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Abstract 

Locrrtiorl-based ser~,ices, sucll nsj i~idi~lg the rlearest gas 
stntio~l, reqlrir-e lrsers to s11/7/7/!. theil- 1ocntio11 i~forrnntiorl. 
However; n u.rerJs locntio~~ cnn be rrncked without her corz- 
se17r or kno~~lerlge. Lower-ir7g the spntial nr~d te1np01-a1 reso- 
lutio~i of locntio11 &to se~lt to rile sen,rr has beer! proposed 
ns n solutior~. Although rhis techr7iqrre is rffective ir7 protect- 
b ~ g  privncl; it Inn! be over-kill n11d the qlrnlit?. of desired ser- 
vices car1 be severel! affected. 111 this paper: we i17vestignre 
rhe relntio17sl~ip benvee17 ur7certni17t\: PI-icocj; and q~lnlit). 
of services. We propose lrsirig irl7pr-ecise queries to hide the 
locntior? of the quell\ issuer~r7d evnlrrnre u17cer-tail? ii7forrnn- 
tiori. We also suggest cr frnrne~vork where ur7cer-tnirity car? be 
coritrolled ro pro~ide I7igI.1 q~rcrlit). arid privncy-p1-eservir7g 
seniices. We study how the iclea car7 be applied to n rnov- 
irig rarlge qrrer? over rnovi~ig objects. WrfMr-ther- ir?vestignre 
how the Ii17kabili~ of tl7epr-oposed soh.rtior7 cml be protected 
against trjector?-trncir7g. 

1 Introduction 

Positioning technologies such as GPS. GSM? RF-ID and 
WiFi(802.11) have undergone rapid developments in recent 
years [ I  9: 21, 71. These new technologies allow locations 
of users to be determined accurately, and enable a new class 
of applications known as Location-Based Services (LBS). 
An important LBS is the E-91 1 application mandated by 
the U.S. (correspondingly E- I I2 in Europe), which requires 
cell phone companies to provide an accurate (within a few 
hundred feet) location of a cell phone user that calls for 
emergency help [7]. Another example is the use of RF-ID 
tags on items such as razors in la]-ge departmental stores for 
inventory management [2 1 1. 

Although LBS applications hold the promise of safety, 
convenience: and new business opportunities, the ability to 
locate users and items accurately also raises a new concern - 

intrusion of locntio~l privacy. According to [2]: location pri- 
vacy is defined as "the ability to prevent other parties from 
learning one's current or past location". Using locationing 
technologies. a service provider can track the whereabouts 
of a user and discover her personal habits. These pieces of 
sensitive information can be sold to unknown third parties. 
It is often feared that government agencies can monitor the 
behavior of individuals, the places they have visited. etc. 
Preventing location privacy from being invaded is thus of 
~ ~ t m o s t  importance. 

Recently several solutions for location privacy protection 
have been proposed. Some researchers suggest the use of 
"policies", in which the service provider is required to state 
explicitly how ~ ~ s e r ' s  location information can be used [20: 
10: 91. In another proposal, a user "cloaks" her information 
before sending it to the LBS: by providing her location at a 
lower resolution in terms of time and space [7, 21. In other 
words. rather than giving a precise location and time instant, 
a larger region covered in a time frame is reported. This 
solution: also known as locntiorl cloakirzg, provides the user 
with more flexibility in controlling her information. We will 
study it extensively in this paper. 

By reducing the granularity of spatial and temporal in- 
formation, location cloaking allows a user's privacy to be be 
better protected. Unfortunately, this scheme can also reduce 
the quality of service provided by the LBS. This is simply 
because the LBS does not have the most accurate informa- 
tion to provide the best service. Consider a remote cab ser- 
vice that allows a subscriber to call for a cab nearby. If the 
subscriber reports her precise location, the service provider 
can find her the closest cab, and can tell the cab driver how 
to reach the customer. However, if only a vague location 
is given, it may take more time for a cab to reach the cus- 
tomer. Indeed, for such a scheme, there is a tradeoff among: 
( I )  How uncertain the location information sent by a user to 
the LBS is. (2) the location privacy of the user, and (3) the 
service quality. In this paper, we propose a framework de- 
signed for moving-object environments. The model takes 
into account these three factors, allowing LIS to have a better 
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Abstract

Location-based sen'ices. such as finding the nearest gas
station, require users to supply their location information.
However, a user's location can be tracked without her COll­
senr or knowledge. Lowering the spatial and temporal reso­
lution of location data sent to the sen'eJ" has been proposed
as a solution. Although This technique is effective in protect­
ing privacy, it may be overkill and the quality ofdesired ser­
vices can be sel'erely affected. /n this papel; we investigate
The relationship between uncertaillf}; pril'acy, and quality
oj services. We propose using imprecise queries to hide the
location ojthe que I:" issuer and el'aluate uncertain il7fonna­
tion. We also suggest ajramework where uncertainty can be
contlVlled to provide high quality and privacy-preserving
senJices. We study how the idea can be applied to a mov­
ing range quel}" over moving objects. We jurther investigate
how the linkabilit)' ofthe proposed solution can be protected
against trajectol}'-tracing.

1 Introduction

Positioning technologies such as GPS. GSM, RF-ID and
WiFi(802. 1J) have undergone rapid developments in recent
years [19, 21, 7]. These new technologies allow locations
of users to be determined accurately, and enable a new class
of applications known as Location-Based Services (LBS).
An important LBS is the E-91l application mandated by
the U.S. (correspondingly E-I 12 in Europe), which requires
cell phone companies to provide an accurate (within a few
hundred feet) location of a cell phone user that calls for
emergency help [7]. Another example is the use of RF-ID
tags on items such as razors in large departmental stores for
inventory management [2 1].

Although LBS applications hold the promise of safety,
convenience, and new business opportunities, the ability to
locate users and items accurately also raises a new concern-
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intrusion of location privacy. According to [2], location pri­
vacy is defined as "the ability to prevent other parties from
learning one's current or past location". Using locationing
technologies. a service provider can track the whereabouts
of a user and discover her personal habits. These pieces of
sensitive information can be sold to unknown third parties.
It is often feared that government agencies can monitor the
behavior of individuals, the places they have visited. etc.
Preventing location privacy from being invaded is thus of
utmost importance.

Recently several solutions for location privacy protection
have been proposed. Some researchers suggest the use of
"policies", in which the service provider is required to state
explicitly how user'S location information can be used [20.
10, 9]. In another proposal, a user "cloaks" her information
before sending it to the LBS, by providing her location at a
lower resolution in terms of time and space [7, 2]. In other
words, rather than giving a precise location and time instant,
a larger region covered in a time frame is reported. This
solution. also known as location cloaking, provides the user
with more flexibility in controlling her information. We will
study it extensively in this paper.

By reducing the granularity of spatial and temporal in­
formation. location cloaking allows a user's privacy to be be
better protected. Unfortunately, this scheme can also reduce
the quality of service provided by the LBS. This is simply
because the LBS does not have the most accurate informa­
tion to provide the best service. Consider a remote cab ser­
vice that allows a subscriber to call for a cab nearby. If the
subscriber reports her precise location, the service provider
can find her the closest cab, and can tell the cab driver how
to reach the customer. However, if only a vague location
is given. it may take more time for a cab to reach the cus­
tomer. Indeed. for such a scheme, there is a tradeoff among:
(I) How uncertain the location information sent by a user to
the LBS is. (2) the location privacy of the user, and (3) the
service quality. In this paper, we propose a framework de­
signed for moving-object environments. The model takes
into account these three factors, allowing us to have a better



understanding of their interaction. We also present a formal 
model for cloaked locations. and provide metrics for quail- 
tifying privacy of location cloaking. 

We then investigate the role of the location-cloaking 
framework for non-anonymous application: where the 
owner of the location is reported to the service provider, 
in addition to the location data itself. We choose this type 
of applications because existing techniques usually focus 
on anonymity or pseudonymity of the users' identities. and 
it is not clear how they can be applied to noii-anonymous 
solutions. Moreover, non-anonymous location-based appli- 
cations post extra difficulties in privacy protection due to 
the fact that the owner of the location is also known to the 
service provider. 

A lion-anonymous query studied extensively in this pa- 
per is the 1novi11g r-o,rge q~lery (MRQ), where a user is no- 
tified any object of interest within a fixed distance froiii 
her cun-ent location. This query is well studied in spatial- 
temporal database literature (e.g.:[14. 151). Here we study 
an "imprecise" version of moving range query, namely 
IMRQ. Essentially, an IMRQ processes cloaked locations 
instead of precise locations. Moreover, since the location 
of the query issuer is also inexact, the query itself also car- 
ries uncertain infol.lnation. Due to the uncertainty of the 
query and data, the query result is "in~precise", and proba- 
bilistic guarantees are augmented to the answers. For exan-  
ple, an answer for IMRQ: { ( S I :  0.4): (Sz :  0.8)) means that 
users S1 and S2 have probabilities of 0.4 and 0.8 respec- 
tively of satisfying the query. We develop query processing 
algorithms for computing probabilistic answers for IMRQ, 
based on spatial database techniques. 

We also study the quality metric of IMRQ, in order to 
quantify the ambiguity due to the inexactness of cloaked lo- 
cation data. We define two different metrics, one based on 
uncertainty in the database, and the other based on the am- 
biguity of the query. These scoring metrics can be used to 
quantify the quality of a service, allowing the user to decide 
whether she should adjust the granularity of her cloaked lo- 
cation information in order to attain a better service. Exten- 
sive simulations are performed to study how these quality 
metrics fare in a moving-object environment. 

Finally, we address the issues of inference attacks, where 
future locations can be inferred based 011 tracing movement 
in the past. We study modifications to our approach in order 
to prevent the linkability between a user's identity and loca- 
tions from being increased. thereby reducing the impact of 
this lund of threats. 

To summarize, our major contributions are: 

A framework that relates location cloaking, privacy 
and quality of service; 

A formal model of cloaking and privacy nietrics: 

An evaluation algorithm for IMRQ that manipulates 
cloaked data: 

Quality metrics for IMRQ based on data and query im- 
precision; 

Experimental results for the proposed scheme: and 

Inference attacks and protection for the scheme. 

The rest of this paper is organized as follows. We pro- 
pose a framework to capture data uncertainty, privacy and 
quality of service in Section 2. In Section 3, we formally 
present the definitions of non-anonymous applications: lo- 
cation privacy, cloaking and service quality. Section 4 
presents a querying algorithm, and Section 5 describes ser- 
vice quality metrics for moving-range queries. Experimen- 
tal results are presented in Section 6. Section 7 investigates 
the problems of location inference and their corresponding 
solutions. Related works are presented in Section 8. We 
conclude the paper in Section 9. 

