
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2005

LUGrid: Update-tolerant Grid-based Indexing for Moving Objects LUGrid: Update-tolerant Grid-based Indexing for Moving Objects

Xiaopeng Xiong

Mohamed F. Mokbel

Walid G. Aref
Purdue University, aref@cs.purdue.edu

Report Number:
05-022

Xiong, Xiaopeng; Mokbel, Mohamed F.; and Aref, Walid G., "LUGrid: Update-tolerant Grid-based Indexing
for Moving Objects" (2005). Department of Computer Science Technical Reports. Paper 1636.
https://docs.lib.purdue.edu/cstech/1636

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

LUGRID: UPDATE-TOLERANT GRID-BASED
INDEXING FOR MOVING OBJECTS

Xiaopeng Xiong
Mohamed F. Mokbel

Walid G. Aref

CSD TR #05-022
October 2005

LUGRID: UPDATE-TOLERANT GRID-BASED
INDEXING FOR MOVING OBJECTS

Xiaopeng Xiong
Mohamed F. Mokbel

Walid G. Aref

CSD TR #05-022
October 2005

LUGrid: Update-tolerant Grid-based Indexing for Moving Objects

Xiaopeng Xiongl Walid G. ref'

' ~ e ~ a r t m e n t of Computer Science, Purdue University. West Lafayelk. IN

2~epartment of Computer Science and Engineering. UniversiLy of Minnesota. Minneapolis. MN

Abstract

I11deri11g ~vovirlg objects is afiozdanlental issue ilz slmtio-
ten1l~oral dntnbases. 111 this paper, we propose all ado]>-
five Lazy-Update Grid-based index (LUGrid, for short) thnt
mininlires r11e cost of object updates. LUGI-id is de~igned
rvitll two inlportantfentures, nninely, lazy insertion and lazy
deletion. Lazy insertion reduces the update 110s adding
017 addirional 17lenlop-reside171 layer over the disk i11de.x.
Tl~ei-efow, a batch of updntes can be.pushed to disk (it one
time, and consequently the cost of niulriyle updntes is nnlor-
tiied. Lazy deletion reduces update cosf by avoidilzg delet-
ing .single obsolere enrrj out of the index inl~nediatel~. 111-
stend, the obsolete entries ore I-enloved Inter 0). specinll~
designed nlecha~zisms. LUGrid adopts to object disfl-ibu-
tioils throligh cell splitting and ~nerging. III the papel; we
e.xfe~isive!). disc~lss the strucrure of LUG]-id and the algo-
ritl~ms for ~lpdate nnd q u e p processing. Moreovei; we pro-
\vide theoretical annl.ysis for estimating /he updnte cost of
LUGrid. Conlpl-ehensive e.xperinle~ztnl resr~lrs iizdicnte that
LUGrid outpelfol-111s foj-iner work up to eiglir rinles when
processing illtensive updates, while yielding siinilnl- search
pe1foi-n1nnce.

1 Introduction

The integration of mobile devices and positioning tech-
nologies enables new environments where locations of
moving objects can be tracked continuously. In such en-
vironments, objects send their current locations to a server
either periodically o r based on their moving distance. The
server collects the location information and processes in-
terested queries. A wide range of applications rely on the
maintenance of current locations of moving objects. Exam-
ples of these applications include traffic monitoring. nearby
information accessing and enhanced 91 1 service. etc.

Usually. the number of moving objects tends to be huge.
and the server needs to build indexes on the current lo-
cations of objects to accelerate the processing of standing

queries. However? most of existing spatial indexes (e.g.. R-
tree-like indexes) are d e s i p e d for static data and exhibit
poor performance under frequent updates. Recently, some
new techniques (e.g.. see Section 2) have been proposed
to alleviate the situation. However. as we demonstrate in
Section 6, these techniques are still not efficient enough for
quickly handling large amounts of updates in a short period
of time. The problem of indexing continuously moving ob-
jects is far from being resolved.

Existing approaches on indexing moving objects suffer
from large volumes of updates. The reasons are observed
from the following three aspects. First. most of the index-
ing approaches process single updates independently. Since
every call for index updating is expensive, processing sin-
gle update one at a time hinders largely the scalability of the
index. Second, when an update arrives: existing approaches
try to r e m v e the old entry for the object. If the old entry
resides on a disk page different from the page where the
new entry is to be stored, additional disk 110s are required
to purge the old entry from the index. In many cases, elimi-
nating old entries is more costly than inserting new entries.
Third, to quickly locate the old entry for an object, many
index structures maintain a secondary index on object IDS
(e.g.: [8, 9, 11, 241). Maintaining a secondary index is ex-
pensive in itself. The secondary index has to be updated ev-
ery time an object changes its locality of disk page. Further.
for each update, at least one page of the secondary index
is searched in order to locate the old entry of the updating
object, which adds more burden to the updating process.

In this paper, we propose LUGrid, an adaptive Lazy-
Update Grid-Dosed inde-x for indexing current locations of
moving objects. LUGrid aims to avoid the above mentioned
drawbacks of existing indexing techniques. LUGrid mini-
mizes the 110 costs for updates by adopting the concept of
Inzy-~rpdare. LUGrid is designed with two important fea-
tures: (1) Lnat-insertion. In LUGrid, object updates going
to a same disk page are grouped together and are flushed to
disk in one run. Lazy-insertion avoids excessive I10 costs
caused by multiple independent updates so that the amor-
tized 110 cost for one updating is kept very low. (2) Lazy-

LUGrid: Update-tolerant Grid-based Indexing for Moving Objects

Xiaopeng Xiong l Mohamed F. Mokbe1 2 Walid G. Aref l

1 Department of Computer Science, Purdue University, West Lafayette, IN

2Department of Computer Science and Engineering, University of Minnesota. Minneapolis, MN

Abstract

Indexing moving objects is afundamental issue in spatio
temporal databases. In this paper, we propose an adap
tive Lazy-Update Grid-based index (LUGrid,for short) that
minimizes the cost of object updates. LUGrid is designed
with two importantfeatures, namely, lazy insertion and lazy
deletion. Lazy insertion reduces the update liDs by adding
an additional memory-resident layer over the disk index.
Therefore, a batch of updates can be flushed to disk at one
time, and consequently the cost ofmultiple updates is amor
tized. Lazy deletion reduces update cost by avoiding delet
ing single obsolete entry out of the index immediately. In
stead, the obsolete entries are removed later by specially
designed mechanisms. LUGrid adapts to object distribu
tions through cell splitting and merging. In the papel; we
extensively discuss the structure of LUGrid and the algo
rithmsfor update and query processing. Moreovel; we pro
vide theoretical analysis for estimating the update cost of
LUGrid. Comprehensive experimental results indicate that
LUGrid outpelfonns fonner work up to eight times when
processing intensive updates, while yielding similar search
pelformance.

1 Introduction

The integration of mobile devices and positioning tech
nologies enables new environments where locations of
moving objects can be tracked continuously. In such en
vironments, objects send their current locations to a server
either periodically or based on their moving distance. The
server collects the location information and processes in
terested queries. A wide range of applications rely on the
maintenance of current locations of moving objects. Exam
ples of these applications include traffic monitoring, nearby
information accessing and enhanced 911 service, etc.

UsuaJly, the number of moving objects tends to be huge,
and the server needs to build indexes on the current lo
cations of objects to accelerate the processing of standing

queries. However, most of existing spatial indexes (e.g., R
tree-like indexes) are designed for static data and exhibit
poor performance under frequent updates. Recently, some
new techniques (e.g., see Section 2) have been proposed
to alleviate the situation. However. as we demonstrate in
Section 6, these techniques are still not efficient enough for
quickly handling large amounts of updates in a short period
of time. The problem of indexing continuously moving ob
jects is far from being resolved.

Existing approaches on indexing moving objects suffer
from large volumes of updates. The reasons are observed
from the following three aspects. First, most of the index
ing approaches process single updates independently. Since
every call for index updating is expensive, processing sin
gle update one at a time hinders largely the scalability of the
index. Second, when an update arrives, existing approaches
try to relllJ)ve the old entry for the object, If the old entry
resides on a disk page different from the page where the
new entry is to be stored, additional disk I/Os are required
to purge the old entry from the index. In many cases, elimi
nating old entries is more costly than inserting new entries.
Third, to quickly locate the old entry for an object, many
index structures maintain a secondary index on object IDs
(e.g., [8,9, 11,24]). Maintaining a secondary index is ex
pensive in itself. The secondary index has to be updated ev
ery time an object changes its locality of disk page. Further.
for each update, at least one page of the secondary index
is searched in order to locate the old entry of the updating
object, which adds more burden to the updating process.

In this paper, we propose LUGrld, an adaptive Lazy
Update Grid-based index for indexing current locations of
moving objects. LUGrid aims to avoid the above mentioned
drawbacks of existing indexing techniques. LUGrid mini
mizes the I/O costs for updates by adopting the concept of
lazy-update. LUGrid is designed with two important fea
tures: (1) Lazy-insertion. In LUGrid, object updates going
to a same disk page are grouped together and are flushed to
disk in one run. Lazy-insertion avoids excessive I/O costs
caused by multiple independent updates so that the amor
tized I/O cost for one updating is kept very low. (2) Lazy-

deletion. In contrast to other indexing approaches, LUGrid
does not require deleting old entries before inserting up-
dated entries. Instead, LUGrid delays the deletion process
until the disk pages where the old entries reside are retrieved
into memory. Therefore, I10 cost to search and delete old
entries from disk is saved. This is achieved by a memory-
resident data structure, namely, the "miss-deletion memo"
(MDM). MDM is a hash-based data structure that maintains
ONLY those objects that "miss" at least one deletion. LU-
Grid guarantees that the size of MDM is upper-bounded to
a small size so that it can be easily accommodated in main-
memory.

LUGrid adapts to arbitrary object distributions through
its adaptive grid structure that is borrowed from the Grid
file [12]. Queries on LUGrid are answered by accessing
on-disk entries as well as in-memory buffered object up-
dates. Query answers are ensured that no obsolete entries
are included and that no current entries are overlooked. We
demonstrate that, under various object distributions, the up-
dating performance of LUGrid is 2 to 8 times superior to
former indexing approaches. Meanwhile. LUGrid main-
tains efficient querying performance when compared to for-
mer approaches.

The contributions of this paper are summarized as fol-
lows:

I. We propose LUGrid; an adaptive update-tolerant in-
dexing structure for indexing current locations of mov-
ing objects. LUGrid is designed to minimize the cost
of processing object updates.

2. We extensively discuss the structure of LUGrid and al-
gorithms for update and query processing. We analyze
the update cost of LUGrid theoretically.

3. We provide a comprehensive set of experiments
demonstrating that LUGrid outperforms largely former
work in update processing while maintaining similar
querying performance.

The rest of this paper is organized as follows. Section 2
highlights the related work in the literature. The proposed
LUGrid is discussed in Section 3. Query processing in LU-
Grid is addressed in Section 4. Section 5 analyzes the up-
date cost of the proposed update scheme. An extensive set
of experiments that evaluates the performance of LUGrid is
given in Section 6. Finally, Section 7 concludes the paper.

2 Related Work

Traditional spatial access methods (e.g., the Grid
file [12] and R-tree [5]) are designed mainly to support
query processing. Updating traditional structures is cum-
bersome where it is considered as a delete operation fol-
lowed by an insert operation. The claim is that updates

are not frequent in traditional applications. However. in
spatio-temporal databases: objects continuously send loca-
tion updates to the index structure as they move. For the past
decade. several research efforts focus on developing varia-
tions of traditional access methods to support continuously
moving objects (e.g.. see [lo] for a survey).

In an attempt to reduce the frequency of updates to in-
dex structures, a prediction scheme helps predict the up-
dates for a certain period of time in the future. Predicted
future updates are presented as trajectories. Thus, index-
ing continuous moving objects is reduced to indexing fu-
ture trajectories. Four approaches have been investigated
for indexing future trajectories: (1) Duality transformation
(e.g., see [I . 3, 7. 131). The main idea is to map the future
trajectory to a single point in another domain, then a dual-
ity transformation is used to transfer all queries to the new
space, (2) Quad-tree-based methods (e.g., see [21]), (3) R-
tree-based index structures (e.g., see [14, 15: 16, 17, 201).
and (4) B-tree-based structures [6]. However, indexing fu-
ture trajectories solves only part of the updating problem.
Two main drawbacks still remain: (1) The ability of pre-
diction is controlled by the prior knowledge andlor assump-
tions of the object velocity, which is not always available.
(2) It is implicitly assumed that the updates of future trajec-
tories are much less than the updates to the object location.
However, this is not always true where in many cases the
prediction scheme fails (e.g., moving freely in a downtown
area or pedestrian movement). Frequent updates to the pre-
diction scheme would suffer from the same drawbacks of
frequent updates in traditional data structures.

The inefficiency of indexing moving objects by their fu-
ture trajectories motivates the need for special data struc-
tures that are suitable for frequent updates. The Lazy-
update R-tree (LUR-tree) [8] modifies the original R-tree
structure to support frequent updates. The main idea is that
if an update to a certain object p would result in a deletion
followed by an insertion in a new R-tree node. it would be
better if we can increase slightly the size of the minimum
boundary rectangle of the R-tree node in which p lies in to
accommodate its new location. The Frequently Updated R-
tree (FUR-tree) [9] extends the LUR-tree by performing a
bottom-up approach in which a certain moving object can
move to one of its siblings instead of having deletion fol-
lowed by an insertion. Both the LUR-tree and the FUR-tree
use an auxiliary structure to index objects based on their
identifiers. These auxiliary indices locate the old locations
of moving objects. One of the key features of our proposed
data structure LUGrid is that we eliminate the use of such
auxiliary disk indexes since in our proposed scheme the old
location is lacily visited and deleted.

The difficulties in dealing with tree-based structures and
the complexity of dual transformations motivate the use of
simpler data structures (e.g., hash-based and grid-based data

I

deletion. In contrast to other indexing approaches, LUGrid
does not require deleting old entries before inserting up
dated entries. Instead, LUGrid delays the deletion process
until the disk pages where the old entries reside are retrieved
into memory. Therefore, I/O cost to search and delete old
entries from disk is saved. This is achieved by a memory
resident data structure, namely, the "'miss-deletion memo'·
(MDM). MDM is a hash-based data structure that maintains
ONLY those objects that "miss" at least one deletion. LU
Grid guarantees that the size of MDM is upper-bounded to
a small size so that it can be easily accommodated in main
memory.

