapping from an
input stream, say S, to S's corresponding synchronized re-
lation 3?sy,1c, (S) . We use the same input stream S as
in Example 2. Figure 4 shows the synchronized relation
R s ~ ~ ~ ~ ~ (S) , that is modified by the input stream tuples at
time points: 2 , 4 , 6 , For example, R [S (1) 1 is

Figure 4. Illustrating Synchronized Relations.

I / - Sync
4

~ b . 1 10>4
-Kc.97>4

%a. 105>2 -<a.l05>8

A I A A I A I
V - 1 1 I + Sin

0 1 2 ~ 4 5 6 7 8

Figure 5. The Synchronization Principle.

empty while R [S (2)] reflects the insertion of "a". More-
over, +3 is not reflected in (S) until time 4.

Example 8 For the temperature monitoring query Q3, to
achieve the coarser refresh (every two minutes) we use
the synchronization stream Sync2. Then, the view
HotRoomsl is expressed as follows:

createSTREAMEDviewHotRoomslAs
s e l e c t RoomID, Temperature
from (Room~empStr) R
where R.Temperature > 80

Due to the use of Sync2, Rs,,,, (RoomTempStr) is
modified every two minutes. As a result, HotRoomsl is
refreshed every two minutes as is originally requested by
Q3.

Example 9 Figure 5 shows the execution of HotRoomsl
and the subsequent Q4 when using the synchroniza-
tion principle. For simplicity, we assume that the
basic time unit is "minute". Hence: HotRoomsl 's
answer is refreshed every two time units. As-
sume that the following input stream Sin has ar-
'ived at HotRoomsl: + < a , 105>1 , + < b , 110>3 ,
+<c, 97>4, +<d, 75>5, u < a , 75>7. In Figure 5 ,
Sync2 represents HotRoomsl's synchronization stream

Figure 4. lIIustrating Synchronized Relations.

Figure 5. The Synchronization Principle.

-<a.105>8

•• S2

+<a.105>2

+<a.105>4
+<b.110>4

••
~

f-----------+-I---------+I~. Syn~

+<b.110>4
+<c.97>4

• -<a.105>8

I----...r----••------+--------..- S I

I I I I • Syn'1

+<a.105>1 +<b.IIO>3 +<c.97>4 +<d.75>5 u<a.75>7• I • • • I • I . Sin

0 3 4 6 7

R[S(6)J
........ tffij'R[S(2)j R\S(4)J' R (s
GJIJ' ~ c 5 Sync

2

(b) ~ I I I I I .
+<a>J +3 -<a>4 +<c>5

(a) f- • I • • • +- s
0 2 3 4 5 6

Example 8 For the temperature monitoring query Q3, to
achieve the coarser refresh (every two minutes) we use
the synchronization stream SynC2. Then, the view
HotRoomsl is expressed as follows:

create STREAMED view HotRoomsl As
select RoomID, Temperature
from 3i'SynC2 (RoomTempStr) R
where R.Temperature > 80

Due to the use of SynC2, 3i'Sync2 (RoomTempStr) is
modified every two minutes. As a result, HotRoomsl is
refreshed every two minutes as is originally requested by

Q3·

Example 9 Figure 5 shows the execution of HotRoomsl
and the subsequent Q4 when using the synchroniza­
tion principle. For simplicity, we assume that the
basic time unit is "minute". Hence, HotRoomsl's
answer is refreshed every two time units. As­
sume that the following input stream Sin has ar­
rived at HotRoomsl: +<a,105>1, +<b, 110>3,
+<c, 97>4, +<d, 75>5, u<a,75>7. In Figure 5,
SynC2 represents HotRoomsl's synchronization stream

empty while R [S (2)] reflects the insertion of "a". More­
over, + 3 is not reflected in 3i'Sync2 (S) until time 4.

Example 7 This example illustrates the mapping from an
input stream, say S, to S's corresponding synchronized re­
lation 3i'Sync2 (S). We use the same input stream S as
in Example 2. Figure 4 shows the synchronized relation
3i'Sync2 (S) , that is modified by the input stream tuples at
time points: 2, 4, 6, For example, R [S (1)] is

as we discussed in Section I. the issuer of the query Q2 may
be interested in getting an update of the answer every five
minutes independent of the rate of changes in the parking
lot state. The coarser refresh period is achieved via special
constructs in other query languages. for example, the slide
parameter in the sliding-window query model [3, 20] and
thefor/oop in [8].

In this section, we introduce the synchronization princi­
ple as a generalization for sliding windows. The idea of
the synchronization principle is to formally specify syn­
chronization time points at which the input stream tuples
are processed by the query pipeline. Input tuples that ar­
rive between two consecutive synchronization points are
not propagated immediately to produce query outputs. In­
stead, the tuples are accumulated and are propagated simul­
taneously at the following synchronization point. In the
rest of the paper. we show that the synchronization prin­
ciple distinguishes SyncSQL by being able to: (I) express
queries with arbitrary refresh conditions, and (2) formally
reason about the containment relationships among continu­
ous queries with different refresh periods.

We introduce the synchronization principle as a means
for expressing coarser refresh periods in SyncSQL. The
purpose of the synchronization principle is to define specific
synchronization time points at which the query answer is re­
freshed in response to the input stream tuples. Input stream
tuples that arrive between two consecutive synchronization
points are not propagated immediately to produce query

o outputs. Instead, the tuples are accumulated and propagated
simultaneously at the following synchronization point.

Similar to the slide parameter, the synchronization time
points are specified independently for each input stream in
the query. Each input stream, say S, is mapped to a corre­
sponding synchronized relation 3i'Sync (S) that is modified
by the input stream tuples only at the time points that are
specified by the synchronization stream, Sync. For exam­
ple, a slide parameter of two time units is specified by the
synchronization stream SynC2: 0, 2, 4, 6, In
Section 3.2 we show how to define and construct synchro­
nization streams.

Definition 2. Synchronized relation. A synchronized
relation 3i'Sync (S) is a time-varying relation such that
3i'Sync(S) = R[S(T)] \:}TESync.

3.1 Synchronized Relations

7

while S1 shows HotRoomsl's output. The input tuple
+<a , 1 0 5 > 1 that arrived at time 1 results in producing
the tuple +<a, 1 0 5 > 2 at time 2: which is the first syn-
chronization time point after 1 . Similarly. + < b , 11 0>3
results in producing + < b , 1 1 0 > 4 , and u<a, 7 5 > 7 re-
sults in producing - <a> 8.
Query composition. S1 is used as input in Q4, which uses
the synchronization stream Sync4 : 0 , 4 , 8, As a
result: tuple +<a, 1 0 5 > 2 that arrives at Q4 at time 2 re-
sults in producing the tuple +<a, 1 0 5 > 4 at time 4 in S2.
Other tuples are processed similarly by Q4's pipeline.

Timestamps of the output stream tuples. Timestamps
need to be attached to the output tuples from a STREAMED
view so that the output stream can be used as input in an-
other continuous query. When considering the synchro-
nization principle, an input tuple possesses two timestamps
as follows. (I) The Art-ival timestamp that is equal to the
timestamp attribute of the tuple, and (2) The Release time-
stamp that is equal to the time at which the input tuple is
reflected in the query. The arrival and release timestamps
may not be equal for tuples that a ~ ~ i v e between two con-
secutive synchronization points. However: the timestamp
of an output tuple is constructed as a function of the release
timestamp(s) of the input tuple(s) that caused this output be-
cause the output necessarily follows the release time point.
For example, in Example 9, the input tuple +<a,105>2 in
Q4: that has arrival timestamp of value 2, has a release time-
stamp of value 4. As a result, +<a,105>2 results in pro-
ducing the output tuple +<a,105>4 which has a timestamp
equals to 4.

3.2 Synchronization Streams

Before proceeding to the algebraic foundations of
SyncsQ~, this section discuses synchronization streams in
more detail. Basically, a synchronization stream specifies
a sequence of time points. However, the representation of
a synchronization stream follows the tagged stream seman-
tics in Section 2.1, and is treated as any other stream. A
synchronization stream is characterized by the following.
(a) The underlying stream schema has only one attribute,
termed Timepoint, and (b) tuples in the stream are iizsert
operations of the folm "+<Timepoint>Timepoint".
Like any other stream, a synchronization stream Sync
has a corresponding time-varying relation Y? (Sync) where
each "+<Timepoint>Timepointt ' adds a new time
point of value Timpepoint to %(Sync). The de-
fault clock stream, clockstr : + < 0 > 0 , + < 1 > 1 ,
+ < 2 >2 , + < 3 > 3 , . . . , is the finest granularity synchro-
nization stream where there is a time point for every clock
tick. Coarser synchronization streams can be constructed
using SyncSQL expressions over clockstr.

Example 10 The synchronization stream that has a tick ev-
ery two time points is constructed from clockStr using
the following view expression:

createSTREAMEDvie~Sync~ A s
s e l e c t C.Timepoint
from x(c1ockStr) C
where C.Timepoint mod 2 = 0

A tuple is produced in the output of Sync2 whenever a tu-
ple, c, is inserted in x (clock~tr) and c . Timepoint
qualifies the predicate "c. Timepoint mod 2 = 0".
The output of Sync2 is as follows: + < 0 > 0 , + < 2 > 2 ,
+ < 4 > 4 , + < 6 > 6 , . . . which indicates the time points:
0 , 2 , 4 , 6 , . . . , which is the same as Sync2 that is
used in Example 8.

Composition of synchronization streams. The fact that
synchronization streams are treated as regular streams al-
lows us to compose synchronization streams to define a
larger class of synchronization streams. For example, a syn-
chronization stream can be defined as the union or intersec-
riot? of two or more streams.

Example 11 The following view expression produces a
synchronization stream that is the union of two input syn-
chronization streams (Note that duplicate elinlination is re-
quired so that every time point exists only once in the output
stream):

c r e a t e STREAMEDviewUnionSyncStr a s
selectDIST~NCT(Timepoint)
from %(Sync2) S1 U %(Sync,) S5

The output from Unionsyncstr includes a time point T

whenever T belongs to either Sync:! or Sync5.

Event-based synchronization: The synchronization
principle enables SyncSQL to express a wider class of con-
tinuous queries including queries that use event-based re-
fresh conditions. Synchronization streams for event-based
conditions can be constructed using SyncSQL expressions
as in the following example.

Example 12 Consider another temperature monitoring
query, Q5, that is similar to Q4 except that Q5 needs to
be refreshed only whenever a room reports a temperature
greater than 120 . We use the tagged stream TempStr,
which is defined in Example 1, to generate a synchroniza-
tion stream, say HotSync, such that HotSync includes
time points that col~esponds to reporting a temperature
greater than 120. As explained in Section 2, TempStr
consists of only insert operations and its co~~esponding
relation !J? (TempStr) has three attribute: RoomID,
Temperature, and TS. A synchronization stream,
Hotsync, can then be constructed by the following query
o v e r 8 (TempStr):

createSTREAMEDviewHotSync a s

while S] shows HotRooms] 's output. The input tuple
+<a, 105>1 that arrived at time 1 results in producing
the tuple +<a, 105>2 at time 2, which is the first syn­
chronization time point after 1. Similarly, +<b, 110>3
results in producing +<b, 110>4, and u<a, 75>7 re­
sults in producing - <a> 8.
Query composition. SI is used as input in Q4, which uses
the synchronization stream SynC4: 0, 4, 8, As a
result tuple +<a, 105>2 that arrives at Q4 at time 2 re­
sults in producing the tuple +<a, 105>4 at time 4 in S2.
Other tuples are processed similarly by Q4 's pipeline.

Timestamps of the output stream tuples. Timestamps
need to be attached to the output tuples from a STREAMED
view so that the output stream can be used as input in an­
other continuous query. When considering the synchro­
nization principle, an input tuple possesses two timestamps
as follows. (I) The Arrival timestamp that is equal to the
timestamp attribute of the tuple, and (2) The Release time­
stamp that is equal to the time at which the input tuple is
reflected in the query. The arrival and release timestamps
may not be equal for tuples that anive between two con­
secutive synchronization points. However, the timestamp
of an output tuple is constructed as a function of the release
timestamp(s) of the input tuple(s) that caused this output be­
cause the output necessarily follows the release time point
For example, in Example 9, the input tuple +<a,IOS>2 in
Q4, that has arrival timestamp of value 2, has a release time­
stamp of value 4. As a result, +<a, IOS> 2 results in pro­
ducing the output tuple +<a, IOS>4 which has a timestamp
equals to 4.