2 A Framework for Balancing Privacy and 
Service Quality 

Let us now describe a system model that connects pri- 
vacy, cloaked information and service quality. It forms the 
basis for subsequent discussions. 

Figure 1 illustrates this framework. Its main idea is to al- 
low the user to specify her location, service request and pri- 
vacy requirements to the cloaking agent, which then pro- 
duces the cloaked location and an "imprecise" service re- 
quest. On receiving these pieces of information, the service 
provider processes the request and sends back the service 
and feedback to the user. 

Inside the cloaking agent, the policy translator pro- 
duces a cloaked location (i.e., a larger region) based on the 
(precise) location of the user as well as her privacy require- 
ments? which can be specified using some high-level lan- 
guages such as EPAL [I]  and P3P [6]. For instance, if the 
user's requirement is "generate a cloaked location that cov- 
ers five buildings when I am in Area X" ,  the policy trans- 
lator produces the corresponding cloaked location when it 
detects the user is in Area X. The cloaked location pro- 
duced is then directed to the service translator. 

Based on the cloaked location and the service request, 
the service translator produces an "imprecise" service re- 
quest. For example, the MRQ is a service request from 
the user, and the service translator transforms the MRQ to 
IMRQ, an imprecise service request that processes cloaked 
location data. Both the cloaked location and the imprecise 
service request are then shipped to the imprecise service 
processor, which stores the cloaked location in a spatial- 
temporal database and processes the service request. Since 

understanding of their interaction. We also present a formal
model for cloaked locations, and provide metrics for quan­
tifying privacy of location cloaking.

We then investigate the role of the location-cloaking
framework for non-anonymous application, where the
owner of the location is reported to the service provider.
in addition to the location data itself. We choose this type
of applications because existing techniques usually focus
on anonymity or pseudonymity of the users' identities, and
it is not clear how they can be applied to non-anonymous
solutions. Moreover, non-anonymous location-based appli­
cations post extra difficulties in privacy protection due to
the fact that the owner of the location is also known to the
service provider.

A non-anonymous query studied extensively in this pa­
per is the moving range quely (MRQ), where a user is no­
tified any object of interest within a fixed distance from
her cun'ent location. This query is well studied in spatial­
temporal database literature (e.g.,r 14, 15]). Here we study
an "imprecise" version of moving range query, namely
IMRQ. Essentially, an IMRQ processes cloaked locations
instead of precise locations. Moreover, since the location
of the query issuer is also inexact, the query itself also car­
ries uncertain information. Due to the uncertainty of the
query and data, the query result is "imprecise", and proba­
bilistic guarantees are augmented to the answers. For exam­
ple, an answer for IMRQ: {(51' 0.4), (52 ,O.8)} means that
users 51 and 52 have probabilities of 0.4 and 0.8 respec­
tively of satisfying the query. We develop query processing
algorithms for computing probabilistic answers for IMRQ,
based on spatial database techniques.

We also study the quality metric of IMRQ, in order to
quantify the ambiguity due to the inexactness of cloaked lo­
cation data. We define two different metrics, one based on
uncertainty in the database, and the other based on the am­
biguity of the query. These scoring metrics can be used to
quantify the quality of a service, allowing the user to decide
whether she should adjust the granularity of her cloaked lo­
cation information in order to attain a better service. Exten­
sive simulations are performed to study how these quality
metrics fare in a moving-object environment

Finally, we address the issues of inference attacks, where
future locations can be inferred based on tracing movement
in the past. We study modifications to our approach in order
to prevent the linkability between a user's identity and loca­
tions from being increased, thereby reducing the impact of
this kind of threats.

To summarize, our major contributions are:

• A framework that relates location cloaking, privacy
and quality of service;

• A formal model of cloaking and privacy metrics;

• An evaluation algorithm for IMRQ that manipulates
cloaked data;

• Quality metrics for IMRQ based on data and query im­
precision;

• Experimental results for the proposed scheme: and

• Inference attacks and protection for the scheme.

The rest of this paper is organized as follows. We pro­
pose a framework to capture data uncertainty, privacy and
quality of service in Section 2. In Section 3, we formally
present the definitions of non-anonymous applications, lo­
cation privacy, cloaking and service quality. Section 4
presents a querying algorithm, and Section 5 describes ser­
vice quality metrics for moving-range queries. Experimen­
tal results are presented in Section 6. Section 7 investigates
the problems of location inference and their corresponding
solutions. Related works are presented in Section 8. We
conclude the paper in Section 9.

2 A Framework for Balancing Privacy and
Service Quality

Let us now describe a system model that connects pri­
vacy, cloaked information and service quality. It forms the
basis for subsequent discussions.

Figure I illustrates this framework. Its main idea is to al­
low the user to specify her location, service request and pri­
vacy requirements to the cloaking agent, which then pro­
duces the cloaked location and an "imprecise" service re­
quest On receiving these pieces of information, the service
provider processes the request and sends back the service
and feedback to the user.

Inside the cloaking agent, the policy translator pro­
duces a cloaked location (i.e., a larger region) based on the
(precise) location of the user as well as her privacy require­
ments, which can be specified using some high-level lan­
guages such as EPAL [lJ and P3P [6]. For instance, if the
user's requirement is "generate a cloaked location that cov­
ers five buildings when I am in Area X", the policy trans­
lator produces the corresponding cloaked location when it
detects the user is in Area X. The cloaked location pro­
duced is then directed to the service translator.

Based on the cloaked location and the service request,
the service translator produces an "imprecise" service re­
quest. For example, the MRQ is a service request from
the user, and the service translator transforms the MRQ to
IMRQ, an imprecise service request that processes cloaked
location data. Both the cloaked location and the imprecise
service request are then shipped to the imprecise service
processor, which stores the cloaked location in a spatial­
temporal database and processes the service request Since



User Cloaking Agent Service Provider 
I 7 

................... ~ . . ~  ........-.------.---. 

PI-ccisc location 

Result 
Translator Scrvicc and 

Quality L- 

Figure 1. Managing Privacy and Service Quality with Cloaking Agent. 

location values are imprecise, the service processor pro- 
duces a "probabilistic service resultt i.e., answers are aug- 
mented with probability to indicate the confidence of their 
presence [3]. For example, the result of IMRQ contains 
user names together with their probabilities. In addition, 
a score indicating the quality of the service is generated. 
These technical issues are detailed in Sections 4 and 5 .  

Both the probabilistic service result and the quality score 
can be transferred directly to the user, or optionally to the 
result translator inside the cloaking agent. The main pur- 
pose of the result translator is to hide the technical details 
of the probabilistic service result (e.g., probability, qual- 
ity scores), and converts the answers to a higher-level form 
that even casual users can understand. For example, for an 
IMRQ, the translator can choose to return only the names 
for which there is a high confidence (e.g.. pj > 0.8) and not 
return any probability value. It can also describe to the user 
the quality as LOW, MEDIUM and HIGH for quality score 
ranges between [0: 0.21, [0.2.0.8], [0.8: 11 respectively, in- 
stead of requiring the user to interpret the numerical values. 
Based on the recomniendation from the cloaking agent, the 
user can then decide if the degree of privacy should be re- 
duced. 

3 Privacy, Cloaking, and Service Quality 

identity. For example, in querying a LBS about the 
price of a coffee when approaching a coffee shop: a 
user only needs to supply her location to the LBS. 

2. Pseudonymous: This type of applications needs to 
know the identity of a user, but it can use the user's 
pseudonym, rather than her real identity. An exani- 
ple is: "When I walk past a computer kiosk. display 
my emails". The LBS can use the user's pseudonyni. 
rather than her real name. to retrieve her eniails. 

3. Non-Anonymous: This application class does not 
work without knowing a user's true identity. A typi- 
cal example is: "When 1 am inside the building, let my 
project groupniates know where 1 am". 

These three classes of applications are arranged in the as- 
cending order of thDe amount of information about the owner 
of the location information is disclosed. The more the in- 
formation is disclosed, the higher is the risk to the intrusion 
of privacy. We are interested in studying the protection of 
privacy for non-anonymous applications, which involves 
more privacy-related information than the other two service 
classes. 

Our framework, however, is not limited to non- 
anonymous applications - it can be applied to anonyinous 
or pseudonyinous applications as well. 

In this section, we outline the classification of LBS, 
based on which non-anonymous applications are defined. 3.2 Protecting Privacy by Cloaking 
We then explore a formal model of location cloaking, based - 
on which privacy is defined. 

A non-anonymous application is defined formally as fol- 

3.1 Classification of Location-based Services lows. 

An LBS application can be classified according to how Definition Non-anon~mous CI 

the identity of the owner of the location information is dis- ' I S e r  provider a 

closed along with the location information. In general, there L( t ) ,  reques t, at "lne tl lvhere 

are three classes of LBS applications [2]: is the idetariry of the user atld L( t )  is the locariotz of the 
user at rirne t  with coordit~ates ( x ( t ) :  y ( t ) ) .  On receivir~g 

I.  Anonymous: This application class works with loca- this tuple, the set-vice yraviderprocesses the request arid 
tion inforination only, and does not require a user's rerut-11s the service results to the user: 
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location values are imprecise, the service processor pro­
duces a "probabilistic service result" i.e., answers are aug­
mented with probability to indicate the confidence of their
presence [3). For example, the result of IMRQ contains
user names together with their probabilities. In addition,
a score indicating the quality of the service is generated.
These technical issues are detailed in Sections 4 and S.

Both the probabilistic service result and the quality score
can be transferred directly to the user, or optionally to the
result translator inside the cloaking agent. The main pur­
pose of the result translator is to hide the technical details
of the probabilistic service result (e.g., probability, qual­
ity scores), and converts the answers to a higher-level form
that even casual users can understand. For example, for an
IMRQ, the translator can choose to return only the names
for which there is a high confidence (e.g., Pj > 0.8) and not
return any probability value. It can also describe to the user
the quality as LOW, MEDIUM and HIGH for quality score
ranges between [0, 0.2]' [0.2,0.8]' [0.8, 1] respectively, in­
stead of requiring the user to interpret the numerical values.
Based on the recommendation from the cloaking agent, the
user can then decide if the degree of privacy should be re­
duced.