LUGrid adapts to arbitrary object distributions through
its adaptive grid structure that is borrowed from the Grid
file [12]. Queries on LUGrid are answered by accessing
on-disk entries as well as in-memory buffered object up
dates. Query answers are ensured that no obsolete entries
are included and that no current entries are overlooked. We
demonstrate that, under various object distributions, the up
dating performance of LUGrid is 2 to 8 times superior to
former indexing approaches. Meanwhile, LUGrid main
tains efficient querying performance when compared to for
mer approaches.

The contributions of this paper are summarized as fol
lows:

I. We propose LUGrid; an adaptive update-tolerant in
dexing structure for indexing current locations of mov
ing objects. LUGrid is designed to minimize the cost
of processing object updates.

2. We extensively discuss the structure of LUGrid and al
gorithms for update and query processing. We analyze
the update cost of LUGrid theoretically.

3. We provide a comprehensive set of experiments
demonstrating that LUGrid outperforms largely former
work in update processing while maintaining similar
querying performance.

The rest of this paper is organized as follows. Section 2
highlights the related work in the literature. The proposed
LUGrid is discussed in Section 3. Query processing in LU
Grid is addressed in Section 4. Section 5 analyzes the up
date cost of the proposed update scheme. An extensive set
of experiments that evaluates the performance of LUGrid is
given in Section 6. Finally, Section 7 concludes the paper.

2 Related Work

Traditional spatial access methods (e.g., the Grid
file [12] and R-tree [5]) are designed mainly to support
query processing. Updating traditional structures is cum
bersome where it is considered as a delete operation fol
lowed by an insert operation. The claim is that updates

are not frequent in traditional applications. However. in
spatio-temporal databases, objects continuously send loca
tion updates to the index structure as they move. For the past
decade, several research efforts focus on developing varia
tions of traditional access methods to support continuously
moving objects (e.g., see [10] for a survey).

In an attempt to reduce the frequency of updates to in
dex structures, a prediction scheme helps predict the up
dates for a certain period of time in the future. Predicted
future updates are presented as trajectories. Thus, index
ing continuous moving objects is reduced to indexing fu
ture trajectories. Four approaches have been investigated
for indexing future trajectories: (I) Duality transformation
(e.g., see [I. 3, 7, 13]). The main idea is to map the future
trajectory to a single point in another domain, then a dual
ity transformation is used to transfer all queries to the new
space, (2) Quad-tree-based methods (e.g., see [21]), (3) R
tree-based index structures (e.g., see [14, 15, 16, 17, 20]).
and (4) B-tree-based structures [6]. However, indexing fu
ture trajectories solves only part of the updating problem.
Two main drawbacks still remain: (I) The ability of pre
diction is controlled by the prior knowledge and/or assump
tions of the object velocity, which is not always available.
(2) It is implicitly assumed that the updates offuture trajec
tories are much less than the updates to the object location.
However, this is not always true where in many cases the
prediction scheme fails (e.g., moving freely in a downtown
area or pedestrian movement). Frequent updates to the pre
diction scheme would suffer from the same drawbacks of
frequent updates in traditional data structures.

The inefficiency of indexing moving objects by their fu
ture trajectories motivates the need for special data struc
tures that are suitable for frequent updates. The Lazy
update R-tree (LUR-tree) [8] modifies the original R-tree
structure to support frequent updates. The main idea is that
if an update to a certain object p would result in a deletion
followed by an insertion in a new R-tree node, it would be
better if we can increase slightly the size of the minimum
boundary rectangle of the R-tree node in which p lies in to
accommodate its new location. The Frequently Updated R
tree (FUR-tree) [9] extends the LUR-tree by performing a
bottom-up approach in which a certain moving object can
move to one of its siblings instead of having deletion fol
lowed by an insertion. Both the LUR-tree and the FUR-tree
use an auxiliary structure to index objects based on their
identifiers. These auxiliary indices locate the old locations
of moving objects. One of the key features of our proposed
data structure LUGrid is that we eliminate the use of such
auxiliary disk indexes since in our proposed scheme the old
location is laz.ily visited and deleted.

The difficulties in dealing with tree-based structures and
the complexity of dual transformations motivate the use of
simpler data structures (e.g., hash-based and grid-based data

structures) that are updated easily. A hash-based structure
is used in 118. 191 where the space is partitioned into a set
of overlapped zones. An update is processed only if an
object moves out of its zone. SETI [2] is a logical index
structure that divides the space into non-overlapped zones.
Both SETI and hash-based structures ignore deleting the old
location of a moving object. Thus. an update is reduced
to only an insertion where past trajectories are maintained.
Grid-based structures have been used to maintain only the
current locations of moving objects (e.g., see [4, 11, 241).
However, two drawbacks can be distinguished: (1) The used
grid is fixed where it is just a regular partitioning of space
into equal sized non-overlapped zones. This approach is not
suitable in the case of a non-uniform distribution of data,
(2) Deleting an old location of a certain object is still cum-
bersome, where in many cases, the old location can be in a
grid cell that is different from the one containing the new
location. In this case, an extra search and extra 110s are
needed to clean LIP the old entry.

In our recent work (231, we initially proposed making
use of an Upclote Me1710 to reduce the update cost. The
main idea is to avoid immediate deletion of obsolete entries
by maintaining a memo structure in main memory. [23]
only works for R-tree-based indexes. In this paper, we ex-
plore similar idea in adaptive Grid-based indexes to achieve
lazy deletion. Furthermore, by utilizing lazy insei-tiorz along
with lazy deletior?, the update performance is significantly
enhanced.

Our proposed LUGrid structure distinguishes itself from
all other approaches where it has all the following proper-
ties: (1) LUGrid indexes the current positions of moving
objects, no predication scheme is used, (2) LUGrid is based
on the G r i d j l e [12] where grid cells are not equal sized.
cells can adapt to data distribution through cell splitting and
merging. (3) LUGrid efficiently resolves the issue of dele-
tion, where a delete is performed lazily. Thus, no overhead
or UO is incurred due to deletion.

3 LUGrid: Lazy Update Grid-based Index

In this section, we propose LUGrid, an adaptive grid-
based index structure that efficiently handIes the continuous
updates of objects' locations. LUGrid exploits two tech-
niques. namely, lazy-insertion and lozjl-deletiorz. In lazy-
irzser-tiont incoming updates are grouped together based on
the updated disk-page and are lazily flushed into disk once.
Thus, multiple updates are reduced to only a single disk
update. In lazy-deletiorz. obsolete entries (i.e., entries that
receive an update) remain in disk rather than being immedi-
ately deleted. By keeping necessary r71er71o information, we
can lazily remove the obsolete entries only when their disk
pages are accessed, e.g., via an insertion. Thus. a delete op-
eration does not incur any 110 overhead. lazy-i11sertiorz and

lazy-deletion can be used either independently or together
to boost the performance of frequent updates in traditional
index structures.

3.1 LUGrid Indexing Structure

LUGrid adopts a grid structure that is similar to the Grid
j l e [I 21. In LUGrid, however, the directory of grid cells
is maintained in memory instead of being stored on disk.
Also. we extend the grid directory to buffer object updates.
We refer to the extended in-memory directory as the Mem-
o~ Grid, and refer to the set of in-disk bucket pages as the
Disk Grid. Additionally, a hashing-based structure termed
the Miss-Deletioiz Menzo is maintained to identify obsolete
entries. These three structures act together to maintain con-
tinuous object updates in LUGrid.

Disk Grid (DG)

The Disk Grid (DG, for short) consists of a set of non-
overlapped disk-based grid cells. Each grid cell is stored
in one disk page. A DG cell stores information of objects
that lie within the cell boundaries. Each DG cell covers
an exclusive portion of the data space that is determined
by its corresponding Memory Grid cellrs). A DG cell CD
has the format (N E : El E m) (n > 0), where NE is
the number of object entries stored in CD. El to En are
the stored objects in CD. An object entry E, has the form
of (O I D . O L o c) , where O I D is the object identifier, and
O L o c is the latest object location that has beenjushed to
CD. Since a DG cell corresponds to a disk page, for the
rest of the paper, we use the terms disk page and DG cell as
synonyms.

Memory Grid (MG)

The M e m o r ~ Grid (MG, for short) is an in-memory two-
dimensional array, where each element of the array is a
Memory Grid cell. Each MG cell points to a DG cell where
its flushed data is stored. For an MG cell m and its corre-
sponding DG cell d, we refer to d as the repositov cell of
m, and refer to m as the bzlffer cell of d . To avoid under-
utilizing disk pages. several neighbored MG cells may have
the same repository cell given that the united space region
of these MG cells forms a rectangle. However, in any case,
one MG cell can have exactly one repository cell. The space
coverage of a DG cell is the united space region of all its
buffer cells.

Each MG cell has a limited amount of memory that
can buffer object updates temporarily. Object updates are
double-hashed in MG. First, one update is inserted as a
new update entry to an MG cell whose space re,' 010n cov-
ers the new object location. Meanwhile, the same update
entry is linked in a hash link based on the object identifier.

structures) that are updated easily. A hash-based structure
is used in [18. 19] where the space is partitioned into a set
of overlapped zones. An update is processed only if an
object moves out of its zone. SETI [2] is a logical index
structure that divides the space into non-overlapped zones.
Both SETI and hash-based structures ignore deleting the old
location of a moving object. Thus, an update is reduced
to only an insertion where past trajectories are maintained.
Grid-based structures have been used to maintain only the
current locations of moving objects (e.g., see [4, 11,24]).
However, two drawbacks can be distinguished: (I) The used
grid is fixed where it is just a regular partitioning of space
into equal sized non-overlapped zones. This approach is not
suitable in the case of a non-uniform distribution of data,
(2) Deleting an old location of a certain object is still cum
bersome, where in many cases, the old location can be in a
grid cell that is different from the one containing the new
location. In this case, an extra search and extra I/Os are
needed to clean up the old entry.

In our recent work [23], we initially proposed making
use of an Update Memo to reduce the update cost. The
main idea is to avoid immediate deletion of obsolete entries
by maintaining a memo structure in main memory. [23]
only works for R-tree-based indexes. In this paper, we ex
plore similar idea in adaptive Grid-based indexes to achieve
lazy deletion. Furthermore, by utilizing lazy insertion along
with lazy deletion, the update performance is significantly
enhanced.

Our proposed LUGrid structure distinguishes itself from
all other approaches where it has all the following proper
ties: (l) LUGrid indexes the current positions of moving
objects, no predication scheme is used, (2) LUGrid is based
on the Grid file [12] where grid cells are not equal sized,
cells can adapt to data distribution through cell splitting and
merging. (3) LUGrid efficiently resolves the issue of dele
tion, where a delete is performed lazily. Thus, no overhead
or I/O is incurred due to deletion.

3 LUGrid: Lazy Update Grid-based Index

In this section, we propose LUGrid, an adaptive grid
based index structure that efficiently handles the continuous
updates of objects' locations. LUGrid exploits two tech
niques, namely, lazy-insertion and lazy-deletion. In lazy
insertioll, incoming updates are grouped together based on
the updated disk-page and are lazily flushed into disk once.
Thus, multiple updates are reduced to only a single disk
update. In lazy-deletion, obsolete entries (i.e., entries that
receive an update) remain in disk rather than being immedi
ately deleted. By keeping necessary memo information, we
can lazily remove the obsolete entries only when their disk
pages are accessed, e.g., via an insertion. Thus, a delete op
eration does not incur any I/O overhead. lazy-insertion and

lazy-deletion can be used either independently or together
to boost the performance of frequent updates in traditional
index structures.

3.1 LUGrid Indexing Structure

LUGrid adopts a grid structure that is similar to the Grid
file [12]. In LUGrid, however, the directory of grid cells
is maintained in memory instead of being stored on disk.
Also, we extend the grid directory to buffer object updates.
We refer to the extended in-memory directory as the Mem
ory Grid, and refer to the set of in-disk bucket pages as the
Disk Grid. Additionally, a hashing-based structure termed
the Miss-Deletion Memo is maintained to identify obsolete
entries. These three structures act together to maintain con
tinuous object updates in LUGrid.

Disk Grid (DG)

The Disk Grid (DG, for short) consists of a set of non
overlapped disk-based grid cells. Each grid cell is stored
in one disk page. A DG cell stores information of objects
that lie within the cell boundaries. Each DG cell covers
an exclusive portion of the data space that is determined
by its corresponding Memory Grid cell(s). A DG cell CD
has the format (NE,E1 ,"',En) (71 > 0), where N E is
the number of object entries stored in CD. E 1 to En are
the stored objects in CD. An object entry E i has the form
of (OID,OLoc), where OlD is the object identifier, and
oLoc is the latest object location that has been flushed to
CD. Since a DG cell corresponds to a disk page, for the
rest of the paper, we use the terms disk page and DG cell as
synonyms.

Memory Grid (MG)

The Memory Grid (MG, for short) is an in-memory two
dimensional array, where each element of the array is a
Memory Grid cell. Each MG cell points to a DG cell where
its flushed data is stored. For an MG cell m and its corre
sponding DG cell d, we refer to d as the repository cell of
m, and refer to m as the buffer cell of d. To avoid under
utilizing disk pages, several neighbored MG cells may have
the same repository cell given that the united space region
of these MG cells forms a rectangle. However, in any case,
one MG cell can have exactly one repository cell. The space
coverage of a DG cell is the united space region of all its
buffer cells.

Each MG cell has a limited amount of memory that
can buffer object updates temporarily. Object updates are
double-hashed in MG. First, one update is inserted as a
new update entry to an MG cell whose space region cov
ers the new object location. Meanwhile, the same update
entry is linked in a hash link based on the object identifier.

Memory Grid

--%-"ts. - - - - -
I
I

MDM

Figure 1. Example: Buffering and Flushing

By double-hashing, an object update in MG can be quickly
reached either by its new location or by its identifier.

An MG cell has the form of (Nu. A I R ,,,,,. D?d, ATE.
DRegzoT,, El , . . ., ETn) (m > 0). where AT,, IS the number
of buffered updates in this MG cell, AdR,,,,,, is the space
region covered by this MG cell, Dtd is the disk page identi-
fier of the repository cell, NE is the total number of object
entries stored in the repository cell, DRegTon is the space
region covered by the repository cell. and El to E,,, are the
object updates buffered in this MG cell. An object update
entry has the form of (O I D . OLoc), where O I D is the ob-
ject identifier, and OLoc is the latest /-ereitled location for
the object.

