
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2003

An Approach to Identifying Beneficial Collaboration Securely in An Approach to Identifying Beneficial Collaboration Securely in

Decentralized Logistics Systems Decentralized Logistics Systems

Richard Cho

Chris Clifton
Purdue University, clifton@cs.purdue.edu

Ananth V. Ilyer

Wei Jiang

Murat Kantarioglu

Report Number:
03-038

Cho, Richard; Clifton, Chris; Ilyer, Ananth V.; Jiang, Wei; and Kantarioglu, Murat, "An Approach to Identifying
Beneficial Collaboration Securely in Decentralized Logistics Systems" (2003). Department of Computer
Science Technical Reports. Paper 1587.
https://docs.lib.purdue.edu/cstech/1587

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

AN APPROACH TO IDENTIFYING BENEFICIAL
COLLABORATION SECURELY IN DECENTRALIZED

LOGISTICS SYSTEMS

Richard Cho
Chris Clifton

Ananth V. Iyer
Wei Jiang

Murat Kantarcioglu
Jaideep Vaidya

CSD TR #03-038
December 2003

An Approach to Identifying Beneficial Collaboration
Securely in Decentralized Logistics Systems

Richard Cho • Chris Clifton. Ananth V. lyer • Wei Jiang.
Murat KantarclOglu • Jaideep Vaidya

J(mnnert School oJ Management and Department of Computer Sciences, Purdue
University, 403 West State Street, West Lafayette, Indiana 47907-2056

rcho@mgmt.purdue.edu. clifton@cs.purdue.edu. aiyer@mgmt.purdue.edu.
wjiang@cs.purdue.edu • kanmurat@cs.purdue.edu • jsvaidy@cs.purdue.edu

Sharing capacity can lead to significant logistics improvements. Sharing the information
needed to determine if capacity can be shared poses problems. "Ve present a method that
addresses both issues, specifically finding opportunities to swap loads without revealing any
information except the loads swapped. The paper includes proofs of the security of this
method, as well as an analysis of the cost reduction based on real-world transportation
data.

1. Introduction

In a competitive market for operational capacity, there are numerous instances where indi

vidual companies would like to swap tasks or loads to gain operational efficiencies. Trucking

companies face the problem of inefficiencies deriving from contracts that require them to

deliver to all locations required by a shipper. Paper companies facing the need to do special

setups or required to deliver to out-of-the-way locations would prefer to trade loads to im

prove the efficiency of production and delivery of rolls of paper. Steel companies face similar

problems of dealing with surplus inventories with specific properties (Kalagnanam, Trumbo

& Lee 2000). In such markets, the broker plays the role of market maker by collecting and

distributing loads. Often, barter companies act as independent brokers to facilitate these

transactions across competitors.

One reason for use of such a broker is that it prevents disclosure of proprietary informa

tion to competitors. However, this information must still be revealed to the broker. The

cryptographic community has shown that a trusted third party is not required - it is possible

to compute functions without either disclosing private data to any other party(Yao 1986, Gol

dreich, Micali & vVigderson 1987). The result is that no party learns more than they would

1

if a broker arranged the transactions, and no broker is required. Our goal is to apply state of

the art techniques from data encryption to logistic," problems to automate the task performed

by the broker. Companies learn no more than with an honest broker. However, the broker

is eliminated. In fact, for the specific problem and solution given in this paper, we prove

that no party learns more than the minimum they must know to accomplish the desired

efficiency gains. The benefit to shipping companies and shippers is the ability to reduce the

costs associated with collaborating and thus improve the efficiency of the overall system.

In order to provide a complete treatment of our approach, we examine a specific prob

lem context involving truck routing. Truck transport is a $481 billion industry in the US.

However, the industry is extremely fragmented with the largest company accounting for less

than 5% of the market. The main source of inefficiency in this industry is the "deadhead"

miles or miles driven empty. The primary reason for this inefficiency is the spatial nature of

this industry i.e., for a truck to pickup a load, it physically has to be at that location. When

the tmck is done, it ends up at the physical drop off point and then has to travel to the

required location to be useful. Intuitively, if transport companies swap some of their loads,

there is the potential for Pareto improving savings (i.e., neither company faces a higher cost

and at least one company faces a lower cost).

However, attempts to collaborate and thus swap loads to get more efficient routes are

often discouraged by the potential desire by individual companies to "share only if beneficial" .

In addition, legal restrictions, dealing with anti-trust issues, frown upon information sharing

and collaboration that can be potentially anti-competitive. However anti-trust issues do

permit competing firms to engage in limited information sharing and collaboration that

is clearly efficiency enhancing. As reported in the Wall Street Journal, "It is permissible

(for shipping companies) to cooperate in certain ways. For instance, if two of them carry

chemicals for a given producer on the same route, they may pool their capacity for the

purpose of operational efficiency.... But cooperating to divide up markets or affect prices

would fall outside these permitted arrangements" (Bandler 2003).