3 Privacy, Cloaking, and Service Quality

In this section, we outline the classification of LBS,
based on which non-anonymous applications are defined.
We then explore a formal model of location cloaking, based
on which privacy is defined.

3.1 Classification of Location-based Services

An LBS application can be classified according to how
the identity of the owner of the location information is dis­
closed along with the location information. In general, there
are three classes of LBS applications [2]:

I. Anonymous: This application class works with loca­
tion information only, and does not require a user's

identity. For example, in querying a LBS about the
price of a coffee when approaching a coffee shop, a
user only needs to supply her location to the LBS.

2. Pseudonymous: This type of applications needs to
know the identity of a user, but it can use the user's
pseudonym, rather than her real identity. An exam­
ple is: "When I walk past a computer kiosk, display
my emails". The LBS can use the user's pseudonym,
rather than her real name. to retrieve her emails.

3. Non-Anonymous: This application class does not
work without knowing a user's true identity. A typi­
cal example is: "When I am inside the building, let my
project groupmates know where I am".

These three classes of applications are arranged in the as­
cending order of the amount of information ab;ut the owner
of the location information is disclosed. The more the in­
formation is disclosed, the higher is the risk to the intrusion
of privacy. We are interested in studying the protection of
privacy for non-anonymous applications, which involves
more privacy-related information than the other two service
classes.

Our framework, however, is not limited to non­
anonymous applications - it can be applied to anonymous
or pseudonymous applications as well.

3.2 Protecting Privacy by Cloaking

A non-anonymous application is defined formally as fol­
lows.

Definition 1 Non-anonymous Application: a
user supplies to the service provider a tuple
(UserID, L(t), request) at time t, where UserID

is the identity of the user and L(t) is the location of the
user at time t with coordinates (x(t), y(t)). On receiving
this tuple, the service provider processes the reques t and
returns the service results to the usel:



When a service provider receives the request, it can as- 
sociate the identity of the user ( U s e r I D )  with her current 
location L(t) .  By correlating L( t )  with a map, it is easy to 
obtain the region the user is in. If the area is serzsitive [8], 
e.g.? a hospital or the house of a political leader, the user's 
privacy may be threatened, since this information can be 
sold to third parties without the user's consent. The user.s 
identity is said to have a high degree of "linkability" with 
her location (using the definition of "linkability" in [17]). 

The purpose of protecting privacy for non-anonymous 
applications is to reduce the degree of linkability. One way 
to do this is to require the service provider to state its poli- 
cies of using the user's location inforination [20, 10, 91. 
However, this places the burden of privacy protection to ser- 
vice providers, and it is often doubtful whether these poli- 
cies are enforced adequately. Even if these policies are in)- 
plemented correctly, location privacy can still be breached 
if attackers obtain this inforination through the communica- 
tion channel. In this paper we use a complementary tech- 
nique called cloakirlg, where the user takes a better control 
over linkability by adjusting the degree of accuracy of the 
spatial information sent to the service provider [7, 21. Let us 
assuine the system has n. users with names S1 : Sz: . . . : S,, . 
Also, the current location of each user S ,  is Li(t) .  We can 
define cloaking as follows. 

Definition 2 Cloaking: A user S, reports to  the service 
provider a closed regiotl called ~itzcertainr). region, denoted 
U, (t), slich that L,(t) i s  irlside U,(t). 

When the service provider receives the uncertainty re- _ 
gion, it perceives that each point of the region has an equal 
chance of being the user's true location i.e., the probability 
density function (pdf) of the user's location within the un- 
certainty region is Hence the service provider Area(r;,(t)) ' 
does not know the user's precise location. Unless stated 
otherwise, we also assume that the uncertainty region in- 
formation received by the server does not change until new 
location data is reported. Figure 2 shows the difference be- 
tween an exact location and a cloaked location. It also illus- 
trates that the user's location is uniformly distributed within 
the region from the service provider's perspective. 

3.3 Measuring Privacy of Cloaking 

By "injecting" different amount of spatial uncertainty to 
her location, cloaking provides a simple way for a user to 
control the release of her private information to untrusted 
parties. The degree of privacy can be measured in two ways: 
(i) size of uncertainty region and (ii) coverage of sensitive 
area. 

1. Size o f  uncertainty region. By providing a larger 
uncertainty region, the spatial resolution of a location is 
reduced, making the user's location more difficult to be 
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Figure 2. Exact and cloaked location. 

guessed. The size of the uncertainty region can thus be 
used to reflect the degree of privacy: the larger the region 
size, the more the privacy. 

2. Coverage o f  sensitive region. The second means of 
quantifying privacy depends on the location of the user. To 
see this. assume the size of the uncertainty region is fixed. 
Suppose the user is inside a hospital (which she does not 
want people to know about this): and her uncertainty region 
has a fraction of 90% overlap with the hospital. One can 
easily guess she is in the hospital. On the other hand. if the 
user is shopping in  a mall, she may not be very concerned 
even if her location is known. 

From this example, we can see that whether the user's 
located in a "sensitive region'' (e.g., hospital, nightclub) af- 
fects the degree of privacy. Based 011 this observation. we 
define the "coverage" of sensitive region for user Si as fol- 
lows: 

Area(sensitive regions of S, n ui ( t ) )  
Coverage = 

Area(U,(t)) ( 1 )  

In general, the higher the coverage, the lower the privacy. 
In the previous example, the coverage is 90%, and thus the 
user can be easily guessed that she is in the hospital. Thus 
the uncertainty region should be enlarged in order to assure 
that the user's location cannot be easily associated with a 
sensitive region. 

It is also worth mention that the definition of sensitive 
region is user-specific. For example, while for a physician 
a hospital may not be a sensitive region, the same cannot be 
said about a patient. 

3.4 Cloaking and Service Quality 

Although cloaking lessens the threat to location privacy, 
it can affect the qualify of service provided. In particular, 
since the service provider does not receive accurate location 
information, it may be impossible for it to provide a good 
service. For example, suppose a user wants to know who is 
her nearest neighbor, and her cloaked location is supplied. 

C
Area(sensitive regions of 8; n U;(t))

overa2e = (J)
~ Area(U;(t))

In general, the higher the coverage, the lower the privacy.
In the previous example, the coverage is 90%, and thus the
user can be easily guessed that she is in the hospital. Thus
the uncertainty region should be enlarged in order to assure
that the user's location cannot be easily associated with a
sensitive region.

It is also worth mention that the definition of sensitive
region is user-specific. For example, while for a physician
a hospital may not be a sensitive region, the same cannot be
said about a patient.

guessed. The size of the uncertainty region can thus be
used to reflect the degree of privacy: the larger the region
size, the more the privacy.

2. Coverage of sensitive region. The second means of
quantifying privacy depends on the location of the user. To
see this, assume the size of the uncertainty region is fixed.
Suppose the user is inside a hospital (which she does not
want people to know about this), and her uncertainty region
has a fraction of 90% overlap with the hospital. One can
easily guess she is in the hospital. On the other hand, if the
user is shopping in a mall, she may not be very concerned
even if her location is known.

From this example, we can see that whether the user's
located in a "sensitive region" (e.g., hospital, nightclub) af­
fects the degree of privacy. Based on this observation, we
define the "coverage" of sensitive region for user 8; as fol­
lows:

Figure 2. Exact and cloaked location.
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3.3 Measuring Privacy of Cloaking

When a service provider receives the request, it can as­
sociate the identity of the user (UserID) with her current
location L(t). By correlating L(t) with a map, it is easy to
obtain the region the user is in. If the area is sensitive [8],
e.g., a hospital or the house of a political leader, the user's
privacy may be threatened, since this information can be
sold to third parties without the user's consent. The user's
identity is said to have a high degree of "linkability" with
her location (using the definition of "I inkabiJity" in [17]).

The purpose of protecting privacy for non-anonymous
applications is to reduce the degree of linkability. One way
to do this is to require the service provider to state its poli­
cies of using the user's location information [20, 10, 9].
However, this places the burden of privacy protection to ser­
vice providers, and it is often doubtful whether these poli­
cies are enforced adequately. Even if these policies are im­
plemented correctly, location privacy can still be breached
if attackers obtain this information through the communica­
tion channel. In this paper we use a complementary tech­
nique called cloaking, where the user takes a better control
over linkability by adjusting the degree of accuracy of the
spatial information sent to the service provider [7,2]. Let us
assume the system has n users with names 51, 52, ... , 5".
Also, the current location of each user 5; is L; (t). We can
define cloaking as follows.

Definition 2 Cloaking: A user 5 i reports to the service
provider a closed region called uncertainty region, denoted
Ui(t), such that L;(t) is inside U;(t).

When the service provider receives the uncertainty re- ~

gion, it perceives that each point of the region has an equal
chance of being the user's true location i.e., the probability
density function (pdf) of the user's location within the un­
certainty region is Area~U;(t))' Hence the service provider

does not know the user's precise location. Unless stated
otherwise, we also assume that the uncertainty region in­
formation received by the server does not change until new
location data is reported. Figure 2 shows the difference be­
tween an exact location and a cloaked location. It also illus­
trates that the user's location is uniformly distributed within
the region from the service provider's perspective.

By "injecting" different amount of spatial uncertainty to
her location, cloaking provides a simple way for a user to
control the release of her private information to untrusted
parties. The degree of privacy can be measured in two ways:
(i) size of uncertainty region and (ii) coverage of sensitive
area.

1. Size of uncertainty region. By providing a larger
uncertainty region, the spatial resolution of a location is
reduced, making the user's location more difficult to be

3.4 Cloaking and Service Quality

Although cloaking lessens the threat to location privacy,
it can affect the quality of service provided. In particular.
since the service provider does not receive accurate location
information, it may be impossible for it to provide a good
service. For example, suppose a user wants to know who is
her nearest neighbor, and her cloaked location is supplied.



Then there can be more than one answer that satisfies her 
query, and the user may be unable to get a precise answer. 
Next we study the technical details of querying cloaked lo- 
cations and measuring query quality. 

4 Evaluation of Imprecise Queries 

In this section, we study the technical details of the eval- 
uating cloaked locations in a database system. We first dis- 
cuss how a traditional query can be "transformed" to a query 
that handles cloaked information. We then illustrate how the 
query can be evaluated in a spatial database. We also exam- 
ine the quality of moving range queries. The movit~g ratlye 
query is used as a running example. 

4.1 Precise and Imprecise Queries 

Intuitively, a moving range query is a range query whose 
"range" depends on the position of the user. For example. 
a user may specify that she wants to be notified of any of 
her friend who is within ten meters from her. The reader is 
reminded that although here we assume a range query lias a 
circular shape our methods can be applied to range queries 
with any geometric shape. 