Miss-Deletion Memo (MDM)

In LUGrid, old object entries may co-exist with current en-
tries since the deletion of old entries is delayed. The Miss-
Deleti017 Me1710 (MDM, for short) is employed to distin-
guish obsolete entries from current entries. MDM is an in-
memory hash-based table that keeps track of those objects
that miss at least one deletion. In addition, it keeps a counter
with the number of deletions that each object missed. An
MDM entry has the form (O I D . OLoc. i ldDnvm), where
O I D is the object identifier, OLoc is the most recent ob-
ject location that has been flushed to DG, and AIDnllm is
the miss deletion 1z~t17iOer for the object O I D . As an exam-
ple, an MDM entry (012, (34, 64), I) is interpreted as that
the object with identifier OI2 has missed the deletion of old
entry for 1 time (i.e., there 1s 1 entry of 012 in DG that is

obsolete but that has not been deleted yet). and the newest
location of 0 1 2 in DG is (34.64). Note that for one MDM
entry, if AIDn~lii i changes to 0, which means all obsolete
entries for the object O I D have been deleted, the MDM
entry can be safely removed from the NlDM to reduce the
memory usage.

A running example. We use the example given in Fig-
ure 1 to illustrate our ideas. Figure I. 1 (a) gives a DG struc-
ture with the four DG cells A, B. C and D. Nine objects 01

to 09 are stored in DG. Figure I . I (b) gives the MG structure
that is partitioned into six cells, 1 to 6. MG cells 1 and 2
have the same repository cell (DG cell A), while MG cells
3 and 6 have the same I-epository cell (DG cell B). Assume
at this moment. there is no obsolete entry that exists on disk.
Thus MDM, given in Figure I . I (c). is empty.

3.2 Processing Updates

In this section, we discuss update processing in LUGrid.
An update sent from a continuously moving object to the
LUGrid contains the object identifier and the object's new
location. Figure 2 depicts an overview of update processing
in LUGrid that has the following three stages:

Stage I: Buffering updates. Initially, contin~~ously
received updates are buffered in MG.

Stage 11: Flushing updates into disk. Flushing in-
memory data into disk pages is triggered by any of
the following two events: (I) An in-memory grid
cell CAI is full. In this case, Cfil is flushed into
its corresponding repository disk-based grid cell,
(2) The overall memory becomes full. In this case, a
certain cell is chosen as a victim and is flushed into
its corresponding DG repository cell. Notice that it
may be the case that the whole memory is full while
none of the in-memory cells are full. This is due to the
fact that we use two different thresholds, one for the
maximum number of updates that can be buffered in
each cell, and the second is for the maximum number
of updates that can be buffered in the whole memory.
The reason behind this is to allow for more efficient
buffering capabilities. The process of flushing an
in-memory cell to disk needs a special coordination
among the three used data structures, DG, MG, and
MDM.

Stage 111: SplittingIMerging cells. Finally, if a DG cell is
over-full or is under-utilized, cell splitting or merg-
ing takes place in both in-memory and disk-based grid
structures.

In this section, we discuss the first two stages. The third
stage is briefly discussed in Section 3.3.

Miss-Deletion Memo (MDM)

Figure 1. Example: BUffering and Flushing

continuously

3.2 Processing Updates

In this section, we discuss update processing in LUGrid.
An update sent from a continuously moving object to the
LUGrid contains the object identifier and the object's new
location. Figure 2 depicts an overview of update processing
in LUGrid that has the following three stages:

In this section, we discuss the first two stages. The third
stage is briefly discussed in Section 3.3.

Stage II: Flushing updates into disk. Flushing in-
memory data into disk pages is triggered by any of
the following two events: (I) An in-memory grid
cell Clil is full. In this case, C 1IJ is flushed into
its corresponding repository disk-based grid cell,
(2) The overall memory becomes full. In this case, a
certain cell is chosen as a victim and is flushed into
its corresponding DG repository cell. Notice that it
may be the case that the whole memory is full while
none of the in-memory cells are full. This is due to the
fact that we use two different thresholds, one for the
maximum number of updates that can be buffered in
each cell, and the second is for the maximum number
of updates that can be buffered in the whole memory.
The reason behind this is to allow for more efficient
buffering capabilities. The process of flushing an
in-memory cell to disk needs a special coordination
among the three used data structures, DG, MG, and
MDM.

Stage III: Splitting/Merging cells. Finally, if a DG cell is
over-full or is under-utilized, cell splitting or merg
ing takes place in both in-memory and disk-based grid
structures.

obsolete but that has not been deleted yet), and the newest
location of 0 12 in DG is (34,64). Note that for one MDM
entry, if 111 Dr7ll177 changes to 0, which means all obsolete
entries for the object OJD have been deleted, the MDM
entry can be safely removed from the MDM to reduce the
memory usage.

A running example. We use the example given in Fig
ure I to illustrate our ideas. Figure 1.1 (a) gives a DG struc
ture with the four DG cells A, B, C and D. Nine objects 01

to 09 are stored in DG. Figure 1.1 (b) gives the MG structure
that is partitioned into six cells, 1 to 6. MG cells 1 and 2
have the same repository cell (DG cell A), while MG cells
3 and 6 have the same repository cell (DG cell B). Assume
at this moment, there is no obsolete entry that exists on disk.
Thus MDM, given in Figure 1.1 (c), is empty.

Stage I: Buffering updates. Initially,
received updates are buffered in MG.

MOM

2(c)

11c)lib)

Memory Grid

;z ;3
, I

4 - -':5 - "t6- - - -
, °61
10 7 1
I I

I 2(b)

I
1
1 1 2 3
I 'I
1 I 1

: 4--:S-~6-----

1 I I
I I I

3(b)

1(3)

313)

Disk Grid

:A • 18
·1 8

·2

~ r· •9• 4
3 ·6

-5 ·7

:A
-1- 8

8

•
·2

r- ·9• 4

3.5 .7
·6

:A
.,. 8

B .
2

·4

Cr· •9·3 6 "6
-5 -7

By double-hashing, an object update in MG can be quickly
reached either by its new location or by its identifier.

An MG cell has the form of (N", lI'IRegion, Did, N E,

D Region, E], .. " Em) (m > 0), where N ll is the number
of buffered updates in this MG cell, AIRegion is the space
region covered by this MG cell, Did is the disk page identi
fier of the repository cell, N E is the total num.ber of object
entries stored in the repository cell, D Region is the space
region covered by the repository cell, and E 1 to Em are the
object updates buffered in this MG cell. An object update
entry has the form of (OJD, OLoe), where OJD is the ob
ject identifier, and OLoe is the latest received location for
the object.

In LUGrid, old object entries may co-exist with current en
tries since the deletion of old entries is delayed. The Miss
Deletion Memo (MDM, for short) is employed to distin
guish obsolete entries from current entries. MDM is an in
memory hash-based table that keeps track of those objects
that miss at least one deletion. In addition, it keeps a counter
with the number of deletions that each object missed. An
MDM entry has the form (OJ D, OLoe. 111 Dnl1.m), where
OJD is the object identifier, OLoe is the most recent ob
ject location that has been flushed to DG, and 111Dnl1m is
the miss deletion number for the object OJD. As an exam
ple, an MDM entry (012 , (34,64), 1) is interpreted as that
the object with identifier 0 12 has missed the deletion of old
entry for I time (i.e., there is 1 entry of 012 in DG that is

Object Updates -
Miss

3. merging sp'iw ' F n I ,A ,.,oQ Memo 7
Disk Grid I'

(DGJ

Figure 2. Overview of LUGrid

Buffering updates. Figure 3 gives the pseudo code of
processing incoming updates in LUGrid. Once an object
update is received, the update IS buffered in MG immedi-
ately. For a certain MG update entry 11, we denote the MG
cell that contains u as AfGC(u). Further, we say that u
is consunied if u is flushed to disk. Since it may happen
that one update arrives to the server while the previous up-
date for the same object has not been consumed, the buffer-
ing algorithm starts by searching MG for the entry with the
same object identifier (OID). If an entry with the same OID
is found, the found entry is deleted from MG. The reason is
that the existing in-memory entry becomes obsolete, thus,
is no longer needed (Step I In Figure 3). Notice that for
a single update, at most one entry with the same OID may
exist in MG, because earlier entries with the same OID are
either consumed to disk or are deleted from memory due to
a newer update.

After the deletion of one unconsumed update for the
same object, the new update is inserted into the MG cell
whose region covers the new location (Steps 2 and 3 in
Figure 3). Recall that the updates in MG are organized in
double-hashing fashion, so the update is also inserted in a
hash link according to the object ID (Step 4 in Figure 3).
If the MG cell where the object update is inserted becomes
full after the insertion, LUGrid flushes all buffered updates
in this MG cell to its repository cell (Step 5 in Figure 3). If
the total number of buffered updates in all MG cells exceeds
the maximum limit, LUGrid picks the MG cell that has the
largest number of buffered updates and flushes the updates
to its own repository cell (Step 6 in Figure 3). In both cases,
the flushing function given in Figure 4 is called.

Flushing updates. Figure 4 gives the pseudo code for
flushing updates into DG cells. The flushing algorithm con-
sun7es the buffered updates in an in-memory grid cell (MG)
by flushing them to the corresponding repository cell. First,
the repository cell is read into memory (Step 1 in Figure 4).
For entries in the repository cell, it is possible that some en-
tries have become obsolete due to newer updates in other
disk cells. To identify such objects, for each entry in the
DG cell, the miss-deletion r?ier~io (MDM) is searched for
the entry with the same OID. If an MDM entry with the
same identifier is found, and the location stored in MDM

Procedure onReceivingUpdate(UpdateTup1e u(oid. loc))

1 . Search u.oid in MG by exploring the O I D has11 link ill MG.
I f an MG elltry In. wl~et-e In .OID eqilals ro tr .oid is , foz~~~d

(a) Deleie rn,f,-o~n MG;

(b) MGCO~I).N, --; usedSlors--;

2. Inserr u into the MG cell whose A d ~ ~ ~ i ~ ~ covers 21.10~;

3. MGC(1r). N , ++; usedSlois++;

4. Link u in MG's OID hash link based otz u.oid;

5 . I f (MGC(u).N, >= MoxUpdPerMGCell)

(a) Call FlushingUpdates(MGC(~~));

6. I f (usedSlois >= MaxSlots)

(a) m.c,,,,, = the MG cell that buffers the largest 11i111iber-
of updates;

(b) Call Fll~shii7gUpdates(1n c,,,,,);;

Figure 3. On Receiving Object Update

does not correspond to that of the disk entry, the disk entry
is considered obsolete. In this case, the obsolete disk entry
is removed from the repository cell (Step 2 in Figure 4), and
the rniss deletion rzuniber of the MDM entry is decremented
by one. In the case that the MDM entry indicates all old
entries on disk have been deleted for this object (i.e., the
rliiss deletioiz number- equals zero), the MDM entry itself is
removed from MDM.

After deleting obsolete entries, each update in the MG
cell searches its original entry in the repository cell. The
original entry may or may not exist. If the original entry
is found. the entry is updated with new location informa-
tion. In this case, if an MDM entry exists for the object,
the location field of the MDM entry needs to be updated.
At the end: the update is deleted from the MG cell (Step 3a
in Figure 4). Otherwise, if no original entry for the up-
dating object is found, then the original entry must reside
on another DG cell and is obsolete due to the new update
(Step 3b in Figure 4). In this case, if one MDM entry exists
for the object, the MDM entry is updated with new location
information, and the miss deletiorz 17~1mber is incremented
by one (Step 3b(i) in Figure 4). If no such MDM entry ex-
ists, a new MDM entry is created. The new entry is filled
with the latest information and the niiss deletion rzurnber- is
set to one (Step 3b(ii) in Figure 4).

Following the above processing, the MG cell contains
only object updates that are "new" to the repository cell. If
all such updates can be added to the repository cell with-
out causing overflowing, they are inserted into the repos-
itory cell and are removed from the MG cell, and related
counters are changed accordingly (Step 4a in Figure 4). All
buffer cells that point to this repository cell need update

Object Updates

Figure 2. Overview of LUGrid

Buffering updates. Figure 3 gives the pseudo code of
processing incoming updates in LUGrid. Once an object
update is received, the update is buffered in MG immedi
ately. For a certain MG update entry 71, we denote the MG
cell that contains 'U. as 1I1GC(11). Further, we say that 11

is consumed if 11 is flushed to disk. Since it may happen
that one update arrives to the server while the previous up
date for the same object has not been consumed, the buffer
ing algorithm starts by searching MG for the entry with the
same object identifier (OlD). If an entry with the same OlD
is found, the found entry is deleted from MG. The reason is
that the existing in-memory entry becomes obsolete, thus,
is no longer needed (Step I in Figure 3). Notice that for
a single update, at most one entry with the same OlD may
exist in MG, because earlier entries with the same OlD are
either consumed to disk or are deleted from memory due to
a newer update.

After the deletion of one unconsumed update for the
same object, the new update is inserted into the MG cell
whose region covers the new location (Steps 2 and 3 in
Figure 3). Recall that the updates in MG are organized in
double-hashing fashion, so the update is also inserted in a
hash link according to the object ID (Step 4 in Figure 3).
If the MG cell where the object update is inserted becomes
full after the insertion, LUGrid flushes all buffered updates
in this MG cell to its repository cell (Step 5 in Figure 3). If
the total number of buffered updates in all MG cells exceeds
the maximum limit, LUGrid picks the MG cell that has the
largest number of buffered updates and flushes the updates
to its own repository cell (Step 6 in Figure 3). In both cases,
the flushing function given in Figure 4 is called.

Flushing updates. Figure 4 gives the pseudo code for
flushing updates into DG cells. The flushing algorithm con
sumes the buffered updates in an in-memory grid cell (MG)
by flushing them to the corresponding repository cell. First,
the repository cell is read into memory (Step I in Figure 4).
For entries in the repository cell, it is possible that some en
tries have become obsolete due to newer updates in other
disk cells. To identify such objects, for each entry in the
DG cell, the miss-deletion memo (MDM) is searched for
the entry with the same OlD. If an MDM entry with the
same identifier is found, and the location stored in MDM

Procedure onReceivingUpdate(UpdateTuple u(oid. loc»

I. Search 11.oid in MG by exploring the DID hash link in MG.
rfan MG emry m where m.OID equals to u .oid is.found

(a) Dele/e mfrom MG;

(b) MGC(m).Nu --; usedSlots--;

2. Insert u into the MG cell whose AiRegion covers 11.loc;

3. MGC(u).Nu ++; usedSlo/s++;

4. Link u in MG's DID hash link based on 11.oid;

5. If(MGC(u).Nu >= MaxUpdPerMGCell)

(a) Call FlushingUpdmes(MGC(u));

6. !f(usedSlo/s >= MaxSlots)

(a) mC",ax = The MG cell/hm buffers the largest number
of updates;

(b) Call FlushingUpdmes(mcmax);;

Figure 3. On Receiving Object Update

does not correspond to that of the disk entry, the disk entry
is considered obsolete. In this case, the obsolete disk entry
is removed from the repository cell (Step 2 in Figure 4), and
the miss deletiol1number of the MDM entry is decremented
by one. In the case that the MDM entry indicates all old
entries on disk have been deleted for this object (i.e., the
miss deletion number equals zero), the MDM entry itself is
removed from MDM.