3.2 Synchronization Streams

Before proceeding to the algebraic foundations of
SynCSQL, this section discuses synchronization streams in
more detail. Basically, a synchronization stream specifies
a sequence of time points. However, the representation of
a synchronization stream follows the tagged stream seman­
tics in Section 2.1, and is treated as any other stream. A
synchronization stream is characterized by the following.
(a) The underlying stream schema has only one attribute,
termed Timepoint, and (b) tuples in the stream are insert
operations of the fOlID "+<Timepoint>Timepoint".
Like any other stream, a synchronization stream Sync
has a corresponding time-varying relation ~ (Sync) where
each "+<Timepoint>Timepoint" adds a new time
point of value Timpepoin t to ~ (Sync) . The de­
fault clock stream, clockStr: +<0>0, +<1>1,
+< 2>2, +< 3> 3, ... , is the finest granularity synchro­
nization stream where there is a time point for every clock
tick. Coarser synchronization streams can be constructed
using SyncSQL expressions over clockStr.

8

Example 10 The synchronization stream that has a tick ev­
ery two time points is constructed from clockStr using
the following view expression:

create STREAMED view Sync2 As
select C.Timepoint
from ~(clockStr)C
where C.Timepoint mod 2 = 0

A tuple is produced in the output of Sync2 whenever a tu­
ple, c, is inserted in ~ (clockStr) and c. Timepoint
qualifies the predicate "c. Timepoint mod 2 = 0".
The output of SynC2 is as follows: +<0>0, +<2>2,
+<4>4, +<6>6, ... which indicates the time points:
0, 2, 4, 6, ... , which is the same as Sync2 that is
used in Example 8.

Composition of synchronization streams. The fact that
synchronization streams are treated as regular streams al­
lows us to compose synchronization streams to define a
larger class of synchronization streams. For example, a syn­
chronization stream can be defined as the union or intersec­
tion of two or more streams.

Example 11 The following view expression produces a
synchronization stream that is the union of two input syn­
chronization streams (Note that duplicate elimination is re­
quired so that every time point exists only once in the output
stream):

create STREAMED view UnionSyncStr as
select DISTINCT(Timepoint)
from ~(Sync2) S2 U ~(Sync5) S5

The output from unionSyncStr includes a time point T
whenever T belongs to either Sync2 or Sync5.

Event-based synchronization: The synchronization
principle enables SyncSQL to express a wider class of con­
tinuous queries including queries that use event-based re­
fresh conditions. Synchronization streams for event-based
conditions can be constructed using SyncSQL expressions
as in the following example.

Example 12 Consider another temperature monitoring
query, Q5, that is similar to Q4 except that Q5 needs to
be refreshed only whenever a room reports a temperature
greater than 120. We use the tagged stream TempStr,
which is defined in Example I, to generate a synchroniza­
tion stream, say HotSync, such that HotSync includes
time points that cOlTesponds to reporting a temperature
greater than 120. As explained in Section 2, TempStr
consists of only insert operations and its cOlTesponding
relation ~ (TempStr) has three attribute: RoomID,
Temperature, and TS. A synchronization stream,
HotSync, can then be constructed by the following query
over ~ (TempStr):

create STREAMED view HotSync as

s e l e c t R.TS
from %(TempStr) R
where R.Temperature > 120

An input tuple from TempStr, of the form
"+<RoomID, Temperature>Times tampPPP re-
sults in an output tuple, "+<Timestamp>Tirnestamp",
if "~emperature" is greater than 120. HotSync can be,
then. used as a synchronization stream for QS.

3.3 The NOW View

In Example 5: FiveUnitsWindow's contents depend
on the value of Now. In order to be consistent with the
SyncSQL semantics, the value of Now is defined as a
view that is continuously modified by the clock stream
clockstr: +<0>0, +<1>1, +<2>2, No-
tice that %(clockStr) is an append-only relation in
which the value of the last inserted tuple indicates the cur-
rent time. Now.

Example 13 The following view, NowView, over
% (clockstr) always contains the value of Now:

c rea t e STREAMEDviewNowViewas
s e l e c t I a s KEY: M ~ ~ (T . ~ i m e ~ o i n t) a s currTime
from %(clockStr) T

The output of NowView is a time-varying relation that
has a primary key, KEY. The view always contains one
tuple with key value 1, and the tuple is continuously
updated in response to insertions in %(clockStr). As
tuples are appended to % (clockstr), the function
MAX (T . Timepoint) selects the last appended tuple
that has a value equals to the current time, NOW. The
output stream from NowView is as follows: +<I, 0>0,
u<l, l>l, u<1,2>2, u<1,3>3, . . . : where the
tuple u< 1,3 >3, for example, means update the record
with KEY value 1, to have a currTime value 3. The view
FiveUnitsWindow over stream S from Example 5 is
rewritten in terms of NowView as follows:

c r e a t e STREAMEDview FiveUnitsWindowas
s e l e c t R.*
from %(S) R, %(Nowview) N
where N.currTime - 5 < R.TS 5 N.currTime

Example 14 This example shows how to use SyncSQL to
define a sliding window that is defined by both the ratzge
and slide parameters. Assume we extend the definition of
the sliding window in Example 5 such that the window is
refreshed every 2 time units instead of every point in time
(this coi-responds to a sliding window with range 5 units and
slide 2 units). In a way similar to using clockStr to de-
fine NowView, we use the synchronization stream Sync2
to define a view, say TwoUni t sSl ide, as follows:

c r ea t e STREAMEDviewTwoUnitsSlide a s
s e l e c t 1 a s KEY: MAX(T.Timepoint) a s currTime

from R(Sync2) T
The TwoUni t s Sl ide view consists of only one tuple that
is updated by Syncnls tuples. The TwoUnitsSlide view
can, then, be used to express a sliding window of range 5
and slide 2 over a stream S as follows:

createSTREAMEDview RangeFiveSlideTwoas
s e l e c t R.*
from %Sync, (S) R, %(TwoUnitsSlide) N
where N.currTime - 5 < R.TS 5 N.currTime

Only at the time points that belongs to Syncz,
RangeFiveSlideTwo7s output is refreshed to include
S's tuples that arrived in the last 5 time units.

4 SyncSQL Algebra

In this section, we lay the algebraic foundation for
SyncSQL as the basis for efficient execution and optimiza-
tion of SyncSQL queries. One of our goals while devel-
oping SyncSQL is to minimize the extensions over the
well-known relational algebra. By levering the relational
algebra, SyncSQL execution and optimization can benefit
from rich literature of traditional databases. We achieved
our goal by mapping continuous queries to the traditional
materialized views. However, the synchronization principle
differentiates continuous queries from materialized views.
In this section, we introduce the data types and transforma-
tion rules that are imposed by the synchronization principle.

4.1 Data Types

As discussed in Section 2 : although the inputs in
a SyncSQL expressions are tagged streams, SyncSQL
queries are expressed over the input streams' correspond-
ing relations. The output from a SyncSQL expression is
another relation that can be mapped into a tagged stream.
Basically, a synchronized relation is the main data type over
which SyncSQL expressions are expressed. A synchro-
nized relation, %sync (S) , possesses two logical properties:

Data (or state) that is represented by the tuples in the
relation and is extracted from the input stream S.

Time that is represented by the time points at which the
relation is modified by the underlying stream S and is
extracted from the synchronization stream Sync.

The time points at which %s,7,c$ (Si) reflects all Si's
tuples up to time Ti (i.e.? %sy,c7 (Si) = R [Si (T i) I) are
called "full synchronization points" for the relation. Basi-
cally, the time points Ti E Synci represent the full synchro-
nization points for (Si) . On the other hand, the time
points at which %s,7,,-, (Si) does not reflect all Si tuples are
called "artial sjnchronization poirzts". Basically, the time
points that lies between two consecutive Synci represent
the partial synchronization points for %sl,.n,cj (Si) .

select R.TS
from lR(TempStr) R
where R.Temperature > 120

An input tuple from TempStr, of the form
"+<RoomID, Temperature>Timestamp", re­
sults in an output tuple, "+<Timestamp>Tirnestamp",
if "Temperature" is greater than 120. HotSync can be,
then, used as a synchronization stream for Q5.

3.3 The Now View

In Example 5, FiveUni tsWindow's contents depend
on the value of Now. In order to be consistent with the
SyncSQL semantics, the value of Now is defined as a
view that is continuously modified by the clock stream
clockStr: +<0>0, +<1>1, +<2>2, No­
tice that lR (clockStr) is an append-only relation in
which the value of the last inserted tuple indicates the CUf­

rent time, Now.

Example 13 The following view, NowView, over
~ (clockStr) always contains the value of Now:

create STREAMED view NowView as
select 1 as KEY, MAX(T.Timepoint) as currTime
from ~(clockStr)T

The output of NowView is a time-varying relation that
has a primary key, KEY. The view always contains one
tuple with key value 1, and the tuple is continuously
updated in response to insertions in lR(clockStr). As
tuples are appended to ~ (clockStr), the function
MAX (T . Timepoint) selects the last appended tuple
that has a value equals to the cunent time, Now. The
output stream from NowView is as follows: +<1,0>0,
u<l,l>l, u<1,2>2, u<1,3>3, ... , where the
tuple u<l, 3>3, for example, means update the record
with KEY value 1, to have a currTime value 3. The view
FiveUni tsWindow over stream S from Example 5 is
rewritten in terms of NowView as follows:

create STREAMED view FiveUnitsWindow as
select R.*
from ~(S) R, lR(NowView) N
where N.currTime - 5 < R.TS :::; N.currTime

Example 14 This example shows how to use SyncSQL to
define a sliding window that is defined by both the range
and slide parameters. Assume we extend the definition of
the sliding window in Example 5 such that the window is
refreshed every 2 time units instead of every point in time
(this conesponds to a sliding window with range 5 units and
slide 2 units). In a way similar to using clockStr to de­
fine NowView, we use the synchronization stream Sync2
to define a view, say TwoUni tsSl ide, as follows:

create STREAMED view TwoUni tsSlide as
select 1 as KEY, MAX(T.Timepoint) as currTime

9

from lR(Sync2) T
The TwoUni tsSlide view consists of only one tuple that
is updated by Sync2 's tuples. The Twouni tsSlide view
can, then, be used to express a sliding window of range 5
and slide 2 over a stream S as follows:

create STREAMED view RangeFiveSlideTwo as
select R.*
from lRSync2 (S) R, lR(TwoUni tsSlide) N
where N.currTime - 5 < R.TS :::; N.currTime

Only at the time points that belongs to Sync2,
RangeFiveSlideTwo's output is refreshed to include
S's tuples that arrived in the last 5 time units.

4 SyncSQL Algebra

In this section, we lay the algebraic foundation for
SyncSQL as the basis for efficient execution and optimiza­
tion of SyncSQL queries. One of our goals while devel­
oping SyncSQL is to minimize the extensions over the
well-known relational algebra. By levering the relational
algebra, SyncSQL execution and optimization can benefit
from rich literature of traditional databases. We achieved
our goal by mapping continuous queries to the traditional
materialized views. However, the synchronization principle
differentiates continuous queries from materialized views.
In this section, we introduce the data types and transforma­
tion rules that are imposed by the synchronization principle.

4.1 Data Types

As discussed in Section 2, although the inputs in
a SyncSQL expressions are tagged streams, SyncSQL
queries are expressed over the input streams' correspond­
ing relations. The output from a SyncSQL expression is
another relation that can be mapped into a tagged stream.
Basically, a synchronized relation is the main data type over
which SyncSQL expressions are expressed. A synchro­
nized relation, ~sYTlC (S) , possesses two logical properties:

• Data (or state) that is represented by the tuples in the
relation and is extracted from the input stream S.

• Time that is represented by the time points at which the
relation is modified by the underlying stream S and is
extracted from the synchronization stream Sync.