Let 1;1 be the set of users in which Si is interested, and 
let r; be the radius of the circle with Li( t )  as the center. We 
can define a moving range query as follows. 

Definition 3 Given a user Si with pratnerets Fi, Li ( t )  
a t ~ d  ri, a Moving Range Query (MRQ) returt~s { S j  1 j = 

1;.  . . : n),  S L I C ~  tlzot S j  E Fi, atzd S j  has a distance less 
tho11 ri utzirs from Si at time t. 

Figure 3(a) illustrates a MRQ. If we assume F1 = 

(S2:  5'3: S4 ) :  then Sq is returned as the only answer. Note 
that to answer MRQ, the system needs to know both the 
location and identity of each user so that the query can be 
answered. It is thus a non-anonymous query. Further, when 
a user subinits a MRQ, the user needs to submit her name 
in addition to her current position, so that only the names 
of the people of interest to her are returned. As discussed 
in the last section, privacy can be threatened since both the 
identity and the location information are supplied to the ser- 
vice provider. 

Location cloaking can alleviate the threat to privacy. In- 
stead of supplying exact locations, users only supply their 
cloaked locations. We call the version of MRQ that employs 
cloaked location information Imprecise Moving Range 
Query. The word "in~precise" arises from the fact that the 
query is made ambiguous by imposing uncertain informa- 
tion on the location of the user submitting the query. It is 
formally defined below: 

Figure 3. Moving Range Query using (a) exact 
locations, and (b) cloaked locations. 

Definition 4 Giveti a usel- Si with paratneters Fi, Ui ( t . )  and 
ri, an Imprecise Moving Range Query (IMRQ) returns 
o set of f~iples {(S, ,  I),) 1 j = 1. . . . . n.), wliere Sj E Fi, 
atzd pj  > 0 is the tzot7-zero probabi l i~  that ~lser Si has a 
clistat7ce less tho17 r ,  ~itiitsfiotl~ Si o f  fitne t. 

Figure 3(b) shows a scenario where an IMRQ is 
computed over cloaked locations. with range queries is- 
sued at two different locations in CTl(t). For Q1, the 
answer is { ( S 2 :  0.2); ( S3 :  0.6). (S., ,0.7)),  while for the 
Q2: the answer is { ( S 3 :  0.9): ( S4 :  1 ) ) .  After consider- 
ing the probabilities of the objects satisfying the range 
queries issued at all possible points in Ul ( t ) ,  the answer 
{ ( S 2 .  0.1); (S3:  0.7): ( S4 .  0 .9) )  is returned. The probabili- 
ties in the answer allow the user to place appropriate confi- 
dence in the answer, which is the consequence of evaluating 
cloaked (or imprecise) location values. Depending upon the 
requirements of the application, one may choose to report 
only the object with the k highest probability value, or only 
those objects whose probability values exceed a minimum 
threshold. Our proposed work will be able to work with any 
of these models. Now let us examine how IMRQ can be 
evaluated. 

4.2 Evaluation of IMRQ 

Given a MRQ and a cloaked location Ui( t ) ,  computing 
its coi~esponding IMRQ involves two main steps: 

I .  Transforniation Phase, which converts the MRQ to the 
IMRQ, and 

2. Evaluation Phase, which computes probabilistic an- 
swers for the IMRQ. 

Transformation Phase. In MRQ, the query range of the 
user Si is a circle Ci with radius 7,;. and center Li ( t ) .  If the 

Figure 3. Moving Range Query using (a) exact
locations, and (b) cloaked locations.

Then there can be more than one answer that satisfies her
query, and the user may be unable to get a precise answer.
Next we study the technical details of querying cloaked lo­
cations and measuring query quality.

4 Evaluation of Imprecise Queries

In this section, we study the teclmicaJ details of the eval­
uating cloaked locations in a database system. We first dis­
cuss how a traditional query can be "transfonned" to a query
that handles cloaked infonnation. We then illustrate how the
query can be evaluated in a spatial database. We also exam­
ine the quality of moving range queries. The moving range
query is used as a running example.

4.1 Precise and Imprecise Queries

(a)

Intuitively, a moving range query is a range query whose
"range" depends on the position of the user. For example,
a user may specify that she wants to be notified of any of
her friend who is within ten meters from her. The reader is
reminded that although here we assume a range query has a
circular shape our methods can be applied to range queries
with any geometric shape.

Let F i be the set of users in which 5i is interested, and
let ri be the radius of the circle with L i (t) as the center. We
can define a moving range query as follows.

Definition 3 Given a user 5 i with pnrameters F;, L i (t)
and ri, a Moving Range Query (MRQ) returns {5 j lj =

1, ... ,n}, such that 5 j E Fi , and 5 j has a distance less
than ri unitsjrom 5 i at time t.

Figure 3(a) illustrates a MRQ. ]f we assume F 1 =

{52, 53, 54}' then 54 is returned as the only answer. Note
that to answer MRQ, the system needs to know both the
location and identity of each user so that the query can be
answered. It is thus a non-anonymous query. Further, when
a user submits a MRQ, the user needs to submit her name
in addition to her current position, so that only the names
of the people of interest to her are returned. As discussed
in the last section, privacy can be threatened since both the
identity and the location information are supplied to the ser­
vice provider.

Location cloaking can alleviate the threat to privacy. In­
stead of supplying exact locations, users only supply their
cloaked locations. We call the version of MRQ that employs
cloaked location information Imprecise Moving Range
Query. The word "imprecise" arises from the fact that the
query is made ambiguous by imposing uncertain informa­
tion on the location of the user submitting the query. It is
formally defined below:

Definition 4 Given a user 5; with parameters Fi , U; (t) and
Ti, an Imprecise Moving Range Query (lMRQ) returns
a set oj tuples {(5j ,pj)lj = 1. .... n}. where 5 j E F i ,

and Pj > D is the non-zero probability that user 5 j has a
distance less thal1 r; lInitsji'O/ll 5 i Of time t.

Figure 3(b) shows a scenario where an IMRQ is
computed over cloaked locations, with range queries is­
sued at two different locations in Uj (t). For Qj, the
answer is {(52,D.2),(53,D.6), (Sj,D.7)}, while for the
Q2, the answer is {(53,D.9), (54, I)}. After consider­
ing the probabilities of the objects satisfying the range
queries issued at all possible points in Uj (t), the answer
{(52, D.l), (53, D.7), (54' D.9)} is returned. The probabili­
ties in the answer allow the user to place appropriate confi­
dence in the answer, which is the consequence of evaluating
cloaked (or imprecise) location values. Depending upon the
requirements of the application, one may choose to report
only the object with the k highest probability value, or only
those objects whose probability values exceed a minimum
threshold. Our proposed work will be able to work with any
of these models. Now let us examine how IMRQ can be
evaluated.

4.2 Evaluation of IMRQ

Given a MRQ and a cloaked location Ui(t), computing
its cOlTesponding IMRQ involves two main steps:

I. Transfornlation Phase, which converts the MRQ to the
IMRQ, and

2. Evaluation Phase, which computes probabilistic an­
swers for the IMRQ.

Transformation Phase. In MRQ, the query range of the
user 5 i is a circle C i with radius l'i and center L i (t). ]f the



user transmits her cloaked location, the query range is no 
longer Ci, since the service provider has no idea of where 
Li( t )  exactly is. The service provider does know that L i ( t )  
is within Ui(t): so it transforms the query into sub-queries 
over all possible locations of S,.  In other words, at each 
point (u:  v) E Ui( t ) ,  a query is issued to find out which 
users are within the region C:(u:,l.): where C:(,u. 23) is the 
circle with radius r centered at (u.  1:). The result of IMRQ 
is essentially the union of the results of the range queries 
issued at each point in Ui ( t ) .  The transformation potentially 
covers more objects than MRQ. In Figure 3, for example, 
the converted ranges in (b) overlap with (S2. S 3  S4) while 
the original query in (a) only covers S4. 

Evaluation Phase. Since the location of each object 
is uncertain, each user only has some chance of satisfy- 
ing the IMRQ. in particular, if Sj € F,,: then the prob- 
ability pj(u:  v )  of user Sj satisfying Si 's  request at point 
(u. v) E Ui( t )  is given by 

Area(U, (f,) n C:(71. (1)) 

PJ (u .  v )  = 
Area(Uj ( t j  )) 

(2) 

where t j  < t is the time instant of the latest value of U,: 
and U,(tj)nC,'(u: v)  is the common region between U j ( t j )  
and C:(u,, v) .  For simplicity, we assume U,(t,) = U, (t).' 
Essentially, pj(u. v) is the fraction of Uj(f) that overlaps 
c; (u,, 2 1 ) .  

The total probability of Sj satisfying the IMRQ issued 
by Si is given by the integration of the product of the pdf of 
user Si's location at (u:  v) (i.e., ) and pj(u:  T!) Area(c!,(t)) 
over all (11.: v )  G Ui ( t ) .  Therefore, 

1 p, (u. u)dudv 

JUT (+, Area(U, (t,) n C:(?L. v))dudu 
- - 

Area(U, (t))Area(U, ( t , ) )  (4) 

by substituting p j  (u.: v) with Equation 2. The probability 
value so computed serves as an indication of the confidence 
placed on the answer. For example, in Figure 3(b), p:! is 
only 0.1, showing that S2 is unlikely to be answer, while S3 
and S4 have a much higher chance (0.5 and 0.9 respectively) 
of being the answers. 

4.3 Query Implementation 

We now address the implementation issues of lMRQ pre- 
sented in the last section. 

We assume the service provider maintains a spatial- 
telnporal database system for storing the location informa- 
tion of each user. Let T be a relation with two attributes 

I ~ h e  possible locationsof S, at time t may be derived from the location 
at  ti if the ~naxirnuln speed of Sj is known. We investigate this issue in 
Section 7. 

<user-riarne, regiorl>, which stores the identity and the ge- 
ometry of the current uncertainty region of all users. Fig- 
ure 4 describes an evaluation algorithm for IMRQ. 