After deleting obsolete entries, each update in the MG
cell searches its original entry in the repository cell. The
original entry mayor may not exist. If the original entry
is found, the entry is updated with new location informa
tion. In this case, if an MDM entry exists for the object,
the location field of the MDM entry needs to be updated.
At the end, the update is deleted from the MG cell (Step 3a
in Figure 4). Otherwise, if no original entry for the up
dating object is found, then the original entry must reside
on another DG cell and is obsolete due to the new update
(Step 3b in Figure 4). In this case, if one MDM entry exists
for the object, the MDM entry is updated with new location
information, and the miss deletion number is incremented
by one (Step 3b(i) in Figure 4). If no such MDM entry ex
ists, a new MDM entry is created. The new entry is filled
with the latest information and the miss deletion number is
set to one (Step 3b(ii) in Figure 4).

Following the above processing, the MG cell contains
only object updates that are "new" to the repository cell. If
all such updates can be added to the repository cell with
out causing overflowing, they are inserted into the repos
itory cell and are removed from the MG cell, and related
counters are changed accordingly (Step 4a in Figure 4). All
buffer cells that point to this repository cell need update

Procedure FlushingUpdates(MGCell m e)

1 . dc = the rel>ositon. cell of me; Reod dc irlro illernon;

2 . For eoch entr? d iri dc, i f on MDM eiirr?. e wher-e c . .OID
equols to d.OJ D is,forrnd

(a) If (d . OLoc # e. Olor)

i . Deleted fi-oil1 dc; d c . N ~ - - ; e .A . lDnum-- ;

A. lf(e.MDn~rrri == 0) delete e,fiorii MDM;

3. For eoch e i i t v In bi ,rnc

(a) I f a DG entr? dold iri dc whel-e d O c d . O I D equols ro
m .OI D is,found

i . do,d.Oloc = m ,010~;
i i . I f or1 MDM e n t n e where e . O I D eql~ols to

In . O I D is,fourid

A. e.Oloc = in..Oloc;

i i i . Delete in,fi-or17 mc; nit. N,, - -; usedS lo t s - :

(b) Else / / (f such d,,rd does riot exist

i . I f or1 MDM entr? e where e . O I D ecl~rols to
171 . O I D is,forrnd

A. e.Oloc = m.Oloc; e.A.IDn.7lm++;

i i . Else l l i f s ~ r c k e does not exist

A. Creote e os o new MDM enrr?.: e . O I D =
m . O I D ; e .OLoc = m.OLoc; e.AlDn7rni
= I ; 117ser-r e blro MDM;

4 . I f (m c . N , + d c . N ~ <= MoaEritPerDGCell)

(a) Move oll remoinirlg MG enri-ies iri rnc to dc; d c . N ~
= dc.lVE + mc.AT,; usedSlols = ~tsedSlots - mc.A{ , ;
mc,N,, = 0,' 1nc.A'~ = d c . N ~ ;

(b) For oll Duffer cells of dc, set their volrres of N E to
d c . N ~ :

(c) CoII Mer-gingCell(rnc, dc);

5 . Else call SplittingCell(nic, dc);

Figure 4. Flushing Buffered Updates

their counters for the number of disk entries (Step 4b in
Figure 4). Then, a merging function is called to seek the
opportunity of merging this DG cell with neighbored cells
(Step 4c in Figure 4). Otherwise, if putting all remaining
updates into the repository cell causes overflowing of the
repository cell, the repository cell is split to two disk cells
(Step 5 in Figure 4).

Example. In the example given in Figure I, we assume
that an MG cell needs flushing when the number of buffered
updates in this MG cell reaches two. In Figure l .l(b), MG
cell 2 receives the location updates from objects 1 and 4.
Since the buffer of cell 2 is full, cell 2 flushes the two up-
dates to its repository cell which is DG cell A. Follow-
ing the flushing algorithm, entries in DG cell A check with

MDM to see whether there are obsolete entries. In our ex-
ample, since MDM is empty, both 01 and 08 are identified
as current entries. Then, the update of 01 finds the origi-
nal 01 entry in DG cell A, and further updates the location
of the entry. For the update of 04, however, does not find
the original entry in DG cell A. Moreover, the update does
not find an entry in MDM for 04. So it creates an entry in
MDM for 04 to indicate that this update invalidates a former
entry of 04. Finally, this update is added into DG cell A.
The resulting DG and MDM are shown in Figure 1.2(a) and
Figure 1.2(c), respectively. Note that the former entry of 04

in DG cell D becomes obsolete after the above processing,
however, the obsolete entry (plotted with cross mark) still
remains on disk.

Assume that after some time. the MG cell 5 receives two
updates from object G and 7 and starts flushing to DG cell
D (Figure 1.2(b)). By comparing entries in DG cell D with
MDM, the entry for 0 4 is identified as obsolete because the
location of the 0 4 entry does not equal to the location in
MDM. Therefore, the obsolete entry is deleted out of cell
D . Note that the MDM entry for 04 should be removed
out of MDM because all obsolete entries of 04 have been
cleaned (the miss deletion number returns to zero). After
that. the update of 07 replaces the original entry of 07 with
the new location. On the other hand, the update of 06 does
not find an original entry in cell D . Therefore, the update
of 06 creates an entry in MDM and adds 06 to cell D . The
final states of DG, MG, and MDM are plotted, respectively,
in Figure 1.3(a), Figure 1.3(b) and Figure 1.3(c).

3.3 Splitting and Merging Cells

To cope with overflowed and under-utilized grid cells,
LUGrid utilizes the splitting and merging utilities that are
inherited from the original Grid file [12]. In this section, we
discuss briefly the splitting and merging scenarios in LU-
Grld.

Cell splitting. In LUGrid, splitting always happens
when an MG cell Ad is flushed to its DG repository cell D.
Let the set of object entries in Ad be SA4, and let the set of
object entries in D be So. Further, let the union of SA1 and
So be S A ~ + ~ . Let the maximum number of entries that a
DG cell can contain be N,,,,,. When splitting happens, the
number of entries in Shl+D is greater than N,,,,,. Thus, D
splits to two new DG cells and re-distributes the entries in
SAl+D to the two new DG cells. We refer to the two new
DG cells as Dl and D2. respectively.

There are two possibilities for splitting cell D : (1) D is
split without affecting MG; (2) Both D and MG are split.
First, the splitting process tries to split only D without af-
fecting MG. In this phase, the splitting process collects the
information of D's buffer cells from MG (In addition to
Ad, there may be other MG cells that map to the same

Procedure FlushingUpdates(MGCeJl me)

]. de = the repository cell of me; Read dc into memon';

2. For each el1lrv d in de. if an MDM emr)" e where e.OI D
equals to d.OI D isfound

(a) if(d. OLoe I' e.Oloc)

I. Delete dfrom dc; dc.NE--; e.A1 Dnum--;

A. !j'(e.MDnum == 0) delete efrol/1 MDM;

3. For each entry m in me

(a) if a DG entry do/d in de where do/d.OI D equals 10

m.OI D isfound

i. do/d.O/oe = m.O/oc;

ii. !f an MDM en/n' e where e.OI D equals to

m.OI D is[ound

A. e.O/oe = m.O/oc;

iii. Delete mfroml11e; mc.NlI --; usedSlots- -;

(b) Else / /i[such dold does not exist

i. !f an MDM elJll]' e where e.OI D equals 10

m.OI D isfound

A. e.O/oe = m.O/oc; e.M Dnvm++;

ii. Else / / if such e does not exist

A. Create e as a new MDM emr)"; e.OI D =
m.OI D; e.oLoc = m.OLoe; e.M Dnvm
= i; insert e into MDM;

4. 1f(mc.N" + de.NE <= MaxEmPerDGCell)

(a) Move all remaining MG emries in mc to dc; dc.NE
= de.NE + mc.N,,; usedSlots = usedSlots - mc.N,,;
mc~N" = 0; mc.NE = dc.NE;

(b) For all bc(ffer cells of dc, set their values of N E to
dc.NE;

(c) Call MergingCell(mc, dc);

5. Else call SplittingCell(mc, dc);

Figure 4. Flushing Buffered Updates

their counters for the number of disk entries (Step 4b in
Figure 4). Then, a merging function is called to seek the
opportunity of merging this DG cell with neighbored cells
(Step 4c in Figure 4). Otherwise, if putting all remaining
updates into the repository cell causes overflowing of the
repository cell, the repository cell is split to two disk cells
(Step 5 in Figure 4).

Example. In the example given in Figure I, we assume
that an MG cell needs flushing when the number of buffered
updates in this MG cell reaches two. In Figure 1.1 (b), MG
cell 2 receives the location updates from objects 1 and 4.
Since the buffer of cell 2 is full, cell 2 flushes the two up
dates to its repository cell which is DG cell A. Follow
ing the flushing algorithm, entries in DG cell A check with

MDM to see whether there are obsolete entries. In our ex
ample, since MDM is empty, both 01 and Os are identified
as current entries. Then, the update of 01 finds the origi
nal 01 entry in DG cell A, and further updates the location
of the entry. For the update of 04, however, does not find
the original entry in DG cell A. Moreover, the update does
not find an entry in MDM for 04. So it creates an entry in
MDM for 04 to indicate that this update invalidates a former
entry of 04. Finally, this update is added into DG cell A.
The resulting DG and MDM are shown in Figure 1.2(a) and
Figure 1.2(c), respectively. Note that the former entry of 04

in DG cell D becomes obsolete after the above processing,
however, the obsolete entry (plotted with cross mark) still
remains on disk.

Assume that after some time, the MG cell 5 receives two
updates from object 6 and 7 and starts flushing to DG cell
D (Figure 1.2(b)). By comparing entries in DG cell D with
MDM, the entry for 04 is identified as obsolete because the
location of the 04 entry does not equal to the location in
MDM. Therefore, the obsolete entry is deleted out of cell
D. Note that the MDM entry for 04 should be removed
out of MDM because all obsolete entries of 04 have been
cleaned (the miss deletion number returns to zero). After
that the update of 07 replaces the original entry of 07 with
the new location. On the other hand, the update of 06 does
not find an original entry in cell D. Therefore, the update
of 06 creates an entry in MDM and adds 06 to cell D. The
final states ofDG, MG, and MDM are plotted, respectively,
in Figure l.3(a), Figure l.3(b) and Figure l.3(c).

3.3 Splitting and Merging Cells

To cope with overflowed and under-utilized grid cells,
LUGrid utilizes the splitting and merging utilities that are
inherited from the original Grid fi Ie [12]. In this section, we
discuss briefly the splitting and merging scenarios in LU
Grid.

Cell splitting. In LUGrid, splitting always happens
when an MG cellA1 is flushed to its DG repository cell D.
Let the set of object entries in A1 be S 111, and let the set of
object entries in D be SD. Further, let the union of S1I1 and
SD be SlI1+D. Let the maximum number of entries that a
DG cell can contain be N max . When splitting happens, the
number of entries in SM+D is greater than N max . Thus, D
splits to two new DG cells and re-distributes the entries in
S 111 +D to the two new DG cells. We refer to the two new
DG cells as D 1 and D 2, respectively.

There are two possibilities for splitting cell D: (1) D is
split without affecting MG; (2) Both D and MG are split.
First, the splitting process tries to split only D without af
fecting MG. In this phase, the splitting process collects the
information of D's buffer cells from MG (In addition to
A,I, there may be other MG cells that map to the same

Disk Grid I Memory Grid MDM

t ! t I space of the two DG cells forms a rectangular box.
To identify the opportunity of merging, only MG is refer-

enced and no disk information is needed, since MG contains
the necessary disk information for merging. e.g., the num-
ber of entries in the DG repository cell. A successful merg-
ing results in a new DG cell that covers the united space
coverage of the two original DG cells. After the merging,
all b~lffel- cells of the two original cells need to point to the
new DG cell as their new repository cell, and adjust their
information fields accordingly.

Example. We present the example in Figure 5 to illus-
trate the process of cell splitting and merging in LUGrid.
Figure 5.l(a) shows a DG with the five DG cells, A to E.

t I
I - Fourteen objects (ol - oI4) are stored in the DG, while an

Figure 5. Example: Cell Merging and Splitting

DG cell D). The process tries to partition the buffer cells
into two sets that satisfy the following two conditions: (A)
The united space coverage for the cells in each set forms
a rectangular box; (B) When we re-distribute the entries in
S n r + ~ to these two sets based on their space coverage. the
number of entries in each set is less than IV,,,,. In the case
that there are multiple ways to do the partitioning that sat-
isfy the above conditions, the process chooses the partitions
where the numbers of re-distributed entries have the least
difference. Then, Dl and Dz are created. each of them
serves as a repository cell for one set of the buffer cells that
has been obtained from the last step. Entries in S,qI+D are
moved to Dl and Dz accordingly.

If the buffer cells of D cannot be partitioned into two
sets based on the above conditions, D is split either hori-
zontally or vertically. The split position lies at the median
object along the split dimension. In this case, since one MG
cell may have exactly one DG repository cell, MG needs
splitting at the same split position. All MG cells that over-
laps the splitting line are split. MG splitting will result in
moving buffered updates from the original MG cells to the
split MG cells, according to the space coverage of new MG
cells.

Cell merging. Two neighbor DG cells may merge into
one DG cell given the resulting DG cell does not overflow.
LUGrid adopts the merging scheme of the 11eigl7bor sys-
re171 as used in the Grid file [12]. In the neighbor system
scheme, each DG cell can merge with either of its two ad-
jacent neighbors in each dimension given that the united

obsolete entry for 0 4 exists in DG cell A. Figure 5. I (b) gives
the corresponding MG that consists of six MG cells (cell 1
- cell 6). The MDM structure contains an entry for 04 as
shown in Figure 5. l (c). Assume that a DG cell can contain
at most four entries. and an MG cell flushes updates once it
receives two updates. Figure 5.l(b) shows three object up-
dates that are buffered in MG. Since the number of updates
in MG cell 4 reaches 2: MG cell 4 flushes updates to DG
cell C. During the flushing process, DG cell C overflows
as i t now contains five entries (03. 0.1, 05, 07, and 09) . Since
only MG cell 4 is the buffer cell of C, it is not possible to
split cell C without splitting MG. Then cell C splits to two
new DG cells (cell F and cell G), and MG is split at the
same splitting position. The states of DG, MG and MDM
after the splitting are plotted in Figure 5.2(a), 2(b) and 2(c),
respectively. During the splitting, the update for 06 that was
buffered in MG cell 5 needs to move to the new MG cell 8.
Note that the i17iss deleti011 17ic117Der of the MDM entry for
04 becomes 2 due to the two obsolete entries for 04 on disk
(in DG cell A and D. respectively).