The time points at which ~Synci (Si) reflects all Si'S
tuples up to time Ti (i.e., lRSynci (S;) = R [Si (T;)]) are
called "full synchronization points" for the relation. Basi­
cally, the time points T; E Sync; represent the full synchro­
nization points for ~Synci (S;) . On the other hand, the time
points at which ~Synci (Si) does not reflect all Si tuples are
called "partial synchronization points". Basically, the time
points that lies between two consecutive SynCi represent
the partial synchronization points for lRSync; (Si) .

Figure 6. The Relation-to-Stream Operator.

4.2 Operators

Operators in SyncSQL are classified into three classes:
Stream-to-Relation (S2R), Relation-to-Relation (R2R), and
Relation-to-Stream (R2S). This operator classification is
similar to the classification used by CQL [2], but with dif-
ferent instantiations of operators in each class. Basically,
the S2R class includes one operator that is used to express
the desired synchronization points. The R2R class includes
the traditional relational operators. Finally, the R2S class
includes one operator that is used in a query to express the
desire of an i n c r e m e n t a l output.

4.2.1 S2R and R2S Operators

The stream-to-relation operator X. X takes a tagged
stream of modify operations, say S, as input and a synchro-
nization stream, say Sync , as a parameter and produces
a synchronized relation, !Rs,,,, (S) , as output. Similar
to % (S) , !RSync (S) 'S schema consists of S's underlying
schema plus the timestamp attribute TS as explained in Sec-
tion 2.1. Basically, !R performs the following: (1) buffers
S's tuples, (2) modifies the output relation by the buffered
tuples at every Sync's point, T. The output relation at
Sync's point T is denoted by R [S (T) 1 .

The relation-to-stream operator [. [takes a synchro-
nized relation, !Rs,,,, (S) . as input and produces a tagged
stream as output. (produces output tuples only when the in-
put relation is modified (i.e, at the time points that belongs
to Synch) . Basically, at every Sync's time point, T, the
input relation is R [S (T)] and [performs the following:
(1) generates delta tuples that represent !Rs,,, (S) ' s modi-
fications (i.e., +, u, or -) since the previous synchronization
point, (2) assigns T as the timestamp of every generated
tuple and produces the delta tuples in the output. Notice
that non append-only relations can be mapped to streams
according to the SyncSQL stream semantics.

Example 15 The functionality of the S2R operator, 9, has
been demonstrated before in Example 7. In this example

we demonstrate the functionality of the R2S operator, <.
Figure 6 shows the mapping from a synchronized relation,
!Rs,,,, (S , to the corresponding stream, SOUL (i.e., Sout
= [(%Sy71cz (S))). Consider the same S and Syncs that
are used in Example 7. At time 2, !Rs,,,,, (S) is denoted as
R [S (2)] and < produces + < a , 1 > 2 in the output. At time
4, [produces - < a > 4 and +<b, 3 > 4 as the differences
since the previous synchronization point, 2. Notice that ev-
ery S's tuple has a corresponding tuple in SOut, although
because of the synchronization, the corresponding tuples
in S and So,, may not have the same timestamps. Notice
also that SOut's schema differs from S's schema by having
an additional attribute that corresponds to the T i m e s t a m p
field of S's tuples (e.g., the tuple +<a> l in S is mapped
to +<a,1>2 in SOUL). This additional attribute is due to
the composition of X and 5 operators. Recall that an ad-
ditional TS attribute is added by !R when S is mapped to
!RS,ncz (S) . As a result, TS is produced as an attribute in
SoUtfs schema when [maps !RSYRC2 (S) to SoUt. TS can be
eliminated from !Rs,,,, (S) by using an R2R project oper-
ator. -ir.

4.2.2 Extended R2R Operators.

The R2R class of operators includes extended versions of
the traditional relational operators (e.g., a: . ~ i : w, U, n, and
-). The semantics of R2R operators in SyncSQL are the
same as in the traditional relational algebra. The difference
in SyncSQL is that the operators are continuous (not snap-
shot). A continuous operator means that, inputs to the oper-
ator are continuously changing and the operator is continu-
ously running to produce a new output whenever any of the
inputs changes.

As with materialized views, the output from an R2R op-
erator is refreshed whenever any of the input relations is
modified. For a unary operator (e.g., cr, T) , the output
relation is modified at the input relation's synchronization
points. In other words, the synchronization points (full and
partial) for the output relation are the same as those for
the input relation. However, a problem arises in non-unary
operators if the input relations have different synchroniza-
tion points. Notice that operating over relations with differ-
ent synchronization points is similar to operating over win-
dowed streams with different slide parameters (the latter has
not been discussed in the existing literature).

For example, consider a binary operator: say 0, that
has two input synchronized relations, Rs,,,, (S1) and
Rsync2 (S2) . The input relation Rs,,,, (S1) is modified
at every time point in S y n c] while Rs,,,,, (S 2) is modi-
fied at every point in Sync2 . As a result, the output of 0
is modified at every point T E (S y n c] U S y n c 2) . The
output of 0 is interpreted as follows:

For every time point

4.2.2 Extended R2R Operators.

we demonstrate the functionality of the R2S operator, ~.

Figure 6 shows the mapping from a synchronized relation,
:RSync2 (8) , to the corresponding stream, 8 0111 (i.e., Soul

= ~ (:RSync2 (S))). Consider the same Sand Sync2 that
are used in Example 7. At time 2, :Rsync2 (S) is denoted as
R [S (2)] and ~ produces +<a, 1> 2 in the output. At time
4, ~ produces -<a>4 and +<b, 3>4 as the differences
since the previous synchronization point. 2. Notice that ev­
ery S's tuple has a corresponding tuple in S0111, although
because of the synchronization, the corresponding tuples
in S and Soul may not have the same timestamps. Notice
also that Sout'S schema differs from S's schema by having
an additional attribute that corresponds to the Timestamp
field of 8's tuples (e.g., the tuple +<a> 1 in S is mapped
to +<a,l > 2 in Sout). This additional attribute is due to
the composition of :R and ~ operators. Recall that an ad­
ditional TS attribute is added by :R when S is mapped to
:RsYnC2 (S) . As a result, TS is produced as an attribute in
Sout'S schema when ~ maps :RsYnC2 (8) to Souto TS can be
eliminated from :RSync2 (S) by using an R2R project oper­
ator. If.

The R2R class of operators includes extended versions of
the traditional relational operators (e.g., 0", Jr, I><J, U, n, and
-). The semantics of R2R operators in Sync SQL are the
same as in the traditional relational algebra. The difference
in SyncSQL is that the operators are continuous (not snap­
shot). A continuous operator means that, inputs to the oper­
ator are continuously changing and the operator is continu­
ously running to produce a new output whenever any of the
inputs changes.

As with materialized views, the output from an R2R op­
erator is refreshed whenever any of the input relations is
modified. For a unary operator (e.g., 0", 'if), the output
relation is modified at the input relation's synchronization
points. In other words, the synchronization points (full and
partial) for the output relation are the same as those for
the input relation. However, a problem arises in non-unary
operators if the input relations have different synchroniza­
tion points. Notice that operating over relations with differ­
ent synchronization points is similar to operating over win­
dowed streams with different slide parameters (the latter has
not been discussed in the existing literature).

For example, consider a binary operator, say 0, that
has two input synchronized relations, RS ync1 (S1) and
RSync2 (S2). The input relation RSync1 (S1) is modified
at every time point in SynC1 while RSYnc2 (S2) is modi­
fied at every point in Sync2. As a result, the output of °
is modified at every point T E (Sync1 U Sync2)' The
output of°is interpreted as follows:

-<a>4
+<b.3>4

+<c.5>6
+<a.1>2 •(c) • • • .. SOUl

R[S(6)J

(ltJ ·RlS(4)] [fill R (S
Sync2

(b) a 1 [ilD c 5

+<a> 1 +3 -<a>4 +<c>5
(a) • • • • .. S

0 2 3 4 5 6

Figure 6. The Relation-to-Stream Operator.

4.2 Operators

Operators in SyncSQL are classified into three classes:
Stream-to-Relation (S2R), Relation-to-Relation (R2R), and
Relation-to-Stream (R2S). This operator classification is
similar to the classification used by CQL [2], but with dif­
ferent instantiations of operators in each class. Basically,
the S2R class includes one operator that is used to express
the desired synchronization points. The R2R class includes
the traditional relational operators. Finally, the R2S class
includes one operator that is used in a query to express the
desire of an incremental output.

4.2.1 S2R and R2S Operators

The stream-to-relation operator:R. :R takes a tagged
stream of modify operations, say S, as input and a synchro­
nization stream, say Sync, as a parameter and produces
a synchronized relation, :Rsync (S), as output. Similar
to :R (S) , :RSYnc (S) 's schema consists of S's underlying
schema plus the timestamp attribute TS as explained in Sec­
tion 2.1. Basically,:R performs the following: (I) buffers
S's tuples, (2) modifies the output relation by the buffered
tuples at every Sync's point, T. The output relation at
Sync's point T is denoted by R [S (T)].

The relation-to-stream operator~. ~ takes a synchro­
nized relation, :Rsync (S) , as input and produces a tagged
stream as output. ~ produces output tuples only when the in­
put relation is modified (i.e, at the time points that belongs
to Synch). Basically, at every Sync's time point, T, the
input relation is R [8 (T)] and ~ performs the following:
(I) generates delta tuples that represent :Rsync (S) 's modi­
fications (i.e., +, u, or -) since the previous synchronization
point, (2) assigns T as the timestamp of every generated
tuple and produces the delta tuples in the output. Notice
that non append-only relations can be mapped to streams
according to the SyncSQL stream semantics.

Example 15 The functionality of the S2R operator, :R, has
been demonstrated before in Example 7. In this example

10

• For every time point

T I E (S y n c l - (S y n c 1 fl S y n c 2)) , T I is a
full synchronization point for ~ s , ~ , , (S 1) (i.e., at
time T I , Rsync, (S1) reflects all S 1 tuples up to T I) .
However, the same point T I is a partial synchroniza-
tion point for R S ~ , , ~ , (S 2) (i.e., at TI, R S ~ , , , ~ ? (S 2)
does not reflect all S2 tuples up to T I) . Hence, as a
result, T I is a partial synchronization point for the
output of 0 because at time T I , the output of 0 does
not reflect all input tuples from all input streams.

Similarly, every time point
T2 E (S y n c 2 - (S y n c l fl S y n c 2)) is a par-
tial synchronization point for the output of 0 because
it does not reflect all input tuples from all input
streams.

Every time point T E (S y n c l 0 S y n c 2) is a full
synchronization point for the output of 0 since it re-
flects all input tuples from all input streams.

Proposition 1. Unary operators. The output of a unary
R2R operator, say 0 , over a synchronized relation, say
%Sy, lc (S) , is another synchronized relation, denoted by
O(Xs,, ,(S)), such that:
V T E S y n c , T i s a f u l l s y n c po in t , and

0(rris,,,,(S)) - O (R [S (T)]) , while
Q T $ S y n c , T i s a partial s y n c point , and

(-)(%s,c(S)) = @(R[s(T)I)
u ~ l z e r e T = i n a x (t E S y n c a n d t < T)

Proposition 2. Binary operators. The output of a
binary R2R operator, say 0, over two synchronized rela-
tions, say %sync, (S 1) and %sync, (S2), is a synchronized
relation, denoted by (S 1) 0 %sVnc, (S 2) , such that:
(1) Q T E Sync1 0 S y n c z ,
T i s a f u l l s y n c p o i n t , a n d ,
%syncl (S I) 0 S ~ ~ y n c ~ (5 '2) = R[S1 (TI] 0 R [S Z (T)] :
(2) Q T E (S y n c 1 - (S y n c 1 0 S y n c z)) ,
T i s a partial s y n c po in t , a n d ;
%syncl (S I) %svnc2 (S 2) = R[SI (T)] 0 R[s~(T) I ,
w h e r e T = m a x (t E Sync2 a n d t < T) ,
(3) Q T E (S Y I Z C ~ - (Sy1zcl 0 S y n c z)) ,
T i s a partial s y n c point , a n d
%syncl (S I) 0 % s ~ , ~ ~ ~ (5 '2) = R [s ~ (T)] 0 R[&(T)]:
w h e r e T = r n a z (t E Sync1 a n d t < T)

According to Proposition 1, at any time point, say T?', that
does not belong to the output synchronization stream, the
output synchronized relation from a unary operator reflects - -
the input stream only up to a time point T where T?' < 7. Sim-
ilarly, according to Psoposition 2, at any time point, say T,
that does not belong to the output synchronization stream,
the output from a binary R2R operator reflects one input

streams up to time point T while reflects the other input -
stream only up to time T where T < T.