Input 
T /" relation containing <ID, urlcerrairig: regiori> of all users *I 
Si: U i ( t )  /" idenlity and uncertainty region of user S, "/ 
F,. I.;  /" parameters of lMRQ for user Si */ 
Al 1. resolu~ion of lMRQ "/ 

Output 
(Sj. pi) /:"narnes and probabilities of users that satisfi es lMRQ */ 

Transformation Phase 
1. Divide Ui ( t )  into Al equal subregions. 
2. Let q,,, (7n -- 1 . .  . . : .If) be the midpoint of the in,-th subregion. 
3. Let I be a relation with attributes <user-tinme, region>. 
4.form + I . . . .  : A f d o  

a. Let the in-th I-ow of I be < Si. C:(midpoint of in-th subregion) > 

Evaluation Phase 
5. Let V be a relation with attributes < user-tinme,prob >. 
6. Evaluate the follow in^ query: 

lNSERT INTO V VALUES 
(SELECT T.1D. Area(Intersection(I.7-egion, T.region))lArea(T.region) 
FROM I :  T 
WHERE Overlaps(I .region, T.~egion)  
AND ].ID <> T.ID 
AND (T.ID INTERSECT Fi) <> NULL; 

7. Evaluate the following query: 

SELECT ID. SUM(prob) 
FROM I,' 
GROUPBY ID; 

Figure 4. Evaluating an IMRQ. 

In this algorithm, the first four steps correspond to the 
Transformation Phase. Steps 1 and 2 partition Ui( t )  into 
hf subregions, where Ad is called "resolution" and is a pa- 
rameter that controls the precision of the query answer. The 
range query region formed by each midpoint of the subre- 
gion is inserted to relation I (Steps 3 and 4). 

In the Evaluation Phase, a spatial-join using the Over- 
laps predicate is performed between the range query region 
of I and the uncertainty region of T (i.e., the tuple pairs that 
have non-zero overlap are joined [ I  81). These joined tuples 
correspond to users that satisfy any of the queries formed 
by the midpoints of the subregions. Out of these join pairs, 
only the identities of users who are the members of F, are 
inserted, together with their probabilities (Equation 2), to 
relation V (Steps 5 and 6). Notice that the lritersectiori 

(3)

(4)

user transmits her cloaked location, the query range is no
longer C;, since the service provider has no idea of where
Li (t) exactly is. The service provider does know that L; (t)
is within Ui(t), so it transforms the query into sub-queries
over all possible locations of 5,. In other words, at each
point (u, v) E Ui (t), a query is issued to find out which
users are within the region C;(u,'r), where C;(u,v) is the
circle with radius r centered at (u. v). The result of IMRQ
is essentially the union of the results of the range queries
issued at each point in U; (t). The transformation potentially
covers more objects than MRQ. In Figure 3, for example,
the converted ranges in (b) overlap with {52. 53, S.od while
the original query in (a) only covers 54.

Evaluation Phase. Since the location of each object
is uncertain, each user only has some chance of satisfy­
ing the IMRQ. in particular, if 5 j E F i , then the prob­
ability Pj (u, v) of user 5 j satisfying 5i'S request at point
(u, v) E Ui (t) is given by

where tj ::; t is the time instant of the latest value of Uj ,

and Uj (t j ) nC; (u, v) is the common region between Uj (tj)

and C; (u, v). For simplicity, we assume Uj (tJ) = Uj (t).1
Essentially, Pj (u, v) is the fraction of Uj (t) that overlaps
C;Cu., v).

The total probability of 5 j satisfying the IMRQ issued
by 5; is given by the integration of the product of the pdf of
user 5;'s location at (u, v) (i.e., Area~u;(t))) and Pj(u, v)

over all (11, v) E U; (t). Therefore,

Pj = I. A •• (lu.( ))Pj(u.v)dudv
. U.;(t.) ruea ,t

I
Vi

(t) Area(Uj(tj) n C; (11, v))dudv

Area( Ui (t) )Area( Uj (t j))

by substituting Pj (v., v) with Equation 2. The probability
value so computed serves as an indication of the confidence
placed on the answer. For example, in Figure 3(b), P2 is
only 0.1, showing that 52 is unlikely to be answer, while 53
and 54 have a much higher chance (0.5 and 0.9 respectively)
of being the answers.

4.3 Query Implementation

We now address the implementation issues of IMRQ pre­
sented in the last section.

We assume the service provider maintains a spatial­
temporal database system for storing the location informa­
tion of each user. Let T be a relation with two attributes

I The possible locations of 5J at time t may be derived from the location
at tj if the maximum speed of 5 j is known. We investigate this issue in
Section 7.

<user-name, region>, which stores the identity and the ge­
ometry of the current uncertainty region of all users. Fig­
ure 4 describes an evaluation algorithm for IMRQ.

Input
T /" relation containing </D. uncertain I)' region> of all users "/
S;, U;(t) I" identity and uncertainty region of user S; "/
F;. 7'; I" parameters of IMRQ for user S; "/
M /" resolution of IMRQ "/

Output
(Sj,pj) r names and probabilities of users that satisfi es IMRQ "/

Transformation Phase
I. Divide U;(t) into M equal subregions.
2. Let q", (m = I, ... , M) be the midpoint of the moth subregion.
3. Let I be a relation with allributes <user-name, region>.
4. for m <-- 1.... , !If do

a. Let the m-th row of I be < S;. C; (midpoint of moth subregion) >

Evaluation Phase
S. Let V be a relation with allributes < user-name,prob >.
6. Evaluate the following query:

INSERT INTO V VALUES
(SELECT TID. Area(lntersection(1.7'egion, Tregion))/Area (Tregion)
FROM I,T
WHERE Overlaps(l.7'egion, T7'egion)
AND I.ID <> TID
AND (T.ID INTERSECT Fi) <> NULL;

7. Evaluate the following query:

SELECT ID, SUM(pTOb)
FROM V
GROUPBY ID;

Figure 4. Evaluating an IMRQ.

In this algorithm, the first four steps correspond to the
Transformation Phase. Steps land 2 partition U;(t) into
111 subregions, where 11-1 is called "resolution" and is a pa­
rameter that controls the precision of the query answer. The
range query region formed by each midpoint of the subre­
gion is inserted to relation I (Steps 3 and 4).

In the Evaluation Phase, a spatial-join using the Over­
laps predicate is performed between the range query region
of I and the uncertainty region of T (i.e., the tuple pairs that
have non-zero overlap are joined [18]). These joined tuples
correspond to users that satisfy any of the queries formed
by the midpoints of the subregions. Out of these join pairs,
only the identities of users who are the members of Pi are
inserted, together with their probabilities (Equation 2), to
relation V (Steps 5 and 6). Notice that the Intersection



function evaluates the geometry of the common region of 
two given regions, while the At-eo function returns the area 
of a given region, which can be computed using well known 
algorithms from the spatial database literature [ I  81. Finally, 
Step 7 sums LIP all the probability values that belong to the 
same user in the relation V: corresponding to Equation 4. It 
returns the identity and probability of each user that satisfy- 
ing the IMRQ. 

This algorithm can be implemented by PLISQL and any 
spatial database system that supports the Overlop join, It?- 
ter-section and Areo. Also: for presentation purpose, we per- 
form two queries in Steps 6 and 7 :  but they may be com- 
bined into a single query for efficiency. 

Complexity. Steps I to 4 take O(Al)  times. The 
worst case of Step 6 needs O ( J I n )  times and Step 7 needs 
O(A4n.) times. Thus the complexity of the algorithm is 
O(AI + Aln  + Afn) = O(i1ln).  In practice, many eff-  
cient spatial join techniques based on z-ordering trees and 
R-trees [I%] can significantly inlprove the cost of evalua- 
tion. 

5 Quality of Imprecise Queries 

Due to the inherent imprecision in location data and the 
query itself, an imprecise query returns probabilistic an- 
swers. In this section we try to answer the question: how 
ambiguous is an answer? We investigate the notion of qual- 
ity of imprecise queries. which can serve as a hint for the 
query issuer on whether she should adjust the degree of her 
location uncertainty. There are two types of quality metrics: 
one due to the inexactness of data, and the other one due to 
the ambiguity of the a query. 

5.1 Quality Due to Data Imprecision 

The first factor that produces answer uncertainty is the 
ambiguity of cloaked location data. This ambiguity is re- 
flected by the probability of the query answer. Here we 
modify the metric for probabilistic query range queries de- 
scribed in [3, 131. 

For example, for an IMRQ, the result is the clearest if 
we are sure that Sj is either coinpletely inside or outside the 
query range; p j  equal to 100% and 0% respectively. Uncer- 
tainty arises when we are less than 100% sure whether the 
location of Sj is inside the query range. This corresponds to 
the case when the uncertainty region of S j ,  i.e., Uj(t),  only 
lies partially inside S i 7 s  query range. The most an~biguous 
case happens when p j  is 0.5 i.e., Sj has a half chance of 
being inside the range. Hence a reasonable metric for mea- 
suring the quality of an answer due to p, is: 

The value of Equation 5 varies between 0 to 1, with a larger 
value representing a better quality. We can define the doro 
score of an IMRQ as the average of the values evaluated in 
Equation 5 for all objects that satisfy the IMRQ: 

where R,  is the set of tuples (Tj: p,) returned by an IMRQ 
for S i .  

Metrics for quantifying the quality of answers exist for 
other queries like nearest-neighbor and SUM, and readers 
are referred to [3] for more details. Also notice that the 
quality defined here depends on the location data of users 
being queried. Next, we present quality metrics due to the 
uncertainty of the query issuer herself. 

5.2 Quality Due to Query Imprecision 

Recall from the Evaluation Phase that the answer to 
IMRQ is in fact the union of the answers to the sub-queries 
(with range C:(u, 7))): executed over the uncertainty region 
of the query issuer Si. Out of these range queries, only one 
is correct. The union operation can potentially produce in- 
correct answers (called false positives in [16]): due to the 
in~precision of the location of the query issuer. Here we 
present a metric for computing quality of an answer due to 
the uncertainty of the IMRQ. 

Let us assume that each sub-query returns a set of an- 
swers Q:(w 21). Also, suppose there are m distinctive re- 
sults, R , , l :  . . . . Ri.,, for all the sub-queries. Let R ,  be 
the set of identities returned by IMRQ, and thus R i  = 

UP',, Ri.l-. Let p(R,,h.) be the probability that Ri.k is the 
true result. Then p(Ri.k) is also the probability that user Si 
gets the answer R i . k :  

that is, the integration of uniform pdf over all points 
in U,(t) that evaluate the same result R,.k. Note that 
CY==, p(R2.k) = 1. 

We also define the precisiorz of R with respect to R,,A- as 

where V(R,,k) indicates the amount of "impurities" in- 
jected to Rz.k assuming R7.k is the correct answer. Note 
that V ( R z , k )  varies from 0 to 1, with a higher value indicat- 
ing a higher precision. 