If after the above processing, MG cell 8 receives another
update from 09 (in Figure 5.2(b)), MG cell 8 starts to flush
updates to DG cell D. After the flushing, DG cell D seeks
the opportunity to merge with neighbor DG cells. DG cell
D merges with DG cell E and produces a new DG cell H.
The final states of DG, MG and MDM are given in Fig-
ure 5.3(a), 3(b) and 3(c), respectively.

3.4 Obsolete Entry Cleaning

In this section. we discuss issues related to the number
of obsolete disk entries (due to lazy deletion) and the size of
the MDM in LUGrid. Throughout this section, let Nold be
the total number of old entries on disk, and let A[,,$ be the
total number of MDM entries. Nold and AsJ,,,t are related
to each other, and Nold is always larger than or equal to
A,Je,,,, since one MDM entry represents one or more missed
deletions for a certain object.

Recall that when flushing a memory cell, obsolete en-

Figure 5. Example: Cell Merging and Splitting

DG cell D). The process tries to partition the buffer cells
into two sets that satisfy the following two conditions: (A)
The united space coverage for the cells in each set forms
a rectangular box; (B) When we re-distribute the entries in
S III +D to these two sets based on their space coverage, the
number of entries in each set is less th~n Nrna:r. In the case
that there are multiple ways to do the partitioning that sat
isfy the above conditions, the process chooses the partitions
where the numbers of re-distributed entries have the least
difference. Then, D l and D 2 are created. each of them
serves as a repository cell for one set of the buffer cells that
has been obtained from the last step. Entries in SM+D are
moved to D l and D 2 accordingly.

If the buffer cells of D cannot be partitioned into two
sets based on the above conditions, D is split either hori
zontally or vertically. The split position lies at the median
object along the split dimension. In this case, since one MG
cell may have exactly one DG repository cell, MG needs
splitting at the same split position. All MG cells that over
laps the splitting line are split. MG splitting will result in
moving buffered updates from the original MG cells to the
split MG cells, according to the space coverage of new MG
cells.

Cell merging. Two neighbor DG cells may merge into
one DG cell given the resulting DG cell does not overflow.
LUGrid adopts the merging scheme of the neighbor sys
tem as used in the Grid file [12]. In the neighbor system
scheme, each DG cell can merge with either of its two ad
jacent neighbors in each dimension given that the united

3.4 Obsolete Entry Cleaning

In this section, we discuss issues related to the number
of obsolete disk entries (due to lazy deletion) and the size of
the MDM in LUGrid. Throughout this section, let N o1d be
the total number of old entries on disk, and let !lifent be the
total number of MDM entries. N o1d and Alent are related
to each other, and Nold is always larger than or equal to
!lifent , since one MDM entry represents one or more missed
deletions for a certain object.

Recall that when flushing a memory cell, obsolete en-

space of the two DG cells forms a rectangular box.
To identify the opportunity of merging, only MG is refer

enced and no disk information is needed, since MG contains
the necessary disk information for merging, e.g., the num
ber of entries in the DG repository cell. A successful merg
ing results in a new DG cell that covers the united space
coverage of the two original DG cells. After the merging,
all buffer cells of the two original cells need to point to the
new DG cell as their new repository cell, and adjust their
information fields accordingly.

Example. We present the example in Figure 5 to illus
trate the process of cell splitting and merging in LUGrid.
Figure 5.I(a) shows a DG with the five DG cells, A to E.
Fourteen objects (01 - 014) are stored in the DG, while an
obsolete entry for 04 exists in DG cell A. Figure 5.1 (b) gives
the corresponding MG that consists of six MG cells (cell 1
- cell 6). The MDM structure contains an entry for 04 as
shown in Figure 5.1 (c). Assume that a DG cell can contain
at most four entries. and an MG cell flushes updates once it
receives two updates. Figure 5.1 (b) shows three object up
dates that are buffered in MG. Since the number of updates
in MG cell 4 reaches 2, MG cell 4 flushes updates to DG
cell C. During the flushing process, DG cell C overflows
as it now contains five entries (03, 04, 05, 07, and 09)' Since
only MG cell 4 is the buffer cell of C, it is not possible to
split cell C without splitting MG. Then cell C splits to two
new DG cells (cell F and cell G), and MG is split at the
same splitting position. The states of DG, MG and MDM
after the splitting are plotted in Figure 5.2(a), 2(b) and 2(c),
respectively. During the splitting, the update for 06 that was
buffered in MG cell 5 needs to move to the new MG cell 8.
Note that the miss deletion number of the MDM entry for
04 becomes 2 due to the two obsolete entries for 04 on disk
(in DG cell A and D, respectively).

If after the above processing, MG cell 8 receives another
update from 09 (in Figure 5.2(b)), MG cell 8 starts to flush
updates to DG cell D. After the flushing, DG cell D seeks
the opportunity to merge with neighbor DG cells. DG cell
D merges with DG cell E and produces a new DG cell H.
The final states of DG, MG and MDM are given in Fig
ure 5.3(a), 3(b) and 3(c), respectively.

MDM

21c)

1(C)

3(c)

10,. Loc,. 1) I

I
I (0" LOc" 01
I (remoVed)
I

• 10,. Loc,. 11
I (0,. LOc,. 1)
I

3(b)

2(b)

1(b)

Memory Grid

12 13
I I
I I

~ - - - -I!" - -6 -
I I

7 - - - -'S - - "'9
I °9 0<.

11 12 3
I I
• I

~ - - - -,~ - -6" -
I I

., - - - -,~ - - "'!f -
I •

11 2 3
I I
I I

~ - - - -lg- - -6" -
°4 I I

I •
071 °.,

2(a)

3(a)

Disk Grid

.,

f4
·8 x

4
IS .,., ·,4

.J ·,3
e3 e g e4fUx

IE.
10

G 71 4 • •-5 -7 te] 6
12

Figure 6. Life Cycle Of Object

tries in the repository cell are first deleted. The removal
of obsolete entries reduces both iVOrd and Ad,,,t. Such re-
moval process is executed for each flushing cell, so that both
Nold and Me,, are kept small. In our experiments (see Sec-
tion 6), both numbers are less than I % of the total number
of objects.

Under some unusual situations, however, ATold and
may grow large. Imagine a scenario where most objects do
not update their locations except for a set of objects that tra-
verse the space simultaneously and follow the same route.
In such scenario. ATord is continuously growing and Ale,,t
never decreases. As an enhancement for robustness, LU-
Grid adopts a cleaning technique termed cleal~er to bound
the number of obsolete entries and the size of MDM.

The cleaner adopts the similar technique as in [23]. The
basic task for the cleaner is to pick a DG cell and clean all
old entries whenever LUGrid accumulates a fixed number
of updates. Such a fixed number is termed as clean inter-
val. The clean procedure follows the similar steps as we
discussed in Section 3.2 (see Step 2 in Figure 4). With the
cleaner, it is easy to prove that the maximum value of Aiold
is given by (i * P), where i is clean ilzterval, and P is the
total number of DG cells.

To maximize the number of old entries deleted from a
DG cell, the cleaner always picks the DG cell that has ex-
perienced the longest time since its latest flushing. In other
words: the oldest DG cell with respect to the latest flushing
time is selected for cleaning. Such DG cell has the potential
to contain more old entries than the other cells. To identify
the oldest DG cell quickly, the cleaner maintains page iden-
tifiers of all DG cells in a Least Recently Flushed buffer.
The flush operation causes the identifier of the flushed cell
to move to the end of the buffer. The split or merge op-
eration results in adding or deleting an identifier from the
buffer. When the cleaning process is invoked, the cleaner
picks the first page identifier in the buffer and cleans old
entries in the corresponding page.

3.5 Registering and Dropping Objects

In practice, an object registers itself into the system,
sends a series of location updates, and then drops out of
the system. The above process repeats when the object re-
registers into the system. Figure 6 depicts the life cycle of
an object. In the previous sections, we have addressed the
problem of processing updating requests in LUGrid. In this

section, we discuss how LUGrid gracefully processes regis-
tering and dropping requests.

Dropping objects. Dropping an object out of LUGrid is
equivalent to marking the current entry of the object as ob-
solete. LUGrid achieves this through the same lazy-deletion
technique as for object updates. A dropping command is
interpreted in LUGrid as if the dropping object ~~pda tes the
location to a special "non-existing" location. To maintain
the consistency of the system, the whole dropping process
consists of the following two steps: (I) Delete any former
update for the object out of MG if the update has not been
flushed to disk yet. (2) If an MDM entry for the object
exists, change the location field of the MDM entry to "non-
existing", and increment the liziss deletion llurnbet- by one.
Otherwise, a new MDM entry is created. The new MDM
entry fills the location filed as "non-existing" and sets the
miss deletion rlunlber to one. Following the above two
steps, LUGrid identifies all object entries for the dropping
object as obsolete, thus lazily delete them from disk.

Registering objects. An object needs to registers itself
into the system when the object is activated for the first
time, or when it reconnects after a previous dropping ac-
tion. Upon the arrival of a registering object, say o, LUGrid
does not contain any current entry for o. Note that LUGrid
may contain obsolete entries for o, and consequently con-
tains a corresponding MDM entry. This happens if o has
issued a dropping command previously, but not all obsolete
entries have been cleared out of LUGrid by the time o re-
registers. LUGrid treats a registering object as an ordinary
update tuple. However, the registering object neither cre-
ates a new MDM entry (if no MDM entry for the object is
found) nor increments the miss deleti011 ~iunzber of an exist-
ing MDM entry (if an MDM entry for the object is found).
If one MDM entry for the object exists, only the location
information of the MDM entry is changed to the registering
location of the object. For the registering command, a tricky
situation happens when LUGrid receives an update from an
object while the object's previous registration information
has not been consumed. To maintain the consistency of the
system, LUGrid replaces the registering object with a new
update in memory, and marks the update as a registering
object.

4 Query Processing in LUGrid

In this section, we discuss query processing in LUGrid.
In Section 4. I , we provide a process for distinguishing ob-
solete and current entries in LUGrid. In Section 4.2, we
discuss the processing steps for standing queries, and pro-
vide the algorithm for processing range queries.

Figure 6. Life Cycle Of Object

tries in the repository cell are first deleted. The removal
of obsolete entries reduces both N o1d and Alent. Such re
moval process is executed for each flushing cell, so that both
Nold and Alent are kept small. In our experiments (see Sec
tion 6), both numbers are less than I % of the total number
of objects.

Under some unusual situations, however, Nold and Alent
may grow large. Imagine a scenario where most objects do
not update their locations except for a set of objects that tra
verse the space simultaneously and follow the same route.
In such scenario, N o1d is continuously growing and Alent
never decreases. As an enhancement for robustness, LU
Grid adopts a cleaning technique termed cleaner to bound
the number of obsolete entries and the size of MDM.

The cleaner adopts the similar technique as in [23]. The
basic task for the cleaner is to pick a DG cell and clean all
old entries whenever LUGrid accumulates a fixed number
of updates. Such a fixed number is termed as clean inter
val. The clean procedure follows the similar steps as we
discussed in Section 3.2 (see Step 2 in Figure 4). With the
cleaner, it is easy to prove that the maximum value of Nold

is given by (i * P), where i is clean interval, and P is the
total number of DG cells.

To maximize the number of old entries deleted from a
DG cell, the cleaner always picks the DG cell that has ex
perienced the longest time since its latest flushing. In other
words, the oldest DG cell with respect to the latest flushing
time is selected for cleaning. Such DG cell has the potential
to contain more old entries than the other cells. To identify
the oldest DG cell quickly, the cleaner maintains page iden
tifiers of all DG cells in a Least Recently Flushed buffer.
The flush operation causes the identifier of the flushed cell
to move to the end of the buffer. The split or merge op
eration results in adding or deleting an identifier from the
buffer. When the cleaning process is invoked, the cleaner
picks the first page identifier in the buffer and cleans old
entries in the corresponding page.

3.5 Registering and Dropping Objects

In practice, an object registers itself into the system,
sends a series of location updates, and then drops out of
the system. The above process repeats when the object re
registers into the system. Figure 6 depicts the life cycle of
an object. In the previous sections, we have addressed the
problem of processing updating requests in LUGrid. In this

section, we discuss how LUGrid gracefully processes regis
tering and dropping requests.

Dropping objects. Dropping an object out of LUGrid is
equivalent to marking the current entry of the object as ob
solete. LUGrid achieves this through the same lazy-deletion
technique as for object updates. A dropping command is
interpreted in LUGrid as if the dropping object updates the
location to a special "non-existing" location. To maintain
the consistency of the system, the whole dropping process
consists of the following two steps: (I) Delete any former
update for the object out of MG if the update has not been
flushed to disk yet. (2) If an MDM entry for the object
exists, change the location field of the MDM entry to "non
existing", and increment the miss deletion number by one.
Otherwise, a new MDM entry is created. The new MDM
entry fills the location filed as "non-existing" and sets the
miss deletion number to one. Following the above two
steps, LUGrid identifies all object entries for the dropping
object as obsolete, thus lazily delete them from disk.

Registering objects. An object needs to registers itself
into the system when the object is activated for the first
time, or when it reconnects after a previous dropping ac
tion. Upon the arrival of a registering object, say 0, LUGrid
does not contain any current entry for o. Note that LUGrid
may contain obsolete entries for 0, and consequently con
tains a corresponding MDM entry. This happens if 0 has
issued a dropping command previously, but not all obsolete
entries have been cleared out of LUGrid by the time 0 re
registers. LUGrid treats a registering object as an ordinary
update tuple. However, the registering object neither cre
ates a new MDM entry (if no MDM entry for the object is
found) nor increments the miss deletion number of an exist
ing MDM entry (if an MDM entry for the object is found).
If one MDM entry for the object exists, only the location
information of the MDM entry is changed to the registering
location of the object. For the registering command, a tricky
situation happens when LUGrid receives an update from an
object while the object's previous registration information
has not been consumed. To maintain the consistency of the
system, LUGrid replaces the registering object with a new
update in memory, and marks the update as a registering
object.

4 Query Processing in LUGrid

In this section, we discuss query processing in LUGrid.
In Section 4.1, we provide a process for distinguishing ob
solete and current entries in LUGrid. In Section 4.2, we
discuss the processing steps for standing queries, and pro
vide the algorithm for processing range queries.