Query pipeline. In order to express a query over tagged
stream, the S y n c S Q L expression is constructed as follows.
(1) S2R: transform each input stream to the colresponding
synchronized relation via an % operator using the desired
synchronization. (2) R2R: using R2R operators, and in a
way similar to traditional SQL, express the query over the
synchronized relations. The output of is another synchro-
nized relation. (3) R2S: the output synchronized relation is
transformed into an incremental output via an < operator.

Example 16 This example shows the execution pipeline
for a join query between two synchronized relations,
%Sync, (S2) and %s,,,,, (S s) . where sync2 ticks every
2 time units while S y n c s ticks every 3 time units. The
S y n c S Q L expression is as follows:

s e l e c t STREAMED*
f ram %sync2 (S2) R2- %synca (S 3) R3
whereR2.1D = R3.1D

Figure 7 illustrates the pipeline and shows that the output of
join is refreshed at time points 2. 3, 4: and 6. The output
at 2 isequal t o R [S 2 (2)] w R [S j (0)] and hence 2 i s a
partial synchronization point since it reflects s g only up to
time 0 . Similarly. 3 is apart ial synchronization point since
it reflects S2 up to time 2 . 4 also is a partial synchroniza-
tion point since it reflects S g up to time 3. However, 6 is a
full synchronization point for the output since it 1-eflects all
input tuples up to time 6.

4.3 Equivalences and Relationships

Achieving query composition is one of the main goals
of S y n c S Q L . In order to achieve query composition, a
query optimizer must be empowered by algorithms to rea-
son about the equivalences and containment relationships
among query expressions. In this section, we introduce pre-
liminary relationships that are required by a query optimizer
to enumerate the query plans and deduce query contain-
ment.

4.3.1 Containment Relationship among Synchroniza-
tion Streams

A synchronization stream, say S y n c l , is contained
in another synchronization stream. say S y n c 2 , if
every time point in S y n c l is also a time point
in S y n c z (i.e., % (S y n c]) C % (S y n c 2)) . Recall
that. as explained in Section 3.2, a synchronization
stream consists of only itisert operations of the form
+ < T i m e p o i n t > T i m e p o i n t . Containment relation-
ships between synchronization streams can be deduced
from the constructing S y n c S Q L expressions. For example,
a synchronization stream that is defined over c l o c k S t r

T l E (SynCl- (SynCl n SynC2)), T} is a
full synchronization point for RSync1 (S}) (i.e., at
time T}, RSync1 (S}) reflects all S 1 tuples up to T}).

However, the same point T} is a partial synchroniza­
tion point for RSync2 (S2) (i.e., at T}, RSync2 (S2)

does not reflect all S2 tuples up to T}). Hence, as a
result, T} is a partial synchronization point for the
output of 0 because at time T}, the output of 0 does
not reflect all input tuples from all input streams.

• Similarly, every time point
T2 E (SynC2 - (Sync} n Sync2)) is a par­
tial synchronization point for the output of 0 because
it does not reflect all input tuples from all input
streams.

• Every time point T E (Sync} n SynC2) is a full
synchronization point for the output of 0 since it re­
flects all input tuples from all input streams.

Proposition 1. Unary operators. The output of a unary
R2R operator, say 8, over a synchronized relation, say
TRSync(S), is another synchronized relation, denoted by
8(TRsync (S)), such that:
'V T E Sync, T is a full sync point, and

8(TRSync (S)) = 8(R[S(T)]), while
'V T tJ- Sync, T is a partial sync point, and

8(TRSync (S)) = 8(R[S(t)])
where t = max (t E Sync and t < T)

Proposition 2. Binary operators. The output of a
binary R2R operator, say 8, over two synchronized rela­
tions, say TRSyncl (Sd and TRSync2 (S2), is a synchronized
relation, denoted by TRSyncl (S}) 8 TRSync2 (S2), such that:
(1) 'V T E Sync} n Sync2,
T is a full sync point, and,
TRsyncl(S}) 8 TRSync2(S2) = R[S}(T)] 8 R[S2(T)],
(2) 'V T E (Sync} - (Sync} n Sync2)),
T is a partial sync point, and,
TRSyncl(S}) 8 TRSync2(S2) = R[S} (T)] 8 R[S2(t)],
where t = max(t E Sync2 and t < T),
(3) 'VT E (Sync2 - (Sync} n Sync2)),
T is a partial sync point, and,
TRSyncl (S}) 8 TRSync2 (S2) = R[S} (t)] 8 R[S2(T)],
wheTe t = max(t E Sync} and t < T)

According to Proposition I, at any time point, say 1', that
does not belong to the output synchronization stream, the
output synchronized relation from a un~ry oper~tor reflects

the input stream only up to a time point Twhere T< T. Sim­
ilarly, according to Proposition 2, at any time point. say 1',
that does not belong to the output synchronization stream,
the output from a binary R2R operator reflects one input

II

streams up to time point T while reflects the other input- -
stream only up to time Twhere T< T.

Query pipeline. In order to express a query over tagged
stream, the SyncSQL expression is constructed as follows.
(I) S2R: transform each input stream to the cOlTesponding
synchronized relation via an TR operator using the desired
synchronization. (2) R2R: using R2R operators, and in a
way similar to traditional SQL, express the query over the
synchronized relations. The output of is another synchro­
nized relation. (3) R2S: the output synchronized relation is
transformed into an incremental output via an .; operator.

Example 16 This example shows the execution pipeline
for a join query between two synchronized relations,
TRSync2 (S2) and TRSync3 (S3), where Sync2 ticks every
2 time units while Sync3 ticks every 3 time units. The
SyncSQL expression is as follows:

select STREAMED *
from TRSync2 (S2) R2, TRsync3 (S3) R3
where R2 .ID = R3 .ID

Figure 7 illustrates the pipeline and shows that the output of
join is refreshed at time points 2, 3, 4, and 6. The output
at 2 is equal to R [S2 (2)] t><JR [S3 (0)] and hence 2 is a
partial synchronization point since it reflects S3 only up to
time o. Similarly, 3 is a partial synchronization point since
it reflects S2 up to time 2. 4 also is a partial synchroniza­
tion point since it reflects S3 up to time 3. However, 6 is a
full synchronization point for the output since it reflects all
input tuples up to time 6.

4.3 Equivalences and Relationships

Achieving query composition is one of the main goals
of SyncSQL. In order to achieve query composition, a
query optimizer must be empowered by algorithms to rea­
son about the equivalences and containment relationships
among query expressions. In this section, we introduce pre­
liminary relationships that are required by a query optimizer
to enumerate the query plans and deduce query contain­
ment.

4.3.1 Containment Relationship among Synchroniza­
tion Streams

A synchronization stream, say Sync}, is contained
in another synchronization stream. say SynC2, if
every time point in Sync 1 is also a time point
in Sync2 (i.e., TR (Sync}) C TR (Sync2)). Recall
that. as explained in Section 3.2, a synchronization
stream consists of only insert operations of the form
+<Timepoint>Timepoint. Containment relation­
ships between synchronization streams can be deduced
from the constructing SyncSQL expressions. For example,
a synchronization stream that is defined over clockStr

O 1 2 5 i h 5 0 I j 1 5 h 7

Figure 7. Joining Synchronized Relations.
Figure 8. Relation Containment.

by the predicate " T i m e p o i n t m o d 4 = 0" (i.e., a 2. Given that !R (S y n c i) 2 % (S y n c j) , then, based
stream that ticks every 4 time units) is contained in the on Proposition 3
synchronization stream that is defined by the predicate ti T E % (S y n c ,) + T E % (s y n c j) ;
" T i m e p o i n t m o d 2 = O x (i.e.. a stream that ticks ev-
ery two time units). 3. From 1 and 2 above,

Proposition 3. X (S y n c l) R (S y n c s) if %s,,,~, (S) = R [S (T) I 'd T E % (S y n c ,) ;
V I E S y n c l + 1 E S y n c s where 1 is an insert op-
eration of the form "+<T>T".

4.3.2 Containment Relationships among Synchronized
Relations

Reasoning about containment relationships between two
synchronized relations must consider the two logical prop-
erties, state and time, of the relation. For example, consider
two synchronized relations? !RsYnc, (S) and %sync, (S) ,
that are defined over the same stream S . Notice that, the
states of %s,.,,ci (S) and % s y n c j (S) may not be equal
at every time point if S y n c i and S y n c j are not the
same. However, if S y n c i is contained in S y n c j , then
%Sync,i (S) is contailled in Rsync, (S) . The containment
relationship means that every fit11 synchronization time
point of !RsYncj (S) is also a full synchronization point
of !RSyncj (S) . The containment relationship is beneficial
since !RsynCi (S) can be computed from %s,ncJ (S) with-
out accessing S . Notice thatt the containment relationship is
judged based only on the full synchronization time points of
the relation because those are the time points of interest to
the issuer of a query.

Theorem 1 For a~l?. stream S , n synchronized re-
latiorl %Sy,lc, (S) is co~ltai~zed in %sv,,,, (S) if
% (s y n c ,) C ! R (S y n c ,) .

Proof:

1. Based on Definition 2:
RsvncJ (S) = R [S (T) I 'd T E R (S y n c j) :

4. Based on Definition 2,
%sync , (S) = R [S (T) I 'd T E % (S y n c ,) ;

5 . From 3 and 4 above:
%synci (S) = %sync, (S) = R [S (T) 1
V T E % (S y n c ") .

Corollary 1. If % (S y n c i) 2 % (S y n c j) : then
%sync$ (S) C %sync, (<(%syncj (S))) .

Corollary I means that !RsgnC7 (S) can be constructed
from %s,,cj (S) without accessing S . This is done by ap-
ply ing S y n c i over the output stream from J (%sync , (s)) .

Example 17 This example illustrates Theorem 1 and
Corollary I . Consider two synchronization streams, S y n c 2
and S y n c d , where !R (S y n c 4) c % (S y n c 2) . Figure 8a
gives the derivation of Xs,,,, (S) while Figure 8b gives
the derivation of !Rsync4 (< (S))) . Notice that, all
the full synchronization points for LRs,,,,, (S) are also full
synchronization points for (s) . Moreover, if only
the STREAMED version of %JZs,nc, (S) is available (i.e.,
<(%sync2 (S)) 01 S2 in Figure 8b), RsYnc, (S) can be
computed by applying S y n c 4 over S z (i.e., %s,nc, (S) at
time 4 is contained in Xs,,,,, (< (RSync2 (S)) at time 4).

4.3.3 Commutability between Synchronization and
R2R Operators

R2R operators in a S y n c S Q L expression are executed over
synchronized relations. In this section, we show that the or-
der of applying the synchronization and R2R operators can

full Sync Poinl

JOIN

____~"""F.:rr- '. ' .
,,:,':--- ~-lli lE~ '" .'l7rJl :: ~

[ill] lti I cui 0 GJTI ' ,
I __+_------1--- 5",,' 2 f--------1~---__+_-~ 5''''3

+<<1>1 +<.:>3 +<11>-1 +<g>o +<~'>l +<a>3 -t4 +<c>6

• I •• • 52 f-.. . . 53

'I':';.: h 2 ~

'., c :: .:

d "

f--- '1
+<"":> 1 +<j,>~ <<~>J ><.1>1

I •• ••

(a) R S''''4 (s)

Syn": 4

':1::']':
: h ? : ~

", l' ~ ,~

'- LI ~ ~

f-----+-Sy,,~

• •f------.- • I S,

[ill]~
~mf-------+---+--. Sync 2

Figure 7. Joining Synchronized Relations.

by the predicate "Timepoint mod 4 = 0" (i.e., a
stream that ticks every 4 time units) is contained in the
synchronization stream that is defined by the predicate
"Timepoint mod 2 = 0" (i.e., a stream that ticks ev­
ery two time units).