The query score of IMRQ can then be measured by 

TTL 

Query score for Si = ~ ( R ~ . ~ ) v ( R ~ . ~ )  (9) 
k = l  

function evaluates the geometry of the common region of
two given regions, while the Area function returns the area
of a given region, which can be computed using well known
algorithms from the spatial database literature [18]. Finally,
Step 7 sums up all the probability values that belong to the
same user in the relation 17, corresponding to Equation 4. It
returns the identity and probability of each user that satisfy­
ing the IMRQ.

This algorithm can be implemented by PL/SQL and any
spatial database system that supports the Overlap join, 111­
tersection and Area. Also, for presentation purpose, we per­
form two queries in Steps 6 and 7, but they may be com­
bined into a single query for efficiency.

Complexity. Steps I to 4 take 0(111) times. The
worst case of Step 6 needs 0(11171) times and Step 7 needs
0(11171) times. Thus the complexity of the algorithm is
0(111 + 11171 + Mn) = 0(1I1n). In practice, many effi­
cient spatial join techniques based on z-ordering trees and
R-trees [18} can significantly improve the cost of evalua­
tion.

5 Quality of Imprecise Queries

Due to the inherent imprecision in location data and the
query itself, an imprecise query returns probabilistic an­
swers. In this section we try to answer the question: how
ambiguous is an answer') We investigate the notion of qual­
ity of imprecise queries, which can serve as a hint for the
query issuer on whether she should adjust the degree of her
location uncertainty. There are two types of quality metrics:
one due to the inexactness of data, and the other one due to
the ambiguity of the a query.

5.1 Quality Due to Data Imprecision

The value of Equation 5 varies between 0 to 1, with a larger
value representing a better quality. We can define the data
score of an IMRQ as the average of the values evaluated in
Equation 5 for all objects that satisfy the IMRQ:

1 '""' Ip - 0.51
Data score for Si = -I-I L J (6)

R i 0.5
jER,I\joji

where R, is the set of tuples (Tj ,Pj) returned by an IMRQ
for Si.

Metrics for quantifying the quality of answers exist for
other queries like nearest-neighbor and SUM, and readers
are referred to [3] for more details. Also notice that the
quality defined here depends on the location data of users
being queried. Next, we present quality metrics due to the
uncertainty of the query issuer herself

5.2 Quality Due to Query Imprecision

Recall from the Evaluation Phase that the answer to
IMRQ is in fact the union of the answers to the sub-queries
(with range c: (u, v)), executed over the uncertainty region
of the query issuer Si. Out of these range queries, only one
is correct. The union operation can potentially produce in­
correct answers (called false positives in [16)), due to the
imprecision of the location of the query issuer. Here we
present a metric for computing quality of an answer due to
the uncertainty of the IMRQ.

Let us assume that each sub-query returns a set of an­
swers Q: (u, v). Also, suppose there are m distinctive re­
sults, Ri,l,"" Ri,m, for all the sub-queries. Let R i be
the set of identities returned by IMRQ, and thus Ri =

UZ~l R i .k· Let p(Ri,d be the probability that R i .k is the
true result. Then p(Ri,k) is also the probability that user Si
gets the answer Ri,k:

that is, the integration of uniform pdf over all points
in Ui (t) that evaluate the same result Ri,k. Note that

L~~=l p(Ri,k) = 1.
We also define the precision of R with respect to RUe as

where V(Ri .k ) indicates the amount of "impurities" in­
jected to Ri .k assuming Ri .k is the correct answer. Note
that V(Ri,k) varies from 0 to I, with a higher value indicat­
ing a higher precision.

The query score of IMRQ can then be measured by

The first factor that produces answer uncertainty is the
ambiguity of cloaked location data. This ambiguity is re­
flected by the probability of the query answer. Here we
modify the metric for probabilistic query range queries de­
scribed in [3, 13).

For example, for an IMRQ, the result is the clearest if
we are sure that Sj is either completely inside or outside the
query range; Pj equal to 100% and 0% respectively. Uncer­
tainty arises when we are less than 100% sure whether the
location of Sj is inside the query range. This corresponds to
the case when the uncertainty region of Sj, i.e., Uj(t), only
lies partially inside Si'S query range. The most ambiguous
case happens when Pj is 0.5 i.e., Sj has a half chance of
being inside the range. Hence a reasonable metric for mea­
suring the quality of an answer due to PJ is:

V(R _) = IRi,kl
1.k IRil

(7)

(8)

Ipj - 0.51
0.5

(5)

m

Query score for Si = LP(Ri.k,)V(Ri./.')
k=l

(9)



R1 = {Sz,S3,S',,S5) 

Figure 5. Illustrating the query score of IMRQ. 

which varies between 0 (lowest quality) and I (highest 
quality). To understand this metric, let us look at Fig- 
ure 5,  which shows three distinct answers for query issuer 
S1, and also the probability that S1 yields each of the an- 
swer (i.e., the fraction of U l ( t )  that yields the answer). 
Since S1 is located at only one point in Ul ( t ) ,  only one 
of the three answers is correct. Suppose R1,3 is correct. 
Then its precision \/(R1.3) is 314; since Sp is a false pos- 
itive. The value p(R1.3) is the probability that SI gets 
the answer Rl,s,  which is 0.3. The query score of this 
IMRQ is thus the weighted sun1 of the V ( R I . k ) ' ~ ,  that is. 
0.4 . !j + 0.3 . + 0.3 - $ = 0.5. 

Implementation of Query Score. Similar to the trans- 
formation phase of IMRQ, the query score is computed by 
first getting A sampling points from U,(t). The query re- 
sults of the range query for each of the A4 points are then 
grouped according to their query answers. Equation 7 is 
then sin~ply equal to the fraction of a total of Ad points that 
share the same set of objects in their query answers. Due to 
the limitatioil of space, we omit the algorithm details. 

5.3 Managing Answer Quality 

The answer quality nletrics allow a user to trade-off pri- 
vacy for a potentially better answer quality. In particular. 
the query score depends on the size of the uncertainty re- 
gion - a larger uncertainty region potentially yields more 
distinct answers and lower query scores. Therefore, a low 
query score indicates that the user may reduce the size of 
her uncertainty region and resubmit the query. 

However, reducing uncertainty region size may not iin- 
prove the data score, since it depends on the uncertainty of 
the cloaked location information of other users that cannot 
be controlled by the query issuer herself. To see whether the 
data score is improved as a result of shrinking uncertainty 
region, the server can use the same cloaked location pro- 
vided by the user and re-evaluate the query with a smaller 
uncertainty region. The server then suggests to the user to 

reduce her uncertainty region only if there is an improve- 
ment of the data score. Notice that as the query results are 
obtained by sampling over the uncertainty region. rerunning 
the query with a smaller uncertainty region ineans reusing 
the results of a subset of sampling points over the uncer- 
tainty region. Hence the server may be able to compute the 
new query incrementally. 

6 Experimental Results 

We have performed an extensive simulation study on the 
behavior of location cloaking. Here we present the simula- 
tion model, followed by experimental results. 

6.1 Simulation Model 

Param I Default I Meaning 

City Simulator parameters 

Fill threshold 
Ternpt y Einpty threshold 

#of moving objects 
I N,,,,, 1 2000 1 Max samples skipped before ~.ecordine 1 1  

Location cloaking parameters 
1 150 ( Radius of query 1 

Table 1. Parameters and baseline values. 

U , ( t )  7. 

31 

Our experiments are based upon data generated by the 
City Simulator 2.0 [12] developed independently at IBM. 
The City Simulator simulates the realistic motion of Nobj 
people moving in a city. The input to the simulator is a map 
of a city. We used the sample map provided with the simu- 
lator that models a city of size 8.10 x 1260 square units, with 
7 1 buildings, 48 roads, six road intersections and one park. 
Each building is three-dimensional and contains a number 
of floors. The simulator models the movement of objects 
within the buildings and on the roads and park. To generate 
reasonable movement and occupation of buildings, the sim- 
ulator keeps track of two conditions based on parameters 
Trill and T,,,,,t,. The simulator ensures that the fraction of 
people at the ground level lies between Trill and Te,,,t,. 

Each object reports its location to the server at an aver- 
age rate of A,,. Before recording the simulation results, the 
simulator enters a warm-up phase, where at most N,,,,, 
samples for each object are generated, or at least Tstart of 
the population are at the ground level of buildings. Next: 
the simulator records the location updates of each object in 
a trace file, which contains the timestamp of the update and 

20 
4 9 

Radius of uncerlainty repon 
Sampl~ng size 

• R'.2={S3}
• P(R,.2)=O.3
• V(R1.2l=1/4

0.4 • R1.1={S2,S3}
• p(R1.1)=O.4
• V(R,.,)=1/2

• R1.3={S3,S4,SS}
• p(Ru}=O.3
• V(Ru}=3/4

reduce her uncertainty region only if there is an improve­
ment of the data score. Notice that as the query results are
obtained by sampling over the uncertainty region. rerunning
the query with a smaller uncertainty region means reusing
the results of a subset of sampling points over the uncer­
tainty region. Hence the server may be able to compute the
new query incrementally.

6 Experimental Results

Figure 5. Illustrating the query score of IMRQ.

which varies between 0 (lowest quality) and 1 (highest
quality). To understand this metric, let us look at Fig­
ure 5, which shows three distinct answers for query issuer
51, and also the probability that 51 yields each of the an­
swer (i.e., the fraction of VI (t) that yields the answer).
Since 51 is located at only one point in U1 (t), only one
of the three answers is COlTect. Suppose R u is correct.
Then its precision V(R u ) is 3/4, since 52 is a false pos­
itive. The value p(R1.3) is the probability that 51 gets
the answer R u , which is 0.3. The query score of this
IMRQ is thus the weighted sum of the V(Ru-)'s, that is.

0.4 . ~ + 0.3 . t + 0.3 '1 = 0.5.
Implementation of Query Score. Similar to the trans­

formation phase of IMRQ, the query score is computed by
first getting !If sampling points from Vi (t). The query re­
sults of the range query for each of the 111 points are then
grouped according to their query answers. Equation 7 is
then simply equal to the fraction of a total of M points that
share the same set of objects in their query answers. Due to
the limitation of space, we omit the algorithm details.

5.3 Managing Answer Quality

The answer quality metrics allow a user to trade-off pri­
vacy for a potentially better answer quality. In particular,
the query score depends on the size of the uncertainty re­
gion - a larger uncertainty region potentially yields more
distinct answers and lower query scores. Therefore, a low
query score indicates that the user may reduce the size of
her uncertainty region and resubmit the query.