Function IdentifyingEnlry(Entry e)

1 . I / (e is in DG)

Procedure RangeQueryProcessing(Q~1eryArea rgn)

(a) I/ (tker-e exisrs ari MG entry 111 where rii.01D eqzmls
e.OID), return O B S O L E T E ;

(b) If ([here e.ris/s 017 MDM e n l r ~ 1i1d where 1nd.OID
eq~tols to e.OlD mid 1iid.0Loc # e.OLoc), return
O B S O L E T E ;

2. For oily ofher- cnses, ret~ini C U R R E N T ;

Figure 7. Identifying CurrentIObsolete En-
tries

4.1 Identifying Obsolete Entries

In LUGrid, current entries are mixed with obsolete ell-
tries. A challenge lies on identifying obsolete entries from
the current entries. The function given in Figure 7 provides
the pseudo code for this identification process.

First, any update entry buffered in MG cells is current.
Assuming it is not, a newer update for the same object must
exist in LUGrid. As discussed in Section 3, the arrival of
the newer update would have replaced the older one in MG,
which is a contradiction. (see Step 1 in Figure 3). The
contradiction justifies that any existing entries in MG are
current. For a disk entry, however, it takes two steps to
identify a current entry. First, if an update entry for the
same object is found in MG, then the disk entry is an ob-
solete one. The entry in MG must arrive after the one on
disk, hence it causes the disk entry to be obsolete. Sec-
ond, if an MDM entry for the updated object is found, and
the location information of the MDM entry does not equal
to the location information of the disk entry, then the disk
entry is an obsolete one. The existence of such MDM en-
try indicates that a newer update has been flushed to some
other disk cell. If after the above two steps, a disk entry has
not been identified as obsolete, the entry is a current one.
LUGrid is designed carefully so that the above identifica-
tion process is performed efficiently. Recall that entries in
MG are double-hashed on both object locations and object
identifiers, and that MDM is hashed on object identifiers.
Therefore, given a disk entry, we can directly reach the MG
entry or the MDM entry for the same object, if one exists.

4.2 Answering Queries

Query processing in LUGrid exploits both memory grid
(MG) and disk grid (DG). This is because the latest object
locations are either temporarily buffered in MG or persis-
tently stored on DG. The steps of answering a query are
generalized as follows: (1) Identify a set of MG and DG
cells that cover all objects needed in answering the query;

2. Senrch,/or MG cells whose spnce covernge over-lop ~ : i / I i r-gri.
Put pointel-s ro such MG cells into n set Set,,;

3. For each MG cell 171 referred iii Set,,,

(a) For ench updnre rr in in

i. If (u. OLoc is inside rgrl), Qz~epAiiswer + u;

4. Setpid = 8;

5. For ench MG cell iii referred in S e t ,

(a) Set,,d = Set,id U m.Did;

6. For ench diskpage d referred iri Set,,d

(a) Rend d into merilory;

(b) For- each entry e iri d

i. If ((ldentfiingEiitry(d) == CURRENT) nrld
(d.OLoc is inside rgn)), Quer~Ariswer- + d;

7 . Returri QuetyAriswer;

Figure 8. Processing Range Queries

(2) For each object entry in the selected cell set, identify
the entry as current or obsolete. Obsolete entries are not
considered further by the query. Current entries continue to
go through the query operator and produce corresponding
output.

The above steps are processed in LUGrid elegantly and
efficiently. Figure 8 gives the pseudo code for processing
a range que jy Q using LUGrid. Initially, the Q's answer is
set to empty. The algorithm starts by searching for MG cells
whose space coverage overlap with the query area (Step 2
in Figure 8). For updates buffered in these MG cells, the
algorithm checks whether they are within the query area.
Entries within the query area are added to the query an-
swer (Step 3 in Figure 8). Then, for MG cells that overlap
with the query area, Setpld represents the set of page iden-
tifiers of their repository cells (Step 4 and 5 in Figure 8).
In the case that multiple MG cells share one DG cell, the
page identifier of the DG cell is stored only once to avoid
redundant processing. Having obtained such a set of page
identifiers (Setpid), the algorithm reads every disk page in
Set,,d into memory, and identifies every entry on the page
to be cur-r-etzt or obsolete. The identifying process is exe-
cuted using the algorithm given in Figure 7. For the current
entry, if its location is inside the query area, it is included in
the query answer (Step 6 in Figure 8). Finally. the answer
set is returned. Section 6 shows that the query processing in
LUGrid is 110 efficient.

Function IdentifyingEntry(Enrry e)

1. If(eisinDG)

(a) If (there exists all MG entl)' m where m. OlD equals
e.OJD), return OBSOLETE;

(b) If (there exists an MDM entry md where md.OID
equals to e.OJD and md.OLoc i= e.OLoc), return
OBSOLETE;

2. For any other cases, return CURRENT;

Figure 7. Identifying Current/Obsolete En
tries

4.1 Identifying Obsolete Entries

In LUGrid, current entries are mixed with obsolete en
tries. A challenge lies on identifying obsolete entries from
the current entries. The function given in Figure 7 provides
the pseudo code for this identification process.

First, any update entry buffered in MG cells is current.
Assuming it is not. a newer update for the same object must
exist in LUGrid. As discussed in Section 3, the arrival of
the newer update would have replaced the older one in MG,
which is a contradiction. (see Step I in Figure 3). The
contradiction justifies that any existing entries in MG are
current. For a disk entry, however, it takes two steps to
identify a current entry. First, if an update entry for the
same object is found in MG, then the disk entry is an ob
solete one. The entry in MG must arrive after the one on
disk, hence it causes the disk entry to be obsolete. Sec
ond, if an MDM entry for the updated object is found, and
the location information of the MDM entry does not equal
to the location information of the disk entry, then the disk
entry is an obsolete one. The existence of such MDM en
try indicates that a newer update has been flushed to some
other disk cel!. If after the above two steps, a disk entry has
not been identified as obsolete, the entry is a current one.
LUGrid is designed carefully so that the above identifica
tion process is performed efficiently. Recall that entries in
MG are double-hashed on both object locations and object
identifiers, and that MDM is hashed on object identifiers.
Therefore, given a disk entry, we can directly reach the MG
entry or the MDM entry for the same object, if one exists.

4.2 Answering Queries

Query processing in LUGrid exploits both memory grid
(MG) and disk grid (DG). This is because the latest object
locations are either temporarily buffered in MG or persis
tently stored on DG. The steps of answering a query are
generalized as follows: (l) Identify a set of MG and DG
cells that cover all objects needed in answering the query;

Procedure RangeQueryProcessing(QueryArea rgn)

1. Quel")Answer = 0;

2. Search for MG cells whose space coverage ol'erlap with rgn.
Put pointers to such MG cells into a set Set m ;

3. For each MG cellm referred in Set",

(a) For each update II in m

i. If(u.OLoc is inside rgl1), QueryAnswer <-- u;

4. Setpid = 0;

5. For each MG cellm referred in Set",

(a) Setpid = Setpid U m.Did ;

6. For each disk page d referred in Setpid

(a) Read d into memory;

(b) For each entl)' e in d

i. If «(1dentifyingEnrl)'(d) == CURRENT) alld
(d.OLoc is inside rgn)), Quel)Answer <-- d;

7. Return QueryAnswer;

Figure 8. Processing Range Queries

(2) For each object entry in the selected cell set, identify
the entry as current or obsolete. Obsolete entries are not
considered further by the query. Current entries continue to
go through the query operator and produce corresponding
output.

The above steps are processed in LUGrid elegantly and
efficiently. Figure 8 gives the pseudo code for processing
a range quely Q using LUGrid. Initially, the Q's answer is
set to empty. The algorithm starts by searching for MG cells
whose space coverage overlap with the query area (Step 2
in Figure 8). For updates buffered in these MG cells, the
algorithm checks whether they are within the query area.
Entries within the query area are added to the query an
swer (Step 3 in Figure 8). Then, for MG cells that overlap
with the query area, Setpid represents the set of page iden
tifiers of their repository cells (Step 4 and 5 in Figure 8).
In the case that multiple MG cells share one DG cell, the
page identifier of the DG cell is stored only once to avoid
redundant processing. Having obtained such a set of page
identifiers (Setpid), the algorithm reads every disk page in
Setpid into memory, and identifies every entry on the page
to be current or obsolete. The identifying process is exe
cuted using the algorithm given in Figure 7. For the current
entry, if its location is inside the query area, it is included in
the query answer (Step 6 in Figure 8). Finally, the answer
set is returned. Section 6 shows that the query processing in
LUGrid is I/O efficient.

5 Cost Analysis

In this section. we theoretically analyze the costs of up-
dating operations for the proposed techniques. Two unique
techniques are utilized in LUGrid. namely, lazy-insel-tion
and log.-deletion. Since both techniques can be applied
independently or together. our analysis studies four cases:
~ i a i ~ ~ e approach, loz~l-insertion oizly, la:?-deleti011 only, and
lazy-i~~sert io~zplus lazy-deletion.

The analysis is based on a uniform distribution of mov-
ing objects in the two-dimensional space. However, since
LUGrid adapts to various data distributions, other forms of
object distributions have similar effects as uniform distri-
bution. In the analysis, we focus on the steady-state where
cell splitting and merging rarely take place. Thus, the cost
of splitting and merging is ignored in our cost analysis. As
a dominating metric, the number of 110 operations is inves-
tigated for the updating cost.

Let U represent the maximum number of updates that
can be buffered in MG, and let AT,,, represent the total num-
ber of MG cells. In a uniform distribution, MG cells have
approximately equal sizes. We define 6 as the percentage of
updates that a certain object, say P: moves from a certain
disk-based cell to another one. Since no 110 cost is involved
when buffer updates in memory. we only consider the flush-
ing phase in our analysis.

Naive approach. The naive approach utilizes none of
the proposed techniques in update processing. An update
goes to disk as soon as it arrives to the system, meanwhile
its old entry is deleted mandatorily. Assume we have n,
updates. the total 110 cost for processing these updates is
given by Equation I.

In Equation 1 , 2n, is induced by reading and writing
a disk cell for each update. (nu * 6) represents the ex-
pected number of updates that have old entries in other disk
cells. For each such update, the auxiliary index structure
is searched once to get the page p of the old entry. Then,
p is read and written once to delete the old entry. Finally,
the auxiliary index is changed and flushed back to disk to
reflect the new page of the object. Thus. four additional 110
operations are required for each single update that results in
a cell change. According to Equation 1 , the average cost for
one update under the naive approach is given by Equation 2:

Lazy-insertion only. Applying only laa-insertion
means that incoming updates are buffered and grouped in
memory cells before they are flushed to disk in batches. At
every time of flushing, old disk entries of the flushed up-
dates must be cleaned. This requires an auxiliary index on

object IDS for quickly locating old object entries. Notice
that the MDM hash table in LUGrid is not applicable in
case of lazy ir7sertion.

Assume that n.,, is the number of buffered updates in a
flushing MG cell. For lazy-insertion only, the total UO cost
for flushing an MG cell is given by Equation 3.

In Equation 3, 2 is introduced by reading and writing the
repository cell only once for all n., updates. 4(nu * 6) is the
same as that of Equation 1. The expected number of updates
in an MG cell is UIN,,,. So, according to Equation 3, the
aver-age updating cost for one object is:

From Equation 4, we conclude that a larger memory pool
for buffering updates results in a less average cost for object
updates. Specifically, with fixing other parameters while
increasing the memory buffer from U1 to U2, the average
updating cost is reduced by:

Lazy-deletion only. Applying on1 y lazy-deletion means
that an object update goes to disk immediately whenever it
arrives. If the old entry for the object resides in a different
disk page, the old entry stays on disk until it is cleaned later.
MDM hash table is used to identify old entries of objects.
In lazy-deletion only, no secondary index is required for lo-
cating objects, and no memory buffer is needed to buffer
updates.

For the case of lazy-deletion only, the overall update 110
cost consists of the following: (1) Reading the repository
DG cell to memory, (2) Writing the DG cell back to disk,
and (3) If the cleaner is invoked, reading and writing the
cleaned DG cell. Hence, if let c be the clean interval, the
expected 110 cost per update is given by:

Lazy-insertion plus lazy-deletion. Combining lazy-
inserfion with lazy-deletiorz minimizes the updating cost.
For a set of n,, updates in an MG cell, only two 110 oper-
ations and cost of periodical cleaning are required. There-
fore, the average updating cost is simply given by:

6 Performance Evaluation

In this section, we evaluate the performance of LUGrid
with various settings. LUGrid is compared with the Fre-
quently Updated R-tree (FUR-tree, for short) [9] in both

5 Cost Analysis

In Equation 1, 2nu is induced by reading and writing
a disk cell for each update. (n u * 0) represents the ex
pected number of updates that have old entries in other disk
cells. For each such update, the auxiliary index structure
is searched once to get the page p of the old entry. Then,
p is read and written once to delete the old entry. Finally,
the auxiliary index is changed and flushed back to disk to
reflect the new page of the object. Thus, four additional I/O
operations are required for each single update that results in
a cell change. According to Equation I, the average cost for
one update under the naive approach is given by Equation 2:

(3)

(7)

(4)

(6)

JO u =2+4(71,,*0)

JOLLavg = 2'jr + 40

O - 2 2 _ 2Nm 2
J Ll&LD.avg - "" + C - ---v- + c

Lazy-insertion plus lazy-deletion. Combining lazy
insertion with lazy-deletion minimizes the updating cost.
For a set of n" updates in an MG cell, only two I/O oper
ations and cost of periodical cleaning are required. There
fore, the average updating cost is simply given by:

In Equation 3, 2 is introduced by reading and writing the
repository cell only once for all nu updates. 4(n u *0) is the
same as that of Equation l. The expected number of updates
in an MG cell is V /N71l • So, according to Equation 3, the
average updating cost for one object is:

From Equation 4, we conclude that a larger memory pool
for buffering updates results in a less average cost for object
updates. Specifically, with fixing other parameters while
increasing the memory buffer from VI to V2 , the average
updating cost is reduced by:

object IDs for quickly locating old object entries. Notice
that the MDM hash table in LUGrid is not applicable in
case of lazy il1sertion.

Assume that n" is the number of buffered updates in a
flushing MG cell. For lazy-insertion only, the total I/O cost
for flushing an MG cell is given by Equation 3.

JOLLdiff = 2Nm (J, - J
2

) (5)

Lazy-deletion only. Applying only lazy-deletion means
that an object update goes to disk immediately whenever it
arrives. If the old entry for the object resides in a different
disk page, the old entry stays on disk until it is cleaned later.
MDM hash table is used to identify old entries of objects.
In lazy-deletion only, no secondary index is required for lo
cating objects, and no memory buffer is needed to buffer
updates.

For the case of lazy-deletion only, the overall update I/O
cost consists of the following: (1) Reading the repository
DG cell to memory, (2) Writing the DG cell back to disk,
and (3) If the cleaner is invoked, reading and writing the
cleaned DG cell. Hence, if let c be the clean interval, the
expected I/O cost per update is given by:

(1)

(2)JO"ai1:e.avg = 2 + 40

In this section, we theoretically analyze the costs of up
dating operations for the proposed techniques. Two unique
techniques are utilized in LUGrid, namely, lazy-insertion
and lazy-deletion. Since both techniques can be applied
independently or together, our analysis studies four cases:
naive approach, lazy-insertion only, lazy-deletion only, and
lazy-insertion plus lazy-deletion.