Proposition 3. J2 (Sync]) s:: J2 (Sync2) if
I;j I E Sync] =} I E Sync2 where I is an insert op­
eration of the form "+<T>T".

4.3.2 Containment Relationships among Synchronized
Relations

Reasoning about containment relationships between two
synchronized relations must consider the two logical prop­
erties, state and time, of the relation. For example, consider
two synchronized relations, fR Sync; (S) and fRs yncj (S) ,

that are defined over the same stream S. Notice that, the
states of fR Sync ; (S) and fRs yncj (S) may not be equal
at every time point if Sync; and SynCj are not the
same. However, if Sync; is contained in SynCj, then
fRs ync ; (S) is contained in fRs yncj (S) . The containment
relationship means that every full synchronization time
point of fR Sync; (S) is also a full synchronization point
of fRSyncj (8) . The containment relationship is beneficial
since fRs ync; (S) can be computed from fRSyncj (S) with­
out accessing S. Notice that, the containment relationship is
judged based only on the full synchronization time points of
the relation because those are the time points of interest to
the issuer of a query.

Theorem 1 For any stream S, a synchronized re­
lation fR Sync ;(S) is contained in fRs yncj (S) if
fR (Sync;) s:: fR (Sync)) .

Proof:

1. Based on Definition 2:
3i'Sync

J
(S) = R[S(T)] I;j T E J2(Syncj):

12

Figure 8. Relation Containment.

2. Given that fR (Sync;) s:: 3i' (Sync)), then, based
on Proposition 3
I;j T E fR (SynCi) =} T E 3i' (Sync)) ;

3. From I and 2 above,
3i'Syncj (S) = R [S (T)] I;j T E 3i' (Synci) ;

4. Based on Definition 2,
3i'Sync; (S) = R [8 (T)] I;j T E J2 (Sync;) ;

5. From 3 and 4 above:
3i'Sync; (S) = fR Sync] (S) = R [S (T)]

I;j T E 3i'(Synci)'

Corollary 1. If J2 (SynCi) s:: fR (Sync)), then
3i'Sync;(S) s:: 3i'Synci(~(fRSyncj(S))),

Corollary I means that 3i'Sync; (S) can be constructed
from fRSyncj (S) without accessing S. This is done by ap­
plying Sync; over the output stream from ~ (fRs yncj (S)) .

Example 17 This example illustrates Theorem I and
Corollary I. Consider two synchronization streams, Sync2

and Sync4, where 3i' (Sync4) c fR (Sync2). Figure 8a
gives the derivation of 3i'Sync4 (S) while Figure 8b gives
the derivation of 3i'Sync4 (~ (fRSync2 (S))) . Notice that, all
the full synchronization points for fRSync4 (S) are also full
synchronization points for fRs YnC2 (S) . Moreover, if only
the STREAMED version of fRSync2 (S) is available (i.e.,
~(J2Sync2 (S)) or S2 in Figure 8b), 3i'Sync4 (S) can be
computed by applying Sync4 over 82 (i.e., 3i'Sync4 (S) at
time 4 is contained in fRs ync4 (~(J2sYnC2 (S))) at time 4).

4.3.3 Commutability between Synchronization and
R2R Operators

R2R operators in a SyncSQL expression are executed over
synchronized relations. In this section, we show that the or­
der of applying the synchronization and R2R operators can

be switched. The commutability between the synchroniza- transform any S y n c S Q L expression into the corresponding
tion and R2R operators allows executing the query pipeline skinned form.
over finest granularity relations and hence allows sharing
the execution among queries that have similar R2R opera- T'heorem 2 An! S m c S Q L expressiolz lzas at1 equivale~lt

tors but with different synchronization points. normal fornz.

Corollary 2. For any unary R2R operator, say 0 , V T
such that T is a full synchronization point of O(%s,nc(S)), Theorem 2 is proved using Corollaries 2 and 3.

T is a full synchronization point of %s,, ,c(<(O(%(~)))).
Corollary 3. For any b inav R2R operator, say

0 , V T such that T is a full synchronization point of
(S 1) 0 %s,nc2(S2), T is a full synchronization

point of %sync, n sync2 (<(%(Sl) 0 %(5'2))).
The main idea of Corollaries 2 and 3 is that we can pull

the synchronization streams out of an R2R operator. Basi-
cally, an R2R operator can be executed over finest granular-
ity relations and produce a finest granularity output. Then,
the desired synchronization is applied over the fine granu-
larity output. Notice that, Corollaries 2 and 3 can also be
used in the opposite direction by a query optimizer to push
the synchronization inside R2R operators and, hence, re-
ducing the number of operator executions.

Based on Corollaries 2 and 3, a S y n c S Q L expression
can be executed as follows: (1) transform the input streams
to the finest granularity synchronized relations, % (S) , us-
ing the finest granularity synchronization stream (i.e., the
clock stream), (2) execute the query pipeline over the finest
granularity input producing a fine granularity output rela-
tion, (3) map the output relation to a stream using <, and
finally (4) transform the output stream to the desired syn-
chronized output using 8.

5 Shared Execution using Query Composi-
tion

In this section, we introduce a query matching algorithm
for S y n c S Q L expressions. The goal of the algorithm is
that, given a S y n c S Q L query, say Qi: the algorithm deter-
mines whether Qi (or a part of it) is contained in another
view, say Q,. If such Qj exists, the algorithm re-writes Qi
in terms of Qj in a way similar to answering queries using
views in traditional databases.

5.1 Skinning SyncSQL Expressions

Example 18 This example derives the normal form for the
S y n c s Q L expression Q = a(%sync, (S1) w %sync2 (S2)).
The derivation is performed in two steps as follows:

-Using Corollary 3. pull the synchronization streams out
of the join operator.

Q=a(%sync, n sync2(<(%(Sl) w %(5'2)))).
-Using Corollary 2: pull the synchronization stream out

of the selection operator.

Q = %sync, n sync2 (<(a(%(Sl) W S(S2)))) .
The constructed normal form indicates that Q is equiva-

lent to a synchronized relation with the following: (I) Data:
a(%(Sl) w %(S2)) , and (2) Time: Syncl n S y n c s .

5.2 Query Matching

S y n c S Q L query matching is similar to "view exploita-
tion" in materialized views [I 6, 191. However, S y n c S Q L
queries differ from the traditional materialized views by
the notion of synchronization. A matching algorithm for
S y n c S Q L expressions matches the two parts of the skinned
foims: the query expression and the global synchronization
points.

After introducing the main tools, we now give the high-
level steps of the query matching algorithm. The input to
the algorithm is a S y n c S Q L query expression, say Q, and a
set of skinned folms for the concurrent queries.

Algorithm SyncSQL-Expression-Matching:

1 . Using Corollaries 2 and 3, transform Q to the come-
sponding normal form by constructing the two com-
ponents: (I) Q's data, Q ~ , and (2) Q's synchronization,
QS r

2. Match Q" with data parts of the other input normal
forms using a view matching algorithm from the ma-
terialized view literature (e.g., [16]). The result of the
matching is a normal form (if any) for a matching ex-
pression, say 4 , such that Q~ c qdI

To reason about containment of S y n c S Q L expressions,
we isolate the synchronization streams out of the expres- 3. If such 4 exists, check whether QS c qS;

sion. We term the resulting form of the expressions a 4, lf Q~ GS? (hen rewrite Qd in terms of ~d (he
"skimzed" form. The skinned form of a S y n c S Q L expres- same algorithm used in Step 2 above. The output ex-
sion is an equivalent expression that consists of: (a) a global pression of the re-write operation is denoted as Q ~ ;
synchronization stream that specifies the full synchroniza-
tion points of the expression, and (b) a SQL expression over 5. The input query, Q, is then equivalent to the synchro-
finest granularity relations. Corollaries 2 and 3 are used to nized relation with: (I) Data: Q ~ , and (2) Time: QS.

be switched. The commutabiJity between the synchroniza­
tion and R2R operators allows executing the query pipeline
over finest granularity relations and hence allows sharing
the execution among queries that have similar R2R opera­
tors but with different synchronization points.

Corollary 2. For any unary R2R operator, say e, V T
such that T is a full synchronization point of e(~Sync(S)),
T is a full synchronization point of ~sYllC(~(e (~(S)))).

Corollary 3. For any binary R2R operator, say
e, V T such that T is a full synchronization point of

~Syncl (Sl) e ~Sync2(S2)' T is a full synchronization
point of ~SyncJnSync2(~(~(Sl) e ~(S2)))'

The main idea of Corollaries 2 and 3 is that we can pull
the synchronization streams out of an R2R operator. Basi­
cally, an R2R operator can be executed over finest granular­
ity relations and produce a finest granularity output. Then,
the desired synchronization is applied over the fine granu­
larity output. Notice that, Corollaries 2 and 3 can also be
used in the opposite direction by a query optimizer to push
the synchronization inside R2R operators and, hence, re­
ducing the number of operator executions.

Based on Corollaries 2 and 3, a SyncSQL expression
can be executed as follows: (I) transform the input streams
to the finest granularity synchronized relations, ~ (S) , us­
ing the finest granularity synchronization stream (i.e., the
clock stream), (2) execute the query pipeline over the finest
granularity input producing a fine granularity output rela­
tion, (3) map the output relation to a stream using ~, and
finally (4) transform the output stream to the desired syn­
chronized output using ~.

5 Shared Execution using Query Composi­
tion

In this section, we introduce a query matching algorithm
for SyncSQL expressions. The goal of the algorithm is
that, given a SyncSQL query, say Qi, the algorithm deter­
mines whether Qi (or a part of it) is contained in another
view, say QJ' If such Qj exists, the algorithm re-writes Qi
in terms of Qj in a way similar to answering queries using
views in traditional databases.

5.1 Skinning SyncSQL Expressions

To reason about containment of SyncSQL expressions,
we isolate the synchronization streams out of the expres­
sion. We term the resulting form of the expressions a
"skinned" form. The skinned form of a SyncSQL expres­
sion is an equivalent expression that consists of: (a) a global
synchronization stream that specifies the full synchroniza­
tion points of the expression, and (b) a SQL expression over
finest granularity relations. Corollaries 2 and 3 are used to

13

transform any SyncSQL expression into the conesponding
skinned form.

Theorem 2 Any SyncSQL expression has an equivalent
normal form.

Theorem 2 is proved using Corollaries 2 and 3.

Example 18 This example derives the normal form for the

SyncSQLexpressionQ=a(~SynCl(Sl)[>(J ~Sync2(S2))'

The derivation is performed in two steps as follows:
-Using Corollary 3, pull the synchronization streams out

of the join operator.

Q = a(~SynCl n Sync2 (~(~(Sd [>(J ~(S2))))'

-Using Corollary 2, pull the synchronization stream out
of the selection operator.

Q =~SynCl n Sync2(~(a(~(Sl) [>(J ~(S2))))'

The constructed normal form indicates that Q is equiva­
lent to a synchronized relation with the foJlowing: (]) Data:
a(~(Sl) [>(J ~(S2)), and (2) Time: SynC1 n Sync2'

5.2 Query Matching

SyncSQL query matching is similar to "view exploita­
tion" in materialized views [16, 19]. However, Sync SQL
queries differ from the traditional materialized views by
the notion of synchronization. A matching algorithm for
SyncSQL expressions matches the two parts of the skinned
fOlTIlS: the query expression and the global synchronization
points.

After introducing the main tools, we now give the high­
level steps of the query matching algorithm. The input to
the algorithm is a SyncSQL query expression, say Q, and a
set of skinned fOlTIlS for the concurrent queries.

