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6.3 Experiments

Section 6.3.1 explains the experimental setup. Section 6.3.2 evaluates the speedup

that can be achieved using the GPU. Sections 6.3.3, 6.3.4, and 6.3.5 evaluate the effect

of the desired frame rates, analysis programs, and number of cameras on the resources.

Section 6.3.6 evaluates the resource allocation strategy of the proposed manager.

6.3.1 Experimental Setup

The experiments use two analysis programs for object detection. The two pro-

grams use two convolutional neural networks (VGG-16 [5] and ZF [6]) to detect objects

(e.g. persons and cars) in images. The experiments use the Python implementation

of the region proposal network proposed by Ren et al. [61] to reduce the execution

time of VGG-16 and ZF. Figure 6.1 shows sample outputs. All the experiments use

these programs to analyze 640� 480 MJPEG streams from network cameras.

(a) VGG-16 (b) ZF

Fig. 6.1.: Sample output results from two network cameras. The objects detected are
persons, cars, buses, and TV monitors.

The experiments use a machine with an 8-core Intel Xeon E5-2623 v3 CPU and

32GB of memory. The machine has an NVIDIA K40 GPU with a 12GB of memory.

When the GPU is not used, the experiments refer to the machine as a non-GPU
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instance and the cost is assumed to be the same as c4.2xlarge as shown in Table 6.2.

When the GPU is used, the experiments refer to the machine as GPU instance and the

cost is assumed to be the same as g2.2xlarge. The resource manager is generic and can

be used with different cloud vendors (e.g. Amazon EC2 and Microsoft Azure) with the

appropriate changes in instance capabilities and hourly costs. The experiments focus

on the CPU and GPU utilization without the memory and GPU memory utilization,

but the resource manager is generic and considers all these resource types.

6.3.2 Speedup Achieved Using GPU

The main goal of the resource manager is to meet the desired frame rates of the

analysis programs. Using the GPU to accelerate the programs allows the manager to

achieve frame rates that are not possible using the CPU only. Figure 6.2 shows the

effect of using the GPU on the maximum achievable frame rates of different analysis

programs. VGG-16 (or ZF) can be executed at 3.61 (or 9.15) FPS using the GPU, but

0.28 (or 0.56) using the CPU only. This experiment shows that the resource manger

can use the GPU to achieve a speedup of around 13 (or 16) for VGG-16 (or ZF).
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Fig. 6.2.: The effect of using the GPU on the maximum achievable frame rates.
Speedup: 13 for VG166 and 16 for ZF.
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6.3.3 Effect of the Desired Frame Rates

Desired frame rates significantly affect the resource requirements of analysis pro-

grams as well as the analysis performance. Figure 6.3 shows this effect by executing

VGG-16 using the GPUa t different frame rates. The figure shows that, at the be-

ginning, the CPU and GPU utilization increase linearly with the frame rate and the

performance is 100%. The performance stars to drop gradually after the CPU re-

sources are used up. Since the resource manager aims at maintaining the analysis

performance above 90%, the manager allocates cloud instances such that no resource

utilization is above 90%.
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Fig. 6.3.: The effect of the desired frame rate on the resource requirements of VGG-16
as well as the analysis performance.

6.3.4 Resource Requirements of Analysis Programs

Table 6.3 shows the CPU and GPU requirements of VGG-16 and ZF if executed

at 0.2 FPS using the CPU only or using the GPU. This shows that for each analysis

program, there are two choices of resource requirements depending on whether it is

executed by the CPU or the GPU. The manager estimates these resource require-

ments at different frame rates based on the test run (e.g. Figure 6.2) conducted at



81

a particular frame rate and the linear relationship between the frame rate and the

CPU and GPU utilization shown in Figure 6.3.

Table 6.3.: The CPU and GPU requirements of VGG-16 and ZF if executed at 0.2
FPS using the CPU only or using the GPU.

Program
Using CPU Using GPU

CPU GPU CPU GPU

VGG-16 39.4% - 5.3% 4.6%

ZF 17.8% - 2.2% 1.2%

6.3.5 Effect of the Number of Cameras

The number of camera streams being analyzed using a single instance affects its

resource utilization as well as the analysis performance. Figure 6.4 shows this effect

by using the GPU to execute VGG-16 at 2 FPS on the data streams from multiple

cameras. The figure shows that, at the beginning, the CPU and GPU utilization

increase almost linearly with the number of cameras and the performance is 100%.

The performance stars to drop gradually after the CPU and GPU resources are used

up. Since the resource manager aims at maintaining the analysis performance above

90%, the manager assigns streams to instances such that no resource utilization is

above 90%.