If transport companies resort to using a broker to swap loads, then the first step is for

each company to independently identify loads it would like to swap. These potential loads

are provided to a broker who now sees all available loads. As a result, parties will only make

things available that they view as likely to be picked up in a swap. Thc key diffcrence in OUT

approach is that all available loads are provided by all companies. The algorithm is cxccuted

in a distributed manner by each company and at no time is the data cntrustcd to any third

2

party. In addition, the secure protocols used in the algorithm guarantee that no information

other than the swapped loads that improve efficiency are revealed to each company, and all

such efficiency-improving swaps are made. This results in both lower information disclosure

and higher efficiency than a traditional broker intermediated model.

Why would companies want such an approach? One motivation comes from the trans

port companies themselves as part of their desire to protect proprietary information while

achieving maximum efficiency. However, another motivation may come from shippers who

could demand SUcll a protocol be used by their associated carriers to ensure that efficiency

is enhanced while preventing any collusion regarding data that is not explicitly required to

be shared and that may reduce competitiveness of the carrier market.

Thus, in this paper, we do the following:

1. \Ve provide an algorithm that ensures that sharing takes place only if eaeh company

sees its costs reduced and that the sharing scheme ensures that all potential players

can engage to identify cost reducing swaps, while

'. ensuring no information is shared other than what can be concluded from the

final swapped points, and

• honesty on the part of the collaborators is ensured by guaranteeing that either

it can be detected that one participant is cheating (and thus gets thrown out of

future collaborations) or that the cheating is not incentive compatible, i.e., the

cheater is worse off.

2. \Ve apply the algorithm proposed to an empirical dataset from a transportation com

pany that provided us with 12 weeks of pickup and delivery data. This empirical data

suggests the delivered value of the algorithm. Empirical results suggest the potential

to reduce costs by over 30% based on application of the algorithm.

3. We show that the algorithm, implemented in a decentralized manner, affords the global

optimum split of loads for a specific setting. Empirical results show its role in practice

when pickups and deliveries are considered.

While the algorithm proposed is a heuristic in the context of vehicle routing, it uses the state

of the art techniques in data encryption and secure multi-party computation techniques that

guarantee that the security requirements are met. It thus brings up an interesting issue for

3

algorithm design for managing information sharing i.e., how does one choose the tradeoff

between an optimal algorithm for routing that might provide information leakage against a

heuristic algorithm that prevents leakage but is a heuristic in the problem domain.

One goal with this paper is to suggest the application of cryptographic techniques as

a enabler of operational efficiency as a potentially fruitful area of research in operations

management. To further this goal, we also included summaries of the literature in data

security and several illustrative examples for the proposed algorithm.

1.1 Problem Description

Given N independent transport companies, each with m points located in two dimensions

that have to be served by a truck, identify a sequence of enquiries and swaps between pairs

of companies that results in:

1. a set of points that when swapped between the companies guarantees that no company

is worse off,

2. no information is shared other than what can be concluded from the final swapped

points,

3. the algorithm is polynomial in running time, and

4. any cheating by either party during the execution of the algorithm can either be de

tected by the other party, or results in a less efficient solution for the cheating party,

thus providing the incentive to truthfully follow the algorithm.

We first map the initial two dimensional problem to one dimension using a space fill

ing curve. The basic idea of lIsing a space filling curve to develop heuristic.."i for combi

natorial problems is de.'lcribed in Bartholdi III & Platzman (1988). Since there is a one

to one mapping from two dimensions to one dimension, points identified for swap in one

dimension provide a unique pointer to the corresponding original point location in two

dimensions. Bartholdi and Platzman show that the heuristic has (a) 25% worse than

optimal worst case performance for planar traveling salesman problems (Bartholdi III &

Platzman 1982) and (b) generates solutions within one second that has a gap of less than

34% more than the best approach for large problems using 2 months of computing time (see

http://www.isye.gatech.edu/-jjb/mow/mow.html) and (c) is used in many implemented lo

gistics packages such as the ARC/Info Geographical Information System, the CAPS Logistics

4

Toolkit of Baan Systems, and other commercial systems managing 2-dimensional data (sec

http://www.isye.gatech.edu/-jjb/mow/mow.html). Note that our approach will be to in

corporate the encryption processes within this heuristic.