Algorithm SyncSQL-Expression-Matching:

l. Using Corollaries 2 and 3, transform Q to the COlTe­
sponding nOlTIlal form by constructing the two com­
ponents: (l) Q's data, Qd, and (2) Q's synchronization,
QS;

2. Match Qd with data parts of the other input normal
forms using a view matching algorithm from the ma­
terialized view literature (e.g., [16]). The result of the
matching is a normal form (if any) for a matching ex­
pression, say Q, such that Qd C Qd;

3. If such Qexists, check whether QS C QS;

4. If QS C QS, then rewrite Qd in terms of Qd using the
same algorithm used in Step 2 above. The output ex­
pression of the re-write operation is denoted as QD;

5. The input query, Q, is then equivalent to the synchro­
nized relation with: (1) Data: QD, and (2) Time: QS.

Notice that, the query matching algorithm is used to
match an input query against a set of already existing views.
On the other hand, if we know the whole set of queries in
advance, the skinned forms are constructed using the great-
est common divisor of all synchronization streams instead
of the default clock stream.

Example 19 This example illustrates the steps performed
to match the temperature monitoring query Q4 with the
view HotRoomsl as explained in Example 4. Assume that
the input expressions are as follows:
HotRoomsl = a~~~~ > 80(%sync2 (RoonzTenzpStr))

Q4 = nTernp > 100(xsync4 (R o o m T e l p S t r))

The corresponding normal forms for the two expressions
are as follows:
HotRoomsl = Rsync2 (((0 ~ ~ ~ ~ ~ > 80(%(R001nTenzpSt?-))))

Q4 = %sync4 temp > 100 (x (R 0 0 m T e m ~ S t r))))

By Comparing the two normal forms we can conclude
that: (1) 8 (s y n c 4) c 3? (S y n c 2) , and (2) using a view
matching algorithm (e.g., [16]) shows that the "Temp >
100" c "Temp > 80". Then, the algorithm concludes
that Q4 C HotRoomsl. Then, Q4 is re-written as follows:
Q4 = QTen~p > I O O (R S ~ ~ C ~ (< (x (H o t R o o m s ~ 1))).

an input stream Sin is executed as follows. At every syn-
chronization time point, say T I , Si,, is mapped to a corre-
sponding relation, R [Sin (T I)] . Then, the relational op-
eration, say a: is executed over R ts;,, (T ~)] and produce
a corresponding output relation: say R [So,,, (T I)] . When
the input relation is modified at a following synchronization
point, say T2, a is re-executed over R [Sin (T 2)] and pro-
duce the corresponding output relation R [So,, (T2) I . If
the output of a is needed to be STREAMED, a (operator is
executed at time T2 to produce tuples in the output stream
So,, that represent the deltas between R [So,,, (T I)] and
R [So,, (T 2) I . The delta tuples is a set of +, u or - opera-
tions that need to be performed over R [S,.,,t (T I)] in order
to get R [So,, (T 2) 1 . In short, SyncSQL algebra assumes
that an R2R operator is re-executed at every synchroniza-
tion time point.

In contrast to the algebra, SyncSQL physical execu-
tion plans employs an incremental approach. At every syn-
chronization time point, an incremental relational opera-
tor processes only the modifications in the input relations
and produce a corresponding set of modifications in the
output relation. For example, at a synchronization time
point, T2, the incremental (T operator processes a set of
delta tuples between R [Silt (T 2) I and R [Sin (T I) I and
produce another set of delta tuples between R [SOut (T 2)]

andR[SOut (T I) I .
6 Incremental Execution Model

6.1 Derived Operators
Although the goal of this paper is to introduce the

SyncSQL semantics for queries over data streams: in this
section we briefly outline an execution model for SyncSQL
queries. Detailed implementation and optimization tech-
niques is beyond the scope of this paper.

As discussed in Section 2, a SyncSQL query over
streams is semantically equivalent to a materialized view
over the input streams' relational views. Similar to mate-
rialized views, the straightforward way to keep the query
answer (or view) consistent with the underlying relations
is to re-evaluate the query expression whenever any of the
inputs is modified. However, incremental approaches have
been proposed to reduce the cost of maintaining the mate-
rialized views. In the incremental maintenance of materi-
alized views, instead of re-evaluating the view expression,
only the changes in the input relations are processed in or-
der to pioduce a corresponding set of changes in the output.
SyncSQL physical execution plans follows the inci-emen-
tal maintenance approach of materialized views. Basically,
at every synchronization time point, a differential operator
processes only the modifications in the input relations and
produce a con-esponding set of modifications in the output.

As discussed in Section 4, inputs and outputs in any
R2R operator are synchronized relations. According to
SyncSQL algebra, a relational operation (e.g., a or w) over

The S2S counterparts of R2R operators. A SyncSQL
execution plan consist of a set of S2S operators where each
R2R operator (e.g., B and w) has a corresponding incre-
mental (or differential) S2S operator (e.g.> ad and wd). Ba-
sically, the functionality of an S2S operator is composed of
three functions (S2R, R2R, then R2S) as follows: (I) S2R:
takes an input modification tuple (i.e., +, ut or -) and apply
the modification to the operator's internal state. (2) R2R:
perform the relational operator's function over the opera-
tor's internal state. (3) R2S: report the modifications in the
internal state as an output tagged stream. Detailed imple-
mentation of S2S operators is addressed in [141.

The relationship between the input and output tagged
streams from an S2S operator is defined algebraically by
differential equations [17]. The functionality of a differen-
tial operator, say 8, is defined by two equations: one equa-
tion defines the modifications in Q's output in response to
an insert in B's input while the other equation defines the
changes in Q's output in response to a delete in B's input.
An update in 0's input is processed as a deletion of the old
tuple followed by an iiuertion of the new tuple. For exam-
ple, the functionality of the differential a is defined by the
following equations:
a,(R + r) = a,(R) + a,(r)

Notice that, the query matching algorithm is used to
match an input query against a set of already existing views.
On the other hand, if we know the whole set of queries in
advance, the skinned forms are constructed using the great­
est common divisor of aJl synchronization streams instead
of the default clock stream.

Example 19 This example illustrates the steps performed
to match the temperature monitoring query Q4 with the
view HotRooms] as explained in Example 4. Assume that
the input expressions are as foJlows:
HotRooms] = (JTemp > 80Ci'RsYnC2 (RoomTempStr))
Q4 = (JTemp > 100 ('RSync4 (RoomTempStr))

The corresponding normal forms for the two expressions
are as follows:
HotRooms] = RSync2 (E((JTemp > 80(R(RoomTempStr))))
Q4 =RSync4 (E((JTemp > 100(R(RoomTempStr))))

By Comparing the two normal forms we can conclude
that: (I) R (Sync4) c R (Sync2), and (2) using a view
matching algorithm (e.g., [16]) shows that the "Temp >
100" C "Temp > 8 0". Then, the algorithm concludes
that Q4 C HotRooms]. Then, Q4 is re-written as follows:
Q4 =(JTemp > IOo(RSync4 (E(R(HotRoomsd)))·

6 Incremental Execution Model

Although the goal of this paper is to introduce the
SyncSQL semantics for queries over data streams, in this
section we briefly outline an execution model for SyncSQL

queries. Detailed implementation and optimization tech­
niques is beyond the scope of this paper.

As discussed in Section 2, a SyncSQL query over
streams is semantically equivalent to a materialized view
over the input streams' relational views. Similar to mate­
rialized views, the straightforward way to keep the query
answer (or view) consistent with the underlying relations
is to re-evaluate the query expression whenever any of the
inputs is modified. However, incremental approaches have
been proposed to reduce the cost of maintaining the mate­
rialized views. In the incremental maintenance of materi­
alized views, instead of re-evaluating the view expression,
only the changes in the input relations are processed in or­
der to produce a corresponding set of changes in the output.
SyncSQL physical execution plans follows the incremen­
tal maintenance approach of materialized views. Basically,
at every synchronization time point, a differential operator
processes only the modifications in the input relations and
produce a cOiTesponding set of modifications in the output.

As discussed in Section 4, inputs and outputs in any
R2R operator are synchronized relations. According to
SyncSQL algebra, a relational operation (e.g., (J or IXJ) over

14

an input stream Sin is executed as follows. At every syn­
chronization time point, say T], Sin is mapped to a corre­
sponding relation, R [Sin (T])]. Then, the relational op­
eration, say (J, is executed over R [S;)) (T])] and produce
a corresponding output relation, say R [SOld (T])]. When
the input relation is modified at a following synchronization
point, say T2, (J is re-executed over R [Sin (T2)] and pro­
duce the corresponding output relation R [Sout (T2)]. If
the output of (J is needed to be STREAMED, a Eoperator is
executed at time T2 to produce tuples in the output stream
Sout that represent the deltas between R [So1d (T])] and
R [Sout (T2)] . The delta tuples is a set of +, u or - opera­
tions that need to be performed over R [SOllt (T])] in order
to get R [Sout (T2)]. In short, SyncSQL algebra assumes
that an R2R operator is re-execl/ted at every synchroniza­
tion time point.

In contrast to the algebra, SyncSQL physical execu­
tion plans employs an incremental approach. At every syn­
chronization time point, an incremental relational opera­
tor processes only the modifications in the input relations
and produce a corresponding set of modifications in the
output relation. For example, at a synchronization time
point, T2, the incremental (J operator processes a set of
delta tuples between R [Sin (T2)] and R [Sin (T])] and
produce another set of delta tuples between R [Sout (T2)]

and R [Sout (T])].

6.1 Derived Operators

The S2S counterparts ofR2R operators. A SyncSQL

execution plan consist of a set of S2S operators where each
R2R operator (e.g., g and IXJ) has a corresponding incre­
mental (or differential) S2S operator (e.g., (Jd and IXJd). Ba­
sically, the functionality of an S2S operator is composed of
three functions (S2R, R2R, then R2S) as follows: (I) S2R:
takes an input modification tuple (i.e., +, u, or -) and apply
the modification to the operator's internal state. (2) R2R:
perform the relational operator's function over the opera­
tor's internal state. (3) R2S: report the modifications in the
internal state as an output tagged stream. Detailed imple­
mentation of S2S operators is addressed in [14].

The relationship between the input and output tagged
streams from an S2S operator is defined algebraically by
differential equations [17]. The functionality of a differen­
tial operator, say 8, is defined by two equations: one equa­
tion defines the modifications in 8's output in response to
an insert in 8's input while the other equation defines the
changes in B's output in response to a delete in 8's input.
An update in 8's input is processed as a deletion of the old
tuple followed by an insertion of the new tuple. For exam­
ple, the functionality of the differential (J is defined by the
following equations:
(Jp(R + r) = (Jp(R) + (Jp(r)

Figure 9. The Regulator, C, Operator.

o P (R - 1.) = op(R) - 07,(r)
where +r (- r) represents the insertion (deletion) of a tu-
ple r into (from) 0 ' s input relation R: while fop (r)
(-0, (r)) represents the corresponding insertion (deletion)
into 0's output relation, 0, (R) . Algebra for the various dif-
ferential operators is introduced in [17].

The S2S counterpart of the S2R operator. In order to
apply the synchronization principle with S2S operators: we
introduce the regulator operator, C as the S2S counterpart of
3 . Similar to R. (takes a stream, Sin , as input, a synchro-
nization stream. Sync: as a parameter and produces another
stream: as output where

SOUL = csl,71c (S.,,, = < (Rsync (sin)) .
Notice that. as discussed in Section 4.2 and Example 15,

the schema of the resulting stream from <(3s,nc(Si7,))
differs from Si,,'s underlying schema by having an ad-
ditional timestamp attribute that colresponds to the ar-
rival timestamp of Sin's tuples. The additional time-
stamp attribute is used to evaluate time-based predicates (if
any) over S;,, and is also included in the output stream,

- SOUL, from C. Basically, works as follows: buffers
the input stream tuples and at every synchronization time
point, say Tt C performs the following for each buffered
input tuple of the form "Type<At t r i b u t e s > T i m e -
stamp": (1) constructs a corresponding tuple of the form
" T y p e < A t t r i b u t e s , Timestamp>", by pushing the
arrival timestamp. T i m e s t a m p , inside the tuple's schema.
, and (2) assigns a timestamp to the tuple that is equal
to the release time, or T. As a result, ('s output tu-
ples will have the form " T y p e < A t t r i b u t e s , T i m e -
s t a m p > s y n c T i m e s t a m p " .

Handling timestamps by the physical operators. An
output tuple from C has two timestamps as follows:
(1) T i m e s t a m p that is equal to the tuple's arrival time-
stamp and is used by the subsequent R2R differential
operators to evaluate time-based predicates (if any), and
(2) s y c n T i m e s t a m p that is equal to the tuple's release
timestamp and is propagated by the subsequent R2R opera-
tors to the col~esponding output tuples.