The analysis is based on a uniform distribution of mov
ing objects in the two-dimensional space. However, since
LUGrid adapts to various data distributions, other forms of
object distributions have similar effects as uniform distri
bution. In the analysis, we focus on the steady-state where
cell splitting and merging rarely take place. Thus, the cost
of splitting and merging is ignored in our cost analysis. As
a dominating metric, the number ofl/O operations is inves
tigated for the updating cost.

Let V represent the maximum number of updates that
can be buffered in MG, and let N", represent the total num
ber of MG cells. In a uniform distribution, MG cells have
approximately equal sizes. We define 0 as the percentage of
updates that a certain object, say P, moves from a certain
disk-based cell to another one. Since no I/O cost is involved
when buffer updates in memory, we only consider the flush
ing phase in our analysis.

Naive approach. The naive approach utilizes none of
the proposed techniques in update processing. An update
goes to disk as soon as it arrives to the system, meanwhile
its old entry is deleted mandatorily. Assume we have n u

updates, the total I/O cost for processing these updates is
given by Equation I.

Lazy-insertion only. Applying only lazy-insertion
means that incoming updates are buffered and grouped in
memory cells before they are flushed to disk in batches. At
every time of flushing, old disk entries of the flushed up
dates must be cleaned. This requires an auxiliary index on

6 Performance Evaluation

In this section, we evaluate the performance of LUGrid
with various settings. LUGrid is compared with the Fre
quently Updated R-tree (FUR-tree, for short) [9] in both

Table 1. Experiment Parameters and Values

PARAMETERS
Object distribution
Object velocity
Update ratio of objects
Disk page size
MG buffer size
MDM size

update processing and query processing. FUR-tree mod-
ifies the original R-tree by processing object updates in a
bottom-up fashion. For FUR-tree. we implement the global
bottonr-up approach as proposed in [9] and tune its parame-
ters to achieve best performance. To make our comparison
fair, we make the following two changes. (1) The first two
levels of the FUR-tree are assumed to reside in memory and
not counted for VO costs. In our experiments. the size of
the first two R-tree levels is about 8 pages, approximately
equals to the size of MG without the buffer for object up-
dates. (2) Whenever LUGrid consumes some amount of
memory, we give FUR-tree a same size buffer that is main-
tained in a Least Rece17tly Used (LRU) manner. FUR-tree
makes use of the buffer when accessing leaf pages of the
R-tree and the pages of the auxiliary index on object identi-
fiers.

In all experiments. we collect the results of LUGrid when
the system becomes stable. In this case, cell splitting or
merging rarely happens. This does not affect the quality
of the results because we are interested in the updating and
querying performance of LUGrid. as well as resource con-
sumption. To maximize the effect of lazy-insertion? the
maximum number of updates that one MG cell can buffer
is set to the number of entries that one disk page can con-
tain. In all experiments, the clean interval is set to 50.

VALUES USED
Uniform. Normal distribution

10. 50. 100. 500 miles/hour
0%. 3096, S%/cycle

2018.4096. 8 1 92 bytes
0%. I %. 2% of object number

No limitation. I Ok bytes

All the experiments are conducted on an Intel Pentium
IV machines with CPU 3.2GHz and 512MB RAM. In all
experiments, 1,000,000 objects are moving inside a space
that represents I000 * 1000 square miles. Objects are con-
tinuously moving with given velocities. We count the num-
ber of object updates in cycles, each cycle takes I 0 seconds.
In each cycle, a certain ratio of objects report their new lo-
cations by issuing updating requests. We conduct experi-
ments using various disk page sizes and various MG buffer
sizes. To test the adaptation to object distributions, exper-
iments are carried out under both uniform distribution and
normal distributions. We use Nor-r11aI(p, 0) to denote a nor-
mal distribution with mean p (miles) and variance a (miles).
Three types of distributions are used in our experiments,
namely, U1~ifon71, Nor177a1(500, 200) and Nor-tna1(500, 100).
We generate the original objects and consequent updates in
a way similar to GSTD [22]. Various parameters for our

Uniform N(500,200) N(500,lOO)

Figure 9. Number of DG cells

1400 lm 2kBlPage E Z 4kBIPage € E 4 8kBIPage1

Uniform N(500,200) N(500,lOO)

Figure 10. Number of MG cells

experiments are outlined in table 1, the default values are
given in bold. Our experiments adopt the number of disk
110s as the primary cost metric.

6.1 Resource Utilization

We analyze the disk and memory utilization of LUGrid
under various page sizes (2048,4096 and 8 192 by testpage)
and various object distributions. Figures 9 and 10 give the
number of disk cells and memory cells, respectively. used
in LUGrid. In Figure 9, with different page sizes, the same
numbers of disk pages are allocated for different distribu-
tions, which indicates that LUGrid is adaptive in terms of
object distribution. The number of MG cells in Figure 10
slightly grows with the skewness in object distribution. The
main reason is that MG is more apt to splitting when a disk
cell splits if the object distribution is skewed. However, the
maximum difference among the numbers of MG cells is less
than 15'70 in our experiments, which shows that the number
of MG cells is well balanced by data distributions.

PARAMETERS VALUES USED
Object distribution Uniform. Normal distribution
Object velocity 10, 50. 100. 500 miles/hour
Update ratio of objects Oo/c, 30%, 5%/cycle
Disk page size 2048,4096.8192 bytes
MG buffer size OO/C. 1%,2% of object number
MDM size No limitation. 10k bytes

Table 1. Experiment Parameters and Values

800

700

~ 600
()

C> 500
o
'0 400

G; 300
.Q

§ 200
z

100

o '--.l..!..l.-"'-"-"'-"-''--_..J..L.J.JJLL-'''-'''-'---_--l..Ll..J1L.<'-JX.>~

6.1 Resource Utilization

1400 'lillD 2kB/Page ['Z2I 4kB/Page~ 8kB/Page I

Figure 9. Number of DG cells

N(500,100)N(500,200)Uniform

Figure 10. Number of MG cells

We analyze the disk and memory utilization of LUGrid
under various page sizes (2048, 4096 and 8192 bytes/page)
and various object distributions. Figures 9 and 10 give the
number of disk cells and memory cells, respectively, used
in LUGrid. In Figure 9, with different page sizes, the same
numbers of disk pages are allocated for different distribu
tions, which indicates that LUGrid is adaptive in terms of
object distribution. The number of MG cells in Figure 10
slightly grows with the skewness in object distribution. The
main reason is that MG is more apt to splitting when a disk
cell splits if the object distribution is skewed. However, the
maximum difference among the numbers ofMG cells is Jess
than 15% in our experiments, which shows that the number
of MG cells is well balanced by data distributions.

1200

~ 1000..
()

C> 800
::;;
'0 600
G;
E 400

'"z 200

experiments are outlined in table 1, the default values are
given in bold. Our experiments adopt the number of disk
lias as the primary cost metric.

update processing and query processing. FUR-tree mod
ifies the original R-tree by processing object updates in a
bottom-up fashion. For FUR-tree, we implement the global
bottom-up approach as proposed in [9J and tune its parame
ters to achieve best performance. To make our comparison
fair, we make the following two changes. (I) The first two
levels of the FUR-tree are assumed to reside in memory and
not counted for va costs. In our experiments, the size of
the first two R-tree levels is about 8 pages, approximately
equals to the size of MG without the buffer for object up
dates. (2) Whenever LUGrid consumes some amount of
memory, we give FUR-tree a same size buffer that is main
tained in a Least Recently Used (LRU) manner. FUR-tree
makes use of the buffer when accessing leaf pages of the
R-tree and the pages of the auxiliary index on object identi
fiers.

In all experiments, we collect the results of LUGrid when
the system becomes stable. In this case, cell splitting or
merging rarely happens. This does not affect the quality
of the results because we are interested in the updating and
querying performance of LUGrid, as well as resource con
sumption. To maximize the effect of lazy-insertion, the
maximum number of updates that one MG cell can buffer
is set to the number of entries that one disk page can con
tain. In all experiments, the clean interval is set to 50.

All the experiments are conducted on an Intel Pentium
IV machines with CPU 3.2GHz and 512MB RAM. In all
experiments, 1,000,000 objects are moving inside a space
that represents 1000 * lOOO square miles. Objects are con
tinuously moving with given velocities. We count the num
ber of object updates in cycles, each cycle takes IO seconds.
In each cycle, a certain ratio of objects report their new lo
cations by issuing updating requests. We conduct experi
ments using various disk page sizes and various MG buffer
sizes. To test the adaptation to object distributions, exper
iments are carried out under both uniform distribution and
normal distributions. We use Normal(fl, a) to denote a nor
mal distribution with mean fl (miles) and variance a (miles).
Three types of distributions are used in our experiments,
namely, Uniform, Normal(500, 200) and Nonnal(500, JOO).
We generate the original objects and consequent updates in
a way similar to GSTD [22]. Various parameters for our

50 r I + ~ ~ ~ - t r e e U LUGrid (0%) 1

Update Ratio of 0bj.lCycle

-C IOMIleslHour U 50MileslHour
Jt IOOMileslHour Jlt 500MileslHour

0.008
0

Figure 11. Size of the Miss-Deletion Memo Figure 12. Update cost vs. No. of updates

-

Figure 1 I gives the size of the Miss-Deletion Meino
with various object velocities (i.e., 10, 50, 100, and 500
miles/hour). For each studied velocity, we increase the ra-
tio of objects that report updates in one cycle from 5% to
30%. In Figure 11, the size of MDM is expressed as the ra-
tio between the number of MDM entries to the total number
of objects. In all cases: the number of MDM entries is less
than 0.7% of the total number of objects. When the object
velocity increases, the size of MDM gets larger. The main
reason is that when objects move with a higher velocity,
more objects will move out of their original cells. Conse-
quently, more MDM entries are needed to hold information
of these cell-changing objects. However, the update ratio of
objects does not affect the size of MDM. The reason is that
the number of MDM entries is not determined by the total
number of updates. Instead, the number of MDM entries is
determined by the number of cell-changing objects in each
flushing period. The old entries in a cell are deleted when
the cell is flushed again. The deletion of old entries reduces
the size of MDM. This experiment demonstrates that the
size of Miss-Deletion Memo is extremely small and hence
can easily fit in main memory.

p 0.007 .-
5 0.006
I .,- o 0.005
3t

0.004
- 1 0.003 c
W

o.oo2i 2 5 0.001

6.2 Updating Performance

- <-.*-.*-.*-.*-.-*
-

-

-
<-x-x-x-x-X
- -A - -A - -A - -A - -A

-

In this section, we study the update performance of LU-
Grid and compare it with FUR-tree. For LUGrid, we use
different sizes of MG buffers. Specifically, the MG buffer is
set as 0% (i.e., no buffer slots), I % (i.e., 1000 slots) and
2% (i.e., 2000 slots) of the indexed objects. A 0% size
buffer represents a lazy-deletion oizly scenario, as discussed
in Section 5. Figure 12 plots the number of 110s when the
ratio of objects that report updates increases from 0 to 10%
per cycle. As can be seen from the figure. for different up-
date ratios. LUGrid outperforms the FUR-tree consistently.
The update costs for LUGrid range from 20% to 50% of that

: 0.000 1-=-=-=-=-=
5% 10% 15% 20% 25% 30%

Update Ratio of 0bj.lCycle

Uniform N(500, 200) N(500,lOO)

Figure 13. Update cost vs. obj. distribution

for the FUR-tree. The efficiency in updates in LUGrid with
070 size buffer comes solely from the lazy-deletion tech-
nique. When the MG buffer becomes larger, the update cost
becomes lower because more updates are flushed to disk at
one time by lazy-insertion.

Figure 13 compares the update costs under various ob-
ject distributions. LUGrid exhibits almost stable update
performance independent of object distributions. This is
because the update cost of LUGrid is determined primar-
ily by the flushing frequency, while the form of object
distribution does not dramatically affect the flushing fre-
quency. However, the FUR-tree incurs larger update cost
when object distribution is skewed. The main reason is that
when more objects are clustered together, the R-tree con-
tains more nodes with small Miizimal Bouizdirzg Recrnngles
(MBRs). Therefore, an object is more likely to move out
of its MBR quickly and invalidates the bottom-up updating
technique.

Figure 14 demonstrates the effect of the object velocity,
where objects are moving with various velocities (10, 50,

___ 10Mlles/Hour -/';,- 50Miles/Hour
~ 100Miles/Hour ""*"" 500Miles/Hour

. --*. --*_. --*_. --*-.--*

50

g 40
o
~

t..

___ FUR-tree -/';,- LUGrid (0%)

~ LUGrid(1%) ""*"" LUGrid(2%)

/:
..,.£:,. - X

..,.£:,.- X-- X--~-:;....- *- .-*
::. -*- .-*-'

O~~~~~------=-=-,-----------:c::-:--.,..,..,.,.-o 2% 4% 6% 8% 10%

~ 30
>-

!:1
Q20..
OJ
"[10
::J

Update Ratio of Obj.lCycle

:a- 0.008
o
g> 0.007
'>
~ 0.006

a 0.005
'It

-;;; 0.004

:E 0.003 _X--X--X--X-X
c
~ 0.002 - -6 - -6 - -6 - -6 - -6
o
::0 0.001

~ 0.000 -- -- -- -- --
5% 10% 15% 20% 25% 30%

Update Ratio of Obj.lCycle

Figure 11. Size of the Miss-Deletion Memo Figure 12. Update cost vs. No. of updates

Figure 13. Update cost vs. obj. distribution

for the FUR-tree. The efficiency in updates in LUGrid with
0% size buffer comes solely from the lazy-deletion tech
nique. When the MG buffer becomes larger, the update cost
becomes lower because more updates are flushed to disk at
one time by lazy-insertion.

Figure 13 compares the update costs under various ob
ject distributions. LUGrid exhibits almost stable update
performance independent of object distributions. This is
because the update cost of LUGrid is determined primar
ily by the flushing frequency, while the form of object
distribution does not dramatically affect the flushing fre
quency. However, the FUR-tree incurs larger update cost
when object distribution is skewed. The main reason is that
when more objects are clustered together, the R-tree con
tains more nodes with small Minimal Bounding Rectangles
(MBRs). Therefore, an object is more likely to move out
of its MBR quickly and invalidates the bottom-up updating
technique.