However, reducing uncertainty region size may not im­
prove the data score, since it depends on the uncertainty of
the cloaked location information of other users that cannot
be controlled by the query issuer herself. To see whether the
data score is improved as a result of shrinking uncertainty
region, the server can use the same cloaked location pro­
vided by the user and re-evaluate the query with a smaller
uncertainty region. The server then suggests to the user to

We have performed an extensive simulation study on the
behavior of location cloaking. Here we present the simula­
tion model, followed by experimental results.

6.1 Simulation Model

Param I Default I Meaning

City Simulator parameters
.Au 5,000 Location update rate (sec' 1

)

TSta 1't 0.15 Start threshold
Tfill 0.09 Fill threshold
Tempty 0.5 Empty threshold
Nobj 100 # of moving objects
Nre/a.x 2000 Max samples skipped before recording

Location cloaking parameters
T 150 Radius of query
Ui(t).l· 20 Radius of uncertainty region
M 49 Sampling size

Table 1. Parameters and baseline values.

Our experiments are based upon data generated by the
City Simulator 2.0 [12] developed independently at IBM.
The City Simulator simulates the realistic motion of N obj

people moving in a city. The input to the simulator is a map
of a city. We used the sample map provided with the simu­
lator that models a city of size 840 x 1260 square units, with
71 buildings, 48 roads, six road intersections and one park.
Each building is three-dimensional and contains a number
of floors. The simulator models the movement of objects
within the buildings and on the roads and park. To generate
reasonable movement and occupation of buildings, the sim­
ulator keeps track of two conditions based on parameters
Trill and Tempty. The simulator ensures that the fraction of
people at the ground level lies between Trill and Tempty.

Each object reports its location to the server at an aver­
age rate of A". Before recording the simulation results, the
simulator enters a warm-up phase, where at most Nrelax

samples for each object are generated, or at least Tstart of
the population are at the ground level of buildings. Next,
the simulator records the location updates of each object in
a trace file, which contains the timestamp of the update and
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the spatial coordinates of the object at that time. The trace 
file serves as the data source for our experiments. 

An IMRQ is generated by randon~ly choosing a user as 
the query issuer. The IMRQ has a range of radius r.  Each 
user has an uncertainty region of radius Ui(t).r. A sam- 
pling size of Ad is used to implement the IMRQ evaluation 
algorithm. 

The City Simulator is implemented in Java and runs [In- 
der Windows XP. The simulation and cloaking agent pro- 
gram is written in C++, and the testbed is run on a UNIX 
server. Each data point is the average value over 200 loca- 
tion update cycles. We use the radius of uncertainty region 
as a measure of the location privacy of user - a larger ra- 
dius implies a higher degree of privacy. Since we are inter- 
ested in the interaction between privacy and service qual- 
ity, our experiments use the IMRQ's query score as the pri- 
mary metric of quality, the value of which can be adjusted 
by changing the resolution of the cloaked location. Table I 
illustrates the parameters of the simulation model. 

6.2 Results 

Quality and Performance. We first decide experin~en 
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tally the number of sampling points for the uncertainty re- 
gion; A f ,  that gives us the highest quality with the lowest 
evaluation cost. Figure 6 shows the results for some com- 
binations of privacy value, query size and number of users. 
When more sampling points are used, the quality increases 
(due to the increase in value of P ( R ~ . ~ )  in Equations 7,9). 
The rate of increase drops when Ad is larger than 49. We 
therefore choose !I1 to be 49 in other experiments. 

In Figure 7 we see that an increase in privacy value 
lengthens the execution time of IMRQ. With a higher pri- 
vacy (or uncertainty region of the query issuer), the ranges 
of sub-queries cover a larger area. Thus more objects are in- 
volved in con~putation, resulting in a higher execution time. 
We remark that an IMRQ needs little time to complete in 
our experiments; for example, it takes only 25ms for an 
IMRQ with a privacy radius of 25 units. 

Quality and Privacy. We investigate the effect of loca- 
tion privacy on query score of the IMRQ. Figure 8 shows the 
result for different number of users. The quality is 1 (high- 
est) when there is no privacy at all. As privacy (i.e., uncer- 
tainty region area) increases, the query score drops. This is 
because the larger uncertainty region increases the number 
of distinct query answers, thereby lowering the query score. 

An interesting observation is that the query score does 
not drop linearly. This is due to the fact that the data distri- 
bution is not uniform. When an object enters a building, it 
can spend some time traveling around different floors of the 
building before going out. As a result, many moving ob- 
jects are clustered in a fixed area (buildings) rather than be- 
ing scattered on roads. As explained before, an increase in 
i~ncertainty region of the query issuer creates more distinct 
answer sets. When her uncertainty region starts to overlap 
a densely-populated region (i.e., a building), a slight expan- 
sion of her uncertainty region can generate many different 
distinct answer sets, due to the inclusion of many location 
data during this expansion. Thus we can see a sharper drop 
at seine regions of the curve. On the contrary, when the un- 
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Quality and Performance. We first decide experimen·

the spatial coordinates of the object at that time. The trace
file serves as the data source for our experiments.

An IMRQ is generated by randomly choosing a user as
the query issuer. The IMRQ has a range of radius T. Each
user has an uncertainty region of radius Ui (t). T. A sam­
pling size of Iv1 is used to implement the IMRQ evaluation
algorithm.

The City Simulator is implemented in Java and runs un­
der Windows XP. The simulation and cloaking agent pro­
gram is written in C++, and the testbed is run on a UNIX
server. Each data point is the average value over 200 loca­
tion update cycles. We use the radius of uncertainty region
as a measure of the location privacy of user - a larger ra­
dius implies a higher degree of privacy. Since we are inter­
ested in the interaction between privacy and service qual­
ity, our experiments use the IMRQ's query score as the pri­
mary metric of quality, the value of which can be adjusted
by changing the resolution of the cloaked location. Table I
illustrates the parameters of the simulation model.

,
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Figure 7. Execution time vs. Privacy

tally the number of sampling points for the uncertainty re­
gion, 111, that gives us the highest quality with the lowest
evaluation cost. Figure 6 shows the results for some com­
binations of privacy value, query size and number of users.
When more sampling points are llsed, the quality increases
(due to the increase in value of P(Rik) in Equations 7,9).
The rate of increase drops when Ai is larger than 49. We

1
'~-o...""YRadi",.'20- therefore choose )\1 to be 49 in other experiments.

#user=100
o L-__~_~~_~ ._____ In Figure 7 we see that an increase in privacy value

o 10 15 20 25 30 lengthens the execution time of IMRQ. With a higher pri-
Privacy Radius vacy (or uncertainty region of the query issuer), the ranges

of sub-queries cover a larger area. Thus more objects are in­
volved in computation, resulting in a higher execution time.
We remark that an IMRQ needs little time to complete in
our experiments; for example, it takes only 25ms for an
IMRQ with a privacy radius of 25 units.

Quality and Privacy. We investigate the effect of loca­
tion privacy on query score of the IMRQ. Figure 8 shows the
result for different number of users. The quality is I (high­
est) when there is no privacy at all. As privacy (i.e., uncer­
tainty region area) increases, the query score drops. This is
because the larger uncertainty region increases the number
of distinct query answers, thereby lowering the query score.

An interesting observation is that the query score does
not drop linearly. This is due to the fact that the data distri­
bution is not uniform. When an object enters a building, it
can spend some time traveling around different floors of the
building before going out. As a result, many moving ob­
jects are clustered in a fixed area (buildings) rather than be­
ing scattered on roads. As explained before, an increase in
uncertainty region of the query issuer creates more distinct
answer sets, When her uncertainty region starts to overlap
a densely-populated region (i.e., a building), a slight expan­
sion of her uncertainty region can generate many different
distinct answer sets, due to the inclusion of many location
data during this expansion. Thus we can see a sharper drop
at some regions of the curve. On the contrary, when the un-
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certainty region starts to cover the road: the drop is much 
slower because the population density on the roads is lower. 

actual posltton 

max. bound 

- .  at to + T 
using V,,, 

, 

We also observe the difference in quality when the num- 
tive difference between the uncertainty size and privacy is 

ber of users varies. In general, for the same privacy value, 
smaller than when the radius is 20, and thus the quality is 

a larger population produces a lower score: since more dis- 
lower too. 

tinct answer sets are produced. The reason why the quality 

! 
I I 
I I 

for Nobj = 100 is slightly better than Nobj = 10 when pri- 
vacy is less than 20  is again due to non-uniform distribution 
of location data. At Nobj = 10: the query issuer chosen 
is located in a denser area than the case for ATobj = 100. 
Thus an increase in privacy value has a stronger effect on 
the quality when Nobj = 10 than when A:,1, = 100. 

We can conclude that the query score is sensitive to the 
density of the region covered by the cloaked location. If 
the region is highly dense, a slight increase in uncertainty 
region can reduce the quality significantly. This observation 
can be useful to the cloaking agent. For example, it may 
advise the user not to further reduce the spatial resolution 
of her location if she is in a crowded area. 

The quality continues to decrease (slowly) when the un- 
certainty radius further increases. The dropping rate is 
much slower because the uncertainty region covers most of 
the objects, and so there is not much difference in the an- 
swer sets. The quality drop is mostly due to the reduction 
of the pdf at each point in the uncertainty region, and in turn 
the value of Equation 7. Due to space limitation we do not 
show the detailed results here. 

Quality and Query Size. Next, we study the effect of 
query size on answer quality. Figure 9 illustrates the re- 
sults: the answer quality increases with query size. With 
a fixed privacy value (uncertainty radius), a continuous in- 
crease in the query size will not create many distinct an- 
swer sets. When the query range has a very large radius 
( 160) compared with the uncertainty radius (20), the query 
ranges created will render many similar answers, since the 
difference in the queries at different points in the uncertainty 
region is relatively small. At a larger radius (30): the rela- 
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7 Protecting Linkability Against Trajectory 
Tracing 
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Figure  9. Quality vs. d u e r y  R a d i u s  F i g u r e  10. I n c r e a s i n g  linkability wi th  t h e  l a s t  
loca t ion  record.  