Example 20 This example shows the functionality of the
regulator operator. I. Consider the same S and S y n c z as

those used in Example 7. Figure 9 shows S and the corre-
sponding Cs,,,, (S) . C transforms, for example, +<a>l
into + < a , 1 > 2 by pushing the arrival timestamp of value
1 into the schema and attaching the release timestamp of
value 2 as the timestamp of the output tuple. Figures 6 and
9 show that C ~ ~ n c ~ (S) = < (%sync2 (S)) .

7 Related Work

Continuous queries over data streams. Many research
efforts have developed semantics and query languages for
continuous queries over data streams: e.g., [2, 6, 7, 8, 11,
241. The existing continuous query languages restrict the
stream definition to the representation of an append-only
relation. The restricted stream definition limits the set of
queries that can produce streams as output. This is be-
cause, even if the input streams represent append-only re-
lations, a continuous query may produce non-append only
output. Different approaches have been followed by the ex-
isting languages to handle the non append-only outputs as
follows:
-Restricted expressibility: To guarantee that the output of
the query can be incrementally produced as a stream, a lan-
guage restricts the set of operators that can be used to ex-
press queries over data streams. The restricted set of op-
erators includes, for example, Select, Project, and Union.
Sliding windows with the window-per-stream usage, for ex-
ample, are not allowed since they produce non-append only
output. Examples of systems that follow this approach in-
clude Aurora [7], Cougar [6], and Gigascope [l I].
-Non-incremental output streams: Produce the output of
the query in a norz-incremental manner by representing the
output as a relation then periodically stream out the relation.
Notice that this non-incremental output stream does not fol-
low the input stream definition and, hence, cannot be used
as input in another query. Examples of systems that follow
this approach include TelegraphCQ [8], and the RStream
operator in CQL [2].
-Non-incremental output relations: Does not allow
queries that produce non append-only output to produce
streams. Instead, such queries produce concrete views as
outputs. Moreover, only sr~apshot queries are allowed over
the view. A snapshot query has to be re-issued in order to
know the modifications in the view. This approach is fol-
lowed by ESL [24].
-Divided output: CQL [2] divides the query into two sep-
arate queries that produce append-only streams such that
one query produces a stream, I S t r e a m , to represent the
inserted tuples and the other query produces a stream,
DSt ream, to represent the deleted tuples . It is unclear
how to compose the two streams in order to produce a sin-
gle output stream that can be used as input in another query.

SyncSQL semantics avoids these previous limitations

(b)

(a)

-<3>4
+<b.3>4

+<c.5>6
+<a.J>2 •• • •. /.. (s)

Sync
2

I I I .
+<<1.>1 +3 -<3>4 +<c>5• I • • • I . s

0 2 3 4 5 6

those used in Example 7. Figure 9 shows S and the cone­
sponding (Sync2 (S) . (transforms, for example, +<a> 1
into +<a, 1>2 by pushing the arrival timestamp of value
1 into the schema and attaching the release timestamp of
value 2 as the timestamp of the output tuple. Figures 6 and
9 show that (Sync2 (S) = ~ (RSync2 (S)) .

7 Related Work

Figure 9. The Regulator, (, Operator.

ap(R - T) = ap(R) - ap(T)
where +r (-r) represents the insertion (deletion) of a tu­
ple r into (from) a's input relation R, while +ap (r)
(-ap (r)) represents the corresponding insertion (deletion)
into a's output relation, ap (R) . Algebra for the various dif­
ferential operators is introduced in [17].

The S2S counterpart of the S2R operator. In order to
apply the synchronization principle with S2S operators, we
introduce the regulator operator, (as the S2S counterpart of
~. Similar to ~. (takes a stream, Sin, as input, a synchro­
nization stream. Sync, as a parameter and produces another
stream, Sout, as output where

S01ft = (Sync (S/11) = ~ (~Sync (Sin)) .
Notice that, as discussed in Section 4.2 and Example IS,

the schema of the resulting stream from ~(~Sync(Si1J)

differs from Sin'S underlying schema by having an ad­
ditional timestamp attribute that conesponds to the ar­
rival timestamp of Sin'S tuples. The additional time­
stamp attribute is used to evaluate time-based predicates (if
any) over Sin and is also included in the output stream,
Sout, from (. Basically, (works as follows: buffers
the input stream tuples and at every synchronization time
point, say T,(performs the following for each buffered
input tuple of the form "Type<Attributes>Time­
stamp": (1) constructs a corresponding tuple of the form
"Type<Attributes, Timestamp>", by pushing the
arrival timestamp, Timestamp, inside the tuple's schema.
, and (2) assigns a timestamp to the tuple that is equal
to the release time, or T. As a result, ('s output tu­
ples will have the form "Type<Attributes,Time­
stamp> syncTimestamp".

Handling timestamps by the physical operators. An
output tuple from (has two timestamps as follows:
(1) Timestamp that is equal to the tuple's arrival time­
stamp and is used by the subsequent R2R differential
operators to evaluate time-based predicates (if any), and
(2) sycnTimestamp that is equal to the tuple's release
timestamp and is propagated by the subsequent R2R opera­
tors to the conesponding output tuples.

Example 20 This example shows the functionality of the
regulator operator, (. Consider the same Sand Sync2 as

IS

Continuous queries over data streams. Many research
efforts have developed semantics and query languages for
continuous queries over data streams, e.g., [2, 6, 7, 8, 11,
24]. The existing continuous query languages restrict the
stream definition to the representation of an append-only
relation. The restricted stream definition limits the set of
queries that can produce streams as output, This is be­
cause, even if the input streams represent append-only re­
lations, a continuous query may produce non-append only
output, Different approaches have been followed by the ex­
isting languages to handle the non append-only outputs as
follows:
-Restricted expressibility: To guarantee that the output of
the query can be incrementally produced as a stream, a lan­
guage restricts the set of operators that can be used to ex­
press queries over data streams. The restricted set of op­
erators includes, for example, Select, Project, and Union.
Sliding windows with the window-per-stream usage, for ex­
ample, are not allowed since they produce non-append only
output, Examples of systems that follow this approach in­
clude Aurora [7], Cougar [6], and Gigascope [11].
-Non-incremental output streams: Produce the output of
the query in a non-incremental manner by representing the
output as a relation then periodically stream out the relation.
Notice that this non-incremental output stream does not fol­
low the input stream definition and, hence, cannot be used
as input in another query. Examples of systems that follow
this approach include TelegraphCQ [8], and the RStream
operator in CQL [2].
-Non-incremental output relations: Does not allow
queries that produce non append-only output to produce
streams. Instead, such queries produce concrete views as
outputs. Moreover, only snapshot queries are allowed over
the view. A snapshot query has to be re-issued in order to
know the modifications in the view. This approach is fol­
lowed by ESL [24].
-Divided output: CQL [2] divides the query into two sep­
arate queries that produce append-only streams such that
one query produces a stream, IStream, to represent the
inserted tuples and the other query produces a stream,
DStream, to represent the deleted tuples. It is unclear
how to compose the two streams in order to produce a sin­
gle output stream that can be used as input in another query.

SyncSQL semantics avoids these previous limitations

by allowing the output of any continuous query to be pro-
duced incrementally in a single stream.

There are two SQL-based languages that are closest to
Sync SQL: CQL [2] and ESL [24]. SyncSQL uses the same
three classes of operators (i.e.. S2R, R2RI and R2S) as that
of CQL but use a different instantiation of operators in each
class. CQL defines two types of sliding windows (time-
based and tuple-based) and defines the window as an S2R
operator. However, there are no algebraic or transformation
rules to show how the window operator interacts with the
other (R2R) operators in the pipeline. Moreover, semantics
of non-unary operators on two streams with different slide
parameters is not discussed. ESL [24] is another SQL-based
continuous query language that is designed mainly for data
mining and time-series queries. Only unary operators (e.g.,
selection and projection) can be used in queries to produce
output streams. On the other hand, since a window func-
tion produces a non append-only output, window queries
produce concrete views as output. Streams can be joined
with the concrete views, but in this case, the modifications
in the view do not affect the already produced stream tuples
but they affect only the incoming stream tuples. ESL fo-
cuses on aggregate queries but does not thoroughly address
set-based operators and queries.

Positive and negative tuples. Streams of positive
and negative tuples (i.e., insert and delete tuples) are fre-
quently used when addressing continuous quely process-
ing [I , 5 , 13, 141. However, query languages do not con-
sider expressing queries over these modify streams. This
conflict between the language and internal streams is the
main obstacle in achieving continuous query composition.
SyncSQL overcomes this obstacle by unifying the stream
detinition between the language and the execution model.

Continuous queries in traditional databases. Contin-
uous queries are used in traditional databases before be-
ing used over data streams. Examples of systems that
support continuous queries over database tables include
Tapestry [23] and OpenCQ 1211. In these systems, both
inputs and outputs of the continuous query are relations.
Although the input relations in Tapestry are append-only,
queries may produce non append-only output if the query
includes either a reference to the current time (e.g., Get-
Date()): or a set-difference between two relations. In order
to guarantee the append-only output,Tapestry uses a query
transformation to transform a given query into the mini-
mum bounding append-only query. The coarser refresh of
the query is achieved via a "FOREVER DO, S L E E P clause
where the query is re-executed after every SLEEP period.
On the other hand, in OpenCQ, input and output relations
can be modified by general modify operations. A continu-
ous query is periodically re-executed and the output is pro-
duced as the delta between two consecutive query execu-
tions. Triggers are used to schedule the query re-execution.

Our notion of synchronization time points is similar to
OpenCQ's Triggers, but synchronization streams are distin-
guished by the fact that they can be generated using regular
queries. Unlike Tapestry and OpenCQ, SyncSQL assumes
that query inputs and outputs are streams and hence requires
special handling of the timestamps. Moreover, we intro-
duce an algebraic framework and address composition of
SyncSQL expressions, which is not addressed by the pre-
vious systems.

Shared query execution. A typical streaming environ-
ment has a large number of concurrent continuous queries.
Sharing the query execution is a primary task for query opti-
mizer~ to address scalability. The current efforts for shared
quely execution focus on sharing the execution at the oper-
ator level. Shared aggregates are addressed in [4] where an
aggregate operator is shared among multiple queries with
different window ratlges. Shared window join is addressed
in [I 81. NiagraCQ [lo] proposes a framework for shared
execution of non-windowed SPJ queries. Shared predicate
indexing is used in 19, 101 to enhance the performance of
a continuous query processor. Our approach for shared
execution is distinguished from the existing approaches in
that: (I) based on query composition; (2) matches window
queries that differ in both the range and slide parameters,
and (3) queries are examined for sharing based on a whole
query expression not only at the operator level.

Materialized views: Our definitions of synchronized re-
lations and predicate-windows enable us to benefit from the
existing literature in materialized view. However, we extend
the materialized view algorithms to work with synchronized
relations. Our query matching algorithm extends the tradi-
tional view exploitation algorithms (e.g., 1161) by match-
ing the synchronization time points in addition to match-
ing the query expression. Moreover, the physical design
of SyncSQL execution pipelines follows the incremental
maintenance of materialized views [17].

8 Concluding Remarks

This paper provides the first language, SyncSQL, to
express continuous queries over streams of modify oper-
ations. Modify streams are general since they can repre-
sent both raw input streams and streams that are generated
as output from executing continuous queries. The unified
definition of query inputs and outputs enables the compo-
sition of SyncSQL expressions. The paper provides the
first shared execution algorithm for continuous queries that
is based on query composition. Shared execution deci-
sions are based on a query matching algorithm that is able
to reason about the equivalence and containment relation-
ships among SyncSQL expressions. Efficient execution of
SyncSQL queries is an important issue. We outlined an ex-
ecution model to incrementally evaluate a SyncSQL query.

by allowing the output of any continuous query to be pro­
duced incrementally in a single stream.