Figure 14 demonstrates the effect of the object velocity,
where objects are moving with various velocities (10, 50,

ITIIJ FUR·tree [72] LUGrid(O%)
B:Z.ZI LUGrid(1%) ~ LUGrid(2%)

N(500, 100)N(500, 200)Uniform

35

30
S
C>

[. 25

.!! 20
u
>-
~ 15
o
-; 10
OJ
"[5
::J

In this section, we study the update performance of LU
Grid and compare it with FUR-tree. For LUGrid, we use
different sizes of MG buffers. Specifically, the MG buffer is
set as 0% (i.e., no buffer slots), I % (i.e., 1000 slots) and
2% (i.e., 2000 slots) of the indexed objects. A 0% size
buffer represents a lazy-deletion only scenario, as discussed
in Section 5. Figure 12 plots the number of I/Os when the
ratio of objects that report updates increases from 0 to 10%
per cycle. As can be seen from the figure, for different up
date ratios, LUGrid outperforms the FUR-tree consistently.
The update costs for LUGrid range from 20% to 50% of that

6.2 Updating Performance

Figure II gives the size of the Miss-Deletion Memo
with various object velocities (i.e., 10, 50, 100, and 500
miles/hour). For each studied velocity, we increase the ra
tio of objects that report updates in one cycle from 5% to
30%. In Figure II, the size of MDM is expressed as the ra
tio between the number ofMDM entries to the total number
of objects. In all cases, the number of MDM entries is less
than 0.7% of the total number of objects. When the object
velocity increases, the size of MDM gets larger. The main
reason is that when objects move with a higher velocity,
more objects will move out of their original cells. Conse
quently, more MDM entries are needed to hold information
of these cell-changing objects. However, the update ratio of
objects does not affect the size of MDM. The reason is that
the number of MDM entries is not determined by the total
number of updates. Instead, the number of MDM entries is
determined by the number of cell-changing objects in each
flushing period. The old entries in a cell are deleted when
the cell is flushed again. The deletion of old entries reduces
the size of MDM. This experiment demonstrates that the
size of Miss-Deletion Memo is extremely small and hence
can easily fit in main memory.

4% 6% 8% 10%
Query Size (%of Data Space)

Figure 14. Updating cost vs. obj. velocity Figure 16. Query cost vs. query size

is similar to FUR-tree in processing range queries. Both
FUR-tree and LUGrid are slightly affected by object dis-
tribution. Figure 16 gives the effect when different sizes
of queries are issued. We increase the query size from 210
to 10% in terms of the percentage of the whole space. Both
FUR-tree and LUGrid have almost linear increase on query-
ing costs. In all cases: the performance of LUGrid is similar
to the performance of FUR-tree.

Uniform N(500, 200) N(500,lOO)
7 Conclusion

Figure 15. Query cost vs. obj. distribution

I00 and 500 mileshour). As shown in Figure 14, when ob-
ject velocity increases, the FUR-tree incurs a growing UO
overhead due to updates. This is because with a larger ve-
locity, an object moves out of the MBR of its original node
more frequently, and voids the endeavor of the bottom-up
update. In contrast, for LUGrid, the I/0 from updates is not
affected by object velocities. This is because LUGrid does
not delete old entries when updating, so objects moving out
of their original cells do not affect the performance.

In this paper, we proposed LUGrid; an adaptive Lazy-
Update Grid-based indexing structure. LUGrid efficiently
handles object updates by its unique la~l -update features,
namely, lac?:-insertion and lazy-deletion. Lazy-deletion
converts the update cost from traditional "insertion cost plus
deletion cost" to "insertion cost only". The lazy-deletion
functionality is provided by maintaining a memo structure
to identify obsolete entries. Further, lazy-insertion groups
updates and flushes multiple updates at one time, so that the
cost for single update is amortized. We believe that the pro-
posed lazy-update techniques in LUGrid can be applied to
other index families.

References
6.3 Querying Performance

In this section, we study the querying performance of
LUGrid. We focus on the processing of range queries as i t
is one of the most important types of spatial queries. In our
experiments, range queries are specified as squares and uni-
formly distributed in space. Figure 15 compares the query-
ing costs with respect to object distributions. In this exper-
iment, each query covers I % of the whole space. The ex-
periment shows that under all object distributions, LUGrid

[I] P. K. Agarwal, L. Arge, and J. Erickson. Indexing Moving
Points. In PODS, pages 175-1 86, May 2000.

(21 V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing Large
Trajectory Data Sets with SETI. I n Proc. o f rhe Cot$ or1
Itit~ovnri~le Dnto Systems Research, CIDR, 2003.

[3] H. D. Chon, D. Agrawal. and A. E. Abbadi. Storage and
Retrieval of Moving Objects. In Mobile Dotn Morzngeinent,
pages 173-1 84, Jan. 2001.

10

10%4% 6% 8%
Query Size (% of Data Space)

0----------------
2%

Q 40
~..
5 30
.;,
~ 20

60

50

IITTII FUR-tree ['2ZJ LUGrid(O%) I

Lrss:8J LUGrid(1%) E§ LUGridl~

7 7-

:/

~ I ~
:/

~:/

10Miles/H 50Miles/H 100Miles/H 500Miles/H
o

30

0" 25
o
o
[.20..
U
~ 15
en
g 10

.!..
"[5
:::>

Figure 14. Updating cost vs. obj. velocity Figure 16. Query cost vs. query size

7 Conclusion

is similar to FUR-tree in processing range queries. Both
FUR-tree and LUGrid are slightly affected by object dis
tribution. Figure 16 gives the effect when different sizes
of queries are issued. We increase the query size from 2%
to 10% in terms of the percentage of the whole space. Both
FUR-tree and LUGrid have almost linear increase on query
ing costs. In all cases, the performance of LUGrid is similar
to the performance of FUR-tree.

N(500, 100)N(500, 200)Uniform

Q 8

~
~ 6
a
g. 4

<C

OL--L.Lli:LL --l..l.lJLLL- LJ...l.I:LL__

10

2

12

Figure 15. Query cost VS. obj. distribution

100 and 500 miles/hour). As shown in Figure 14, when ob
ject velocity increases, the FUR-tree incurs a growing va
overhead due to updates. This is because with a larger ve
locity, an object moves out of the MBR of its original node
more frequently, and voids the endeavor of the bottom-up
update. In contrast, for LUGrid, the va from updates is not
affected by object velocities. This is because LUGrid does
not delete old entries when updating, so objects moving out
of their original cells do not affect the performance.

In this paper, we prop?sed LUGrid; an adaptive Lazy
Update Grid-based indexing structure. LUGrid efficiently
handles object updates by its unique lazy-update features,
namely, lazy-insertion and lazy-deletion. Lazy-deletion
converts the update cost from traditional "insertion cost plus
deletion cost" to "insertion cost only". The lazy-deletion
functionality is provided by maintaining a memo structure
to identify obsolete entries. Further, lazy-insertion groups
updates and flushes multiple updates at one time, so that the
cost for single update is amortized. We believe that the pro
posed lazy-update techniques in LUGrid can be applied to
other index families.

6.3 Querying Performance
References

In this section, we study the querying performance of
LUGrid. We focus on the processing of range queries as it
is one of the most important types of spatial queries. In our
experiments, range queries are specified as squares and uni
formly distributed in space. Figure 15 compares the query
ing costs with respect to object distributions. In this exper
iment, each query covers I % of the whole space. The ex
periment shows that under all object distributions, LUGrid

[I] P. K. Agarwal, L. Arge, and J. Erickson. Indexing Moving
Points. In PODS, pages 175-186, May 2000.

[2] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing Large
Trajectory Data Sets with SET!. In Proc. of the Conf on
Innovative Data Systems Research, CIDR,2003.

[3] H. D. Chon, D. Agrawal. and A. E. Abbadi. Siorage and
Retrieval of Moving Objects. In Mobile Data Management,
pages 173-184, Jan. 2001.

[4] B. Gedik and L. Liu. MobiEyes: Distributed Processing of [22] Y. Theodoridis, J. R. Silva, and M. A. Nascimento. On the
Continuously Moving Queries on Moving Objects in a Mo- Generation of Spatiotemporal Datasets. In SSD, 1999.
bile System. In EDBT, 2004. [23] X. Xiong and W. G. Aref. R-trees with Updated Memos. In

[5] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial ICDE, 2006.
Searching. In SICMOD, 1984. [24] X. Xiong. M. F. Mokbel, and W. G. Aref. SEA-CNN: Scal-

[6] C. S. Jensen, D. Lin, and B. C. Ooi. Query and Updale Effi- able Processing of Continuous K-Nearest Neighbor Queries
cient B+-Tree Based Indexing of Moving Objects. In VLDB. in Spatio-temporal Databases. In ICDE, 2005.
2004.

[7] G. KolIios, D. Gunopulos, and V. J. Tsotras. On Indexing
Mobile Objects. In PODS, 1999.

[8] D. Kwon, S. Lee, and S. Lee. Indexing the Current Positions
of Moving Objects Using the Lazy Update R-tree. In Mobile
Dnrn Mniingemenr, MDM, 2002.

[9] M.-L. Lee, W. Hsu, C. S. Jensen, and K. L. Teo. Supporting
Frequent Updates in R-Trees: A Bottom-Up Approach. In
VLDB, 2003.

[lo] M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-
temporal Access Methods. lEEE Dnrn Engirieering B~rlletiri,
26(2), 2003.

[I I] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable
Incremental Processing of Continuous Queries in Spatio-
temporal Databases. In SIGMOD, 2004.

[I21 J . Nievergelt, H. Hinterberger, and K. C. Sevcik. The Grid
File: An Adaptable, Symmetric Multikey File Structure.
TODS, 9(1), 1984.

(131 J. M. Patel, Y. Chen, and V. P. Chakka. STRIPES: An Ef-
ficient lndex for Predicted Trajectories. In SICMOD. pages
637-646,2004.

[I41 K. Porkaew, 1. Lazaridis, and S. Mehrotra. Querying Mobile
Objects in Spatio-Temporal Databases. 6 SSTD, pages 59-
78, Redondo Beach, CA, July 2001.

[15] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and
S. E. Hambrusch. Query Indexing and Velocity Constrained
Indexing: Scalable Techniques for Continuous Queries
on Moving Objects. lEEE Trnrisnc~ions on Cori7puters:
51(10):1 124-1 140, 2002.

[161 S. Saltenis and C. S. Jensen. Indexing of Moving Objects for
Location-Based Services. In ICDE, 2002.

[I71 S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez.
Indexing the Positions of Continuously Moving Objects. In
SIGMOD, 2000.

[I81 Z. Song and N. RoussopouIos. Hashing Moving Objects. In
Mobile Data Manngeiiiei~t, 2001.

[I91 Z. Song and N. Roussopoulos. SEB-tree: An Approach to
lndex Continuously Moving Objects. In Mobile Dntn Man-
ngeii7ent, MDM, pages 340-344, Jan. 2003.

[20] Y. Tao, D. Papadias, and J. Sun. The TPR"-Tree: An
Optimized Spatio-temporal Access Method for Predictive
Queries. In VLDB, 2003.

[21] J. Tayeb, 0. Ulusoy, and 0. Wolfson. A Quadtree-Based Dy-
namic Attribute Indexing Method. The Coiiiputer Jolrriinl,
41(3), 1998.

[4] B. Gedik and L. Liu. MobiEyes: Distributed Processing of
Continuously Moving Queries on Moving Objects in a Mo
bile System. In EDBT, 2004.

[5] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. In SIGMOD, 1984.

[6] C. S. Jensen, D. Lin, and B. C. Ooi. Query and Update Effi
cient B+-Tree Based Indexing of Moving Objects. In VLDB.
2004.

[7] G. Kollios, D. Gunopulos, and V. J. Tsotras. On Indexing
Mobile Objects. In PODS. 1999.

[8] D. Kwon, S. Lee. and S. Lee. Indexing the Current Positions
of Moving Objects Using the Lazy Update R-tree. In Mobile
Data Management, MDM,2002.

[9] M.-L. Lee, W. Hsu, C. S. Jensen, and K. L. Teo. Supporting
Frequent Updates in R-Trees: A Bottom-Up Approach. In
VLDB.2003.

[10] M. F. Mokbel. T M. Ghanem. and W. G. Aref. Spatio
temporal Access Methods. IEEE Data Engineering Bulletin,
26(2). 2003.

[II] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable
Incremental Processing of Continuous Queries in Spatio
temporal Databases. In SIGMOD. 2004.

[12] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The Grid
File: An Adaptable, Symmetric Multikey File Structure.
TODS, 9(1),1984.

[13] J. M. Patel, Y. Chen, and V. P. Chakka. STRIPES: An Ef
ficient Index for Predicted Trajectories. In SIGMOD. pages
637-646,2004.

[14] K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying Mobile
Objects in Spatio-Temporal Databases. In SSTD. pages 59
78. Redondo Beach, CA. July 2001.

[15] S. Prabhakar. Y. Xia, D. V. Kalashnikov, W. G. Aref, and
S. E. Hambrusch. Query Indexing and Velocity Constrained
Indexing: Scalable Techniques for Continuous Queries
on Moving Objects. IEEE Transactions on Computers.
51(10):1124-1140.2002.

[16] S. Saltenis and C. S. Jensen. Indexing of Moving Objects for
Location-Based Services. In ICDE, 2002.

[17] S. Saltenis, C. S. Jensen, S. T Leutenegger, and M. A. Lopez.
Indexing the Positions of Continuously Moving Objects. In
SIGMOD,2000.

[18] Z. Song and N. RoussopouIos. Hashing Moving Objects. In
Mobile Data Manage111elll, 2001.

[19] Z. Song and N. Roussopoulos. SEB-tree: An Approach to
Index Continuously Moving Objects. In Mobile Data Man
ageme11l, MDM, pages 340-344, Jan. 2003.

[20] Y. Tao, D. Papadias, and J. Sun. The TPR"-Tree: An
Optimized Spatio-temporal Access Method for Predictive
Queries. In VLDB, 2003.

[21] 1. Tayeb, b. Ulusoy, and O. Wolfson. A Quadtree-Based Dy
namic Attribute Indexing Method. The Computer Journal.
41(3),1998.

[22] Y. Theodoridis. J. R. Silva, and M. A. Nascimento. On the
Generation of Spatiotemporal Datasets. In SSD, 1999.

[23] X. Xiong and W. G. Aref. R-trees with Updated Memos. In
ICDE,2006.

[24] X. Xiong, M. F. Mokbel, and W. G. Aref. SEA-CNN: Scal
able Processing of Continuous K-Nearest Neighbor Queries
in Spatio-temporal Databases. In ICDE, 2005.

	LUGrid: Update-tolerant Grid-based Indexing for Moving Objects
	Report Number:
	

	tmp.1307986960.pdf.lTeUU