6.3.6 Evaluation of Resource Allocation

To evaluate the resource allocation strategy of the proposed manager, we compare

it with two different strategies as shown in Table 6.4. All the strategies benefit from

the ability of the manager to estimate the resource requirements of different analysis

programs, to formulate the problem as a multiple-choice vector bin packing problem,

and to solve it. For ST1 (or ST2), there is a single choice for the resource requirements

of each analysis program because only non-GPU (or GPU) instances are considered.
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Fig. 6.4.: The effect of the number of camera streams being analyzed (using VGG-16
at 2 FPS) on the resource utilization as well as the analysis performance.

The proposed manager uses ST3 which considers both non-GPU and GPU instances.

In this case, two choices of resource requirements exist for each analysis program

depending on whether it is executed by the CPU or the GPU.

Table 6.4.: The strategies used to evaluate resource allocation. This manager uses
ST3.

Abbr. Resource Allocation Strategy

ST1 The Enhanced Manager (Chapter 5): Always use non-GPU instances

ST2 Always use GPU instances

ST3 This Manager (Chapter 6): Use non-GPU and GPU instances to re-
duce the overall cost of the instances

In order to compare the three resource allocation strategies, we use the three

scenarios described in Table 6.5. The table shows the programs, frame rates, and the

number of camera streams being analyzed in each scenario. Table 6.6 shows the types

and numbers of instances determined by each strategy to handle each scenario:
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Table 6.5.: The scenarios used to compare different resource allocation strategies.

Scenario Program Frame Rate Cameras

1
VGG-16 0.25 1

ZF 0.55 3

2
VGG-16 0.20 1

ZF 0.50 1

3
VGG-16 0.20 2

ZF 8.00 10

Table 6.6.: The types and numbers of instances determined by the different allocation
strategies in Table 6.4 to handle the different scenarios in Table 6.5.

Scen. Strategy
Instances Hourly Cost

non-GPU GPU Cost Savings

1

ST1 4 - $1.676 0%

ST2 - 1 $0.650 61%

ST3 - 1 $0.650 61%

2

ST1 1 - $0.419 36%

ST2 - 1 $0.650 0%

ST3 1 - $0.419 36%

3

ST1 Fail Fail Fail Fail

ST2 - 11 $7.150 0%

ST3 1 10 $6.919 3%

Scenario 1: ST1 uses 4 non-GPU instances to handle the 4 camera streams.

That is because a single non-GPU instance can handle only one stream due to the

high CPU requirement of VGG-16 at 0.25 FPS (or ZF at 0.55 FPS). ST2 uses a single

GPU instance to handle all the 4 streams because the CPU requirement is decreased

significantly while using the GPU. ST3 makes the same decisions as ST2 and either

of them saves 61% of the overall hourly cost compared with ST1.
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Scenario 2: The CPU and GPU requirements of VGG-16 at 0.2 FPS and ZF

at 0.5 FPS are relatively low such that a single instance can handle the two given

camera streams at the same time. ST1 uses a single non-GPU instance while ST2

uses a single GPU instance. ST3 makes the same decisions as ST1 and either of them

saves 36% of the overall hourly cost compared with ST2.

Scenario 3: ST1 fails to execute ZF at 8 FPS since the CPU only can execute

ZF at a maximum of 0.56 FPS as shown in Figure 6.2. ST2 uses 10 GPU instances

to handle the 10 camera streams of ZF and a single GPU instance to handle both the

2 streams of VGG-16. That is because a single GPU instance can handle only one

stream of ZF at 8 FPS due to the high CPU requirement. ST3 considers both GPU

and non-GPU instances to reduce the overall hourly cost so it can replace a GPU

instance with a non-GPU instance. Hence, ST3 saves 3% of the cost compared with

ST2.

These experiments demonstrate that different resource allocation strategies are

best in different scenarios according to several factors, such as analysis programs and

frame rates. The strategy used by the proposed resource manager considers both

GPU and non-GPU instances and always have the lowest cost compared with the

other strategies (e.g. 61% cost savings in Scenario 1).
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7. CONCLUSION

This dissertation introduces CAM2, a web-based system that enables users to analyze

the real-time visual data from thousands of network cameras simultaneously. CAM2

can retrieve data from the heterogeneous cameras and execute analysis programs us-

ing the cloud. The event-driven API simplifies migrating existing analysis programs

to CAM2. This dissertation also proposes cloud resource managers that reduce the

cost for analyzing real-time data streams from thousands of network cameras while

meeting the performance requirements. The managers allocate cloud instances based

on many factors, including the analysis programs, the desired frame rates, the camera

frame sizes, and the types and costs of the instances. The resource managers monitor

the allocated instances; they allocate more instances if needed and deallocate exist-

ing instances to reduce the cost if possible. The experiments show that the resource

managers are able to reduce up to 61% of the overall analysis cost. One experiment

analyzes more than 97 million images (3.3 TB of data) from 5,310 cameras simultane-

ously over 24 hours using 15 instances. Readers interested using CAM2 can register

at https://cam2.ecn.purdue.edu/ and become users.

https://cam2.ecn.purdue.edu/
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