There are two SQL-based languages that are closest to
SyncSQL: CQL [2] and ESL [24]. SyncSQL uses the same
three classes of operators (i.e., S2R, R2R, and R2S) as that
of CQL but use a different instantiation of operators in each
class. CQL defines two types of sliding windows (time­
based and tuple-based) and defines the window as an S2R
operator. However, there are no algebraic or transformation
rules to show how the window operator interacts with the
other (R2R) operators in the pipeline. Moreover, semantics
of non-unary operators on two streams with different slide
parameters is not discussed. ESL [24] is another SQL-based
continuous query language that is designed mainly for data
mining and time-series queries. Only unary operators (e.g.,
selection and projection) can be used in queries to produce
output streams. On the other hand, since a window func­
tion produces a non append-only output, window queries
produce concrete views as output. Streams can be joined
with the concrete views, but in this case, the modifications
in the view do not affect the already produced stream tuples
but they affect only the incoming stream tuples. ESL fo­
cuses on aggregate queries but does not thoroughly address
set-based operators and queries.

Positive and negative tuples. Streams of positive
and negative tuples (i.e., insel1 and delete tuples) are fre­
quently used when addressing continuous query process­
ing [1,5, 13, 14]. However, query languages do not con­
sider expressing queries over these modify streams. This
conflict between the language and internal streams is the
main obstacle in achieving continuous query composition.
SyncSQL overcomes this obstacle by unifying the stream
definition between the language and the execution model.

Continuous queries in traditional databases. Contin­
uous queries are used in traditional databases before be­
ing used over data streams. Examples of systems that
SUppOI1 continuous queries over database tables include
Tapestry [23] and OpenCQ [21]. In these systems, both
inputs and outputs of the continuous query are relations.
Although the input relations in Tapestry are append-only,
queries may produce non append-only output if the query
includes either a reference to the CUITent time (e.g., Get­
DateO), or a set-difference between two relations. In order
to guarantee the append-only output,Tapestry uses a query
transformation to transform a given query into the mini­
mum bounding append-only query. The coarser refresh of
the query is achieved via a "FOREVER DO, SLEEP" clause
where the query is re-executed after every SLEEP period.
On the other hand, in OpenCQ, input and output relations
can be modified by general modify operations. A continu­
ous query is periodically re-executed and the output is pro­
duced as the delta between two consecutive query execu­
tions. Triggers are used to schedule the query re-execution.

16

Our notion of synchronization time points is similar to
OpenCQ's Triggers, but synchronization streams are distin­
guished by the fact that they can be generated using regular
queries. Unlike Tapestry and OpenCQ, SyncSQL assumes
that query inputs and outputs are streams and hence requires
special handling of the timestamps. Moreover, we intro­
duce an algebraic framework and address composition of
SyncSQL expressions, which is not addressed by the pre­
vious systems.

Shared query execution. A typical streaming environ­
ment has a large number of concurrent continuous queries.
Sharing the query execution is a primary task for query opti­
mizers to address scalability. The current efforts for shared
query execution focus on sharing the execution at the oper­
ator level. Shared aggregates are addressed in [4] where an
aggregate operator is shared among multiple queries with
different window ranges. Shared window join is addressed
in [18]. NiagraCQ [10] proposes a framework for shared
execution of non-windowed SPJ queries. Shared predicate
indexing is used in [9, 10] to enhance the performance of
a continuous query processor. Our approach for shared
execution is distinguished from the existing approaches in
that: (I) based on query composition; (2) matches window
queries that differ in both the range and slide parameters,
and (3) queries are examined for sharing based on a whole
query expression not only at the operator level.

Materialized views: Our definitions of synchronized re­
lations and predicate-windows enable us to benefit from the
existing literature in materialized view. However, we extend
the materialized view algorithms to work with synchronized
relations. Our query matching algorithm extends the tradi­
tional view exploitation algorithms (e.g., [16]) by match­
ing the synchronization time points in addition to match­
ing the query expression. Moreover, the physical design
of SyncSQL execution pipelines follows the incremental
maintenance of materialized views [17].

8 Concluding Remarks

This paper provides the first language, SyncSQL, to
express continuous queries over streams of modify oper­
ations. Modify streams are general since they can repre­
sent both raw input streams and streams that are generated
as output from executing continuous queries. The unified
definition of query inputs and outputs enables the compo­
sition of SyncSQL expressions. The paper provides the
first shared execution algorithm for continuous queries that
is based on query composition. Shared execution deci­
sions are based on a query matching algorithm that is able
to reason about the equivalence and containment relation­
ships among SyncSQL expressions. Efficient execution of
SyncSQL queries is an important issue. We outlined an ex­
ecution model to incrementally evaluate a SyncSQL query.

Detailed implementation and optimization techniques will
be reported in a separate paper.

References

I I) D. Abadi. el al. T l ~ e Design of the Borealis Strea~n Processing Engine. In
CIDR. 2005.

121 A. Arasu. S. Babu. and J . Wido~n. The CQL Continuous Query Language:
S e ~ n a ~ ~ t i c Foundations and Query Execut~on. VLDBJ. to appear.

131 A. Arasu and J . Widom. A Dcnotational Semantics for Continuous Queries
over Streams and Relations. SIGMOD Recorrl. 33(3):6-12, 2004.

141 A. Arasu and J . Widon. Resource Sharing in Coutinuous Sliding-Window
Aggregates. In VLDB. 2004.

151 S. Babu. K. Munagala. J . Widom. and R. Motwani. Adaptive Caching for
Continuous Queries. In ICDE. 2005.

161 P Bonnet. J . E. Gelirke. and P Seshadri. Toufards Sensor Database Systems. In
MDM. 2001

171 D. Carney. et al. Monitoring Streams - A New Class of Data Management
Applications. 111 VLDB. 2002.

181 S. Chandrasekaran. et n1. TelegraphCQ: Continuous Dataflow Processing for
no Uncertain World. In CIDR. 2003.

191 S. Chandrasekaran and M. J . Franklin. PSoup: A System for Streaming Queries
over Streaming Data. VLDBJ. 12(2): 140-1 56.2003.

1 I01 J. Chen, D. J. DeWitt. F Tian. and Y Wang. NiagaraCQ: A Scalable Continuous
Query System for Internct Databases. In SIGMOD. 2000.

1 1 11 C. D. Cranor. el. al. Gigascope: A Stream Database for Network Applications.
In SIGMOD. 2003.

1121 A. Eisenberg. el. al.. SQL:2003 Has Bee11 Published. SIGMOD Record,
33(1):119-126.2004.

11 31 S. Ganguly. et. al. Processing Set Expressions over Continuous Update Streams.
In SIGMOD. 2003.

1141 T. M. Ghane~n. et al. Incremental Evaluation of Sliding-Window Queries over
Data Streams. In Purflue U~ii~,er.,ir\ fi~cl711icol Repor% CSD TR 04-040.

1151 T M. Ghane~n. W. G. Aref. and A. K. Elmagarmid. Exploiting Predicate-
Window Semantics o\,er Data Streams. SIGMOD Record. 35(1):3-8, 2006.

116) J . Goldstein and P-A. Larson. Opti~iiizing Quer~es Using Materialized Views:
A Practical, Scalable Solution. In SIGMOD. 2001

1171 T. Griffin and L. Libkin, lncre~nental Maintenance of Views with Duplicates.
In SIGMOD. 1995.

1 I81 M. A. Hammad. M. J . Franklin, W. G. Aref. and A. E. Elmagannid. Scheduling
for Shared Windou, Joins over Data Streams. In VLDB. 2003.

1191 P.-%i. Larson and H. 2. Yang. Computing Queries from Derived Relations. In
VLDB. 1985.

1201 J Li, D. Maier. K. Tufte. V. Papadi~nos. and P Tucker. Se~nanlics and Evalua-
tion Techniques for Window Aggregates in Data Streams. In SIGMOD. 2005.

121 1 L. Liu. C. Pu. and W. Tang. Continual Queries for Inteniet Scale Event-Driven
Information Delivery. TKDE. l1(4):610-628. 1999.

1221 D. Maicr. J . Li, P. Tucker, K. Tufte. and V. Papadi~nos. Semantics of Data
Streams and Operators. In ICDT 2005.

1231 D. B. Terry. D. Goldberg. D. Nichols. and B. M. Oki. Continuous Queries over
Append-Only Databases. 111 SIGMOD. 1992.

1241 WEB Information System Laboratory. UCLA. CS Department. An introduction
to the Expressi\'e Stream Language (ESL). http:1/wis.cs.ucla.edulstrrn1n-mill.

Detailed implementation and optimization techniques will
be reported in a separate paper.

References

11 J D. Abadi. et aJ. l1,e Design of the Borealis Stream Processing Engine. In
CIDR.2005.

121 A. Arasu. S. Babu. and J. Widom. The CQL Continuous Query Language:
Semalllic Foundations and Query Execution. VLDB}. to appear.

131 A. Arasu and J. Widom. A Denotational Semantics for Continuous Queries
over Streams and Relations. SIGMOD Record. 33(3):6-12. 2004.

141 A. Arasu and J. Widom. Resource Sharing in Continuous Sliding-Window
Aggregates. In VLDB. 2004.

15\ S. Babu. K. Munagala. J. Widom. and R. Motwani. Adaptive Caching for
Continuous Queries. In/CDE. 2005.

161 P. Bonnel. J. E. Gehrke. and P. Seshadri. Towards Sensor Database Systems. In
MDM.2001.

17J D. Carney. et aJ. Monitoring Streams - A New Class of Data Management
Applications. In VLDB. 2002.

181 S. Chandrasekaran. el aJ. TelegraphCQ: Continuous Dataflow Processing for
an Uncertain World. In CIDR. 2003.

191 S. Chandrasekaran and M. J. Franklin. PSoup: A System for Streaming Queries
over Streaming Data. VLDBJ. 12(2):140-156.2003.

1101 J. Chen. D. J. DeWitt. F. Tian. and Y Wang. NiagaraCQ: A Scalable Continuous
Query System for Internct Databases. In SIGMOD. 2000.

I I II c. D. Cranor. et. aJ. Gigascope: A Stream Database for Network Applications.
In SIGMOD. 2003.

I I2J A. Eisenberg. el. oJ.. SQL:2003 Has Been Published. SIGMOD Record.
33(1): I J9-126. 2004

113] S. Ganguly. et. al. Processing Set Expressions over Continuous Update Streams.
In SIGMOD. 2003.

1141 T. M. Ghanem. et aJ. Incremental Evaluation of Sliding-Window Queries over
Data Streams. In Purdue Uni"fnit} Technical Report, CSD TR 04-040.

[151 T. M. Ghanem. W. G. Aref. and A. K. Elmagarmid. Exploiting Predicate­
Window Semantics over Data Streams. SIGMOD Record. 35(I):3-8,2006.

116/ J. Goldstein and p.-A. Larson. Optimizing Queries Using Materialized Views:
A Practical, Scalable Solution. In SIGMOD. 2001.

II7J T. Griffin and L. Libkin. Incremental Maintenance of Views with Duplicates.
In SIGMOD. 1995.

1181 M. A. Hammad. M. J. Franklin, W. G. Aref. and A. E. Elmagannid. Scheduling
for Shared Window Joins over Data Streams. In VLDB. 2003.

1191 p.-A. Larson and H. Z. Yang. Computing Queries from Derived Relations. In
VLDB.1985.

120] J. Li. D. Maier, K. Tufte. V. Papadimos. and P. Tucker. Semantics and Evalua­
tion Techniques for Window Aggregates in Data Streams. In SIGMOD, 2005.

[211 L. Liu. c. Pu. and W. Tang. Continual Queries for Intemet Scale Event-Driven
Information Delivery. TKDE, 11(4):610-628,1999.

1221 D. Maier. J. Li, P. Tucker, K. Tufte, and V. Papadimos. Semantics of Data
Streams and Operators. In ICDT 2005.

1231 D. B. Terry, D. Goldberg. D. Nichols. and B. M. Oki. Continuous Queries over
Append-Only Databases. In SIGMOD. 1992.

1241 WEB Information System Laboratory. UCLA. CS Department. An introduction
La the Expre~sj\pe Stream Language (ESL). http://wis.cs.ucla.edu/stremn-miIL

J7

	SyncSQL: A Language to Express Views over Data Streams
	Report Number:
	

	tmp.1307986960.pdf.in0Nq