Before we can claim that cloaking safeguards location 
privacy, there is one final puzzle left to be solved - prevent- 
ing the use of trajectories for inferring locations. Suppose 
the service provider saves all the cloaked locations it re- 
ceived. Also assume the maximum speed of the movement 
of the user is known, which can be obtained through the 
movement history, the vehicle owned by the user. etc. We 
now show that it is possible for the service provider (or at- 
tacker) to increase the linkability of a user's identity with 
her locations, even when it has been cloaked by the user. 

Specifically, let the maximum speed of a certain user be 
V,,,,,. Assume the user sent her last cloaked location at 
time L o >  i.e., U ( t o ) ,  and then again after T  time units, i.e., 
U ( t o  + T). Using V,,,, it is possible to derive the bound 
enclosing the user's location at time to+T (called rnaxitnutn 
bo~tt74, as shown in Figure 10. Even if the user says she 
is located somewhere in U ( t o  + T ) ,  her possible location 
is actually limited within the overlapping region between 
U(Lo + T )  and the niaxinium bound, which is smaller than 
U ( t o  + T ) .  The linkability between the user and the loca- 
tions is thus higher than she expected. Notice that this is an 
accumulative effect, since the service provider can derive a 
smaller bound based on the overlapping region. We propose 
two techniques, called patching and delaying, in order to 
solve this important problem. 
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Figure 9. Quality vs. Query Radius Figure 10. Increasing linkability with the last
location record.

certainty region starts to cover the road, the drop is much
slower because the population density on the roads is lower.

We also observe the difference in quality when the num­
ber of users varies. In general, for the same privacy value,
a larger population produces a lower score, since more dis­
tinct answer sets are produced. The reason why the quality
for N obj = 100 is slightly better than N obj = 10 when pri­
vacy is less than 20 is again due to non-uniform distribution
of location data. At Nobj = 10, the query issuer chosen
is located in a denser area than the case for N obj = 100.
Thus an increase in privacy value has a stronger effect on
the quality when N obj = 10 than when N obj = 100.

We can conclude that the query score is sensitive to the
density of the region covered by the cloaked location. If
the region is highly dense, a slight increase in uncertainty
region can reduce the quality significantly. This observation
can be useful to the cloaking agent. For example, it may
advise the user not to further reduce the spatial resolution
of her location if she is in a crowded area.

The quality continues to decrease (slowly) when the un­
certainty radius further increases. The dropping rate is
much slower because the uncertainty region covers most of
the objects, and so there is not much difference in the an­
swer sets. The quality drop is mostly due to the reduction
of the pdf at each point in the uncertainty region, and in turn
the value of Equation 7. Due to space limitation we do not
show the detailed results here.

Quality and Query Size. Next, we study the effect of
query size on answer quality. Figure 9 illustrates the re­
sults: the answer quality increases with query size. With
a fixed privacy value (uncertainty radius), a continuous in­
crease in the query size will not create many distinct an­
swer sets. When the query range has a very large radius
(160) compared with the uncertainty radius (20), the query
ranges created will render many similar answers, since the
difference in the queries at different points in the uncertainty
region is relatively small. At a larger radius (30), the rela-

tive difference between the uncertainty size and privacy is
smaller than when the radius is 20, and thus the quality is
lower too.

7 Protecting Linkability Against Trajectory
Tracing

Before we can claim that cloaking safeguards location
privacy, there is one final puzzle left to be solved - prevent­
ing the use of trajectories for inferring locations. Suppose
the service provider saves all the cloaked locations it re­
ceived. Also assume the maximum speed of the movement
of the user is known, which can be obtained through the
movement history, the vehicle owned by the user, etc. We
now show that it is possible for the service provider (or at­
tacker) to increase the linkability of a user's identity with
her locations, even when it has been cloaked by the user.

Specifically, let the maximum speed of a certain user be
v,nax. Assume the user sent her last cloaked location at
time to, i.e., U(to), and then again after T time units, i.e.,
U(to + T). Using Vmax , it is possible to derive the bound
enclosing the user's location at time to+T (called maximum
bound), as shown in Figure 10. Even if the user says she
is located somewhere in U (to + T), her possible location
is actually limited within the overlapping region between
U(to + T) and the maximum bound, which is smaller than
U (to + T). The Iinkability between the user and the loca­
tions is thus higher than she expected. Notice that this is an
accumulative effect since the service provider can derive a
smaller bound based on the overlapping region. We propose
two techniques, called patching and delaying, in order to
solve this important problem.



8 Related Works

7.1 Patching and Delaying

The idea of cloaking location information has been re­
cently proposed by Gruteser et a1.[7] for anonymous appli­
cations. In their model, each tuple (x, Y, t) (i.e., location
(x, y) at time t) is transformed to ([Xl. X2], [Yl, Y2], [t 1, t2])
where ([Xl,X2].[Yl,Y2]) is the rectangular area within
which (x, y) is found, between tile time interval [t 1, t 2 ]. To
measure the degree of privacy introduced by cloaking, they

propose a metric called k-anonymity, which measures be­
tween time interval [t1, t2] the number of users, k, at the
same spatial vicinity ([Xl, X2], [Y1, Y2]).

Another work that uses the k-anonymity metric is found
in [2], where pseudonymous applications are studied. The
authors use a middleware to rename pseudonyms, so that a
user's identity cannot be traced. Moreover, this renaming is
done while there are at least k users in the same zone at the
same time period.

The k-anonymity metric has several problems. First, the
scheme may not be used if there are fewer than k users in
the system. Secondly, even if there are more than k users,
they may span in a large area over an extended time period,
in which case the cloaked location can be very large and
cause a severe degradation of service quality. Thirdly, algo­
rithms using this metric assume a trusted middleware which
collects information from all users. It may present a perfor­
mance bottleneck and face the risk of being compromised.
It is also not clear how k-anonymity can be applied to non­
anonymous applications, since it measures the anonymity
of a user, while in non-anonymous application the identity
of the user is already known. We suggest the level of pri­
vacy of cloaked location be measured by the the uncertainty
region size and the entropy of uncertainty pdf, independent
of the number of users inside the uncertainty region.

As far as we know, few papers study location privacy in
non-anonymous applications. A recent paper by Gruteser et
al. [8] proposes the idea of classifying a map into sensitive
and non-sensitive areas. Further, every k sensitive areas are
clustered into a partition. When a user enters a partition, her
location updates are not released until she left the partition,
provided that she had not entered any sensitive area while
she was inside the partition. In this scheme, if the k sensitive
areas are close to each other, it is still easy to guess that
the user has entered one of the sensitive areas. In addition,
there is no guarantee that there are enough sensitive areas
to be clustered. Moreover, service quality is not considered,
which can be seriously affected due to delay and omission
of location infomlation.

To our best knowledge, there is no previous work on re­
lating the effect of location cloaking with service quality.
We proposed in the position paper [5] a framework to bal­
ance the uncertainty injected to a location and quality of
service. Here we study this idea in more detail, and present
a solution for supporting IMRQ, a typical example of non­
anonymous queries.

Another idea for querying private data is to use encrypted
databases. Recently, Hore et al. [II] discussed a privacy­
preserving index for querying range queries over encrypted
data. To the best of our knowledge, these techniques only
work for specific query operators. Also, the feasibility of
those schemes depend on the strength of encryption. Our
method does not need encryption and can be easily extended

~----'----_X
I

I
I

~'

(b)

\ r:::::~'.'._.... ~

I '
1 /i
\ ':
I ' I I

'~~-+_:,,,,.::::,,,,='-__....~.':.::.: U( 10+T)
I I
I I
\
I
I

U(to+T+6r) = U(to+n

y

(a)

U'(to+n = U(to) U U(to+n

·~(;;~~f'

.-L--~-r---. X

Figure 11. Linkability protection techniques
by (a) patching, and (b) delaying.

y

The first idea of preventing Iinkability from being in­
creased is to combine the cloaked locations released in the
past with the current cloaked location before it is sent. We
call this technique patching. Figure II(a) illustrates this
concept. At time 10 + T, in place of U(to + T), the region
U'(to + T) = U(to) U U(to + T) is sent. The increase in
linkability due to trajectory tracing, or "loss" of uncertainty
in U(to + T), is thus "compensated" by the inclusion of
U(to), which is assured to be within the maximum bound.
Essentially, the spatial accuracy of the location is further re­
laxed. Notice that this may cause a degradation in query
score due to the increase in uncertainty.

Another technique is based on relaxing the timing re­
quirement, which we temled "delaying". The idea is to
suspend the request until the cloaked location fits into the
maximum bound. As shown in Figure II (b), U (to + T) is
not sent until after 6t. more time units, when U(to + T) is
guaranteed to be within the maximum bound. The advan­
tage of this scheme over patching is that the extent of the
cloaked location remains unchanged and so the query score
is not affected. However, the response time of the query
can be increased due to the delay introduced, which can be
an important Quality-of-Service parameter in time-critical
applications.



to work with other queries.
In (4], the idea of using an uncertainty model to cap­

'ture the imprecision of moving objects (due to the mea­
surement and sampling error) is proposed. That model is
a generalized version of the one presented here, where the
uncertainty can change with time and the pdf within the un­
certainty region can be non-unifonn. That paper also pre­
sented algorithms for probabilistic nearest-neighbor queries
over different object movement models. In [3], we studied
other types of probabilistic queries, such as range queries
and aggregate queries, and also defined notions of answer
quality for them. The main difference between probabilistic
queries and imprecise queries is that the information about
the query issuer in probabilistic queries is exact. which may
not be the case for imprecise queries. For instance, in the
imprecise moving range query model, the query issuer's lo­
cation is uncertain rather than exact. This calls for new eval­
uation algorithms and quality notions for imprecise queries.

9 Conclusions

Location privacy is an important and emerging topic. To
allow a user more flexibility in controlling her privacy, the
idea of injecting uncertainty to sanitize location information
has been proposed recently. However, those schemes did
not consider the quality and accuracy of services provided,
and it was not clear how the cloaked infonnation can be
queried. We suggested a framework to connect privacy, in­
formation cloaking and service quality. We proposed impre­
cise queries, which hide the identity of the query issuer and
enable evaluation of cloaked information. We studied an
evaluation algorithm and quality metrics of moving range
queries, and showed how they can be implemented conve­
niently using spatial-database technologies. We performed
an extensive simulation to investigate behavior of the pro­
posed scheme. We also presented techniques to protect link­
ability of cloaked information against trajectory tracing.

There are interesting avenues for future work. We would
like to build a software system for the cloaking agent. We
want to examine how our proposed metric for location
cloaking can be applicable to anonymous and pseudony­
mous applications. We will also investigate other kinds
of imprecise queries such as nearest-neighbor and average
queries.
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