Why map to one dimension? In general this is an NP-hard optimization problem, even

without worrying about privacy/security. While proper choice of heuristics may give good

solutions directly on the two dimensional problem, choosing those heuristics requires an

understanding of the characteristics of the data - and sharing this information violates goal

2. However, in one dimension the optimal solution is tractable: search for the best solution

requires a logarithmic number of steps. We will show that such search can be done in a

way that reveals no information not obviolls from the remIts (loads swapped), using secure

comparison and oblivious transfer as cryptographic primitives.

The basic idea of the algorithm is that the parties use a space-filling curve to map this

to a one-dimensional problem. In one dimension, the parties perform a binary search for the

maximum number of points to swap such that each party benefits, i.e., all points received

are closer than points given. vVe give a simple example based on .6.'s point of view. Refer to

Figure 1, and assume .6. wants all of its points to be located on the right. Figures l(a)-l(c)

reflect .6. 's independent view: Its initial route, a space-filling curve mapping the points to

one dimension, and the one-dimensional view of its initial points. Figure l(d) is its view at

the completion of the algorithm: It has given up its three most distant points, and received

three that are closer. vVe will now describe the "magic" that allows .6. to determine which

points it gives and receives, without learning (or revealing) anything else.

1.2 Solution Overview

In one dimension, the problem of determining which points to swap reduces to determining

how many to swap. Each party is given one end of the line; the goal is to determine how

many points to swap to partition the line.

To demonstrate this, we "open up" the view in Figure 2, so the reader (but not .6.) can

see both sides. The idea of the algorithm is to check and see if it is okay to swap a certain

number of points, without either side learning anything except if that many points will be

a beneficial swap. This check is done securely, so that the parties learn only if swapping

a certain number of points is beneficial, not where the points are. vVe describe this using

oblivious transfer. 0 builds a set of boxes, each containing either> or~. The boxes

5

-n.
~~

----- ------It.----------- ---,-

(al (b)

..,
I I I

• II " "

(0) (<I)

Figure 1: A feasible approach from b. 's point of view

6

IS

•• •• •• ••
~ ~~ ~ ~~~~

--+1--+1--+1--+----1-1--jl---ll--+--'"
3 5 7 9 11 13

Figure 2: Illustration of OSROD Execution

1=1

IIbollnd'=OO

Figure 3: Example of execution

correspond to positions on a line, a box entry has a < if 0 will benefit from swapping the

given number of points if everyone it receives is at or to the left of that point.

Figure 3 shows the values of the bOXe."l for checking if swapping a single point is okay. If

o receives points to the left of 15, it benefits (since it gives up a point at 15.) However, if

it were to receive a point at 15 or 16, it would be better not to swap.

If it were to swap one point, I:::::. would give up its point at position 1. It therefore opens

the box at position 1 (its leftmost point) - since this is >, 0 (and 1:::::.) will gain from swapping

one point.

The key to the security of the process is that 0 doesn't know which box 6. opened, and

6. only learns the value in one box. (This is accomplished through a cryptographic protocol

described on page 8.) Thus the only thing learned from the protocol is the value ">". Since

the final result (Figure I(d)) shows 6. involves swapping three points, both parties could

figure out at the end that swapping one point is okay. While they have learned something

new at this point, since it will be obvious once the final swap occurs, it doesn't really reveal

anything.

This process is repeated to find the right number of points to swap. Figure 4 shows the

test for i = 2; 6. looks at position 3 and finds it is okay to swap two points. Figure 5 shows

i = 4; looking at position 9 6. finds that four points given by 0 would include at least one

to the left of this point, so it isn't a beneficial swap. All that is now left is testing a swap

1=2

IIbl)lInd'=oo

Figure 4: Example of execution

7

1= 4

Ibound .. 2, ubound=OO

Figure 5: Example of execution

1= 3

Figure 6: Example of execution

of 3 points - this is shown in Figure G. Since this is okay «), and four points doesn't work,

the final result is to swap three points.

As we will proven later, nothing is learned from this protocol that 0 and 6. wouldn't

learn from giving all of their data to an honest broker. This is accomplished without the

need for an honest broker. For example I from what 6. sees during the execution of the

protocol (the shaded boxes only) I 6 knows that 0 has fewer than four points to the right of

position 9 1 and at least three to the right of position" four. But these would be obvious even

with an honest broker: 6. learns of the as at 11, 13, and 15 from the swap, and knows that

there cannot be another a to the right of 9 or it would have been swapped as well. Thus the

algorithm ensures that sharing of beneficial information is identified by circle and triangle

with no other information being revealed in the process.

We still need to make sure that only one of the electronic "boxes" is opened by 6 1 and

that 0 doesn't learn which box is opened. vVe now show how to do this, even if one parly

tries to cheat. The cryptography community refers to this problem as lout of N oblivious

transfer; it has been the subject of extensive research. Here, we will describe a simple 1

out of N oblivious transfer (OT[) protocol from Naor & Pinkas (2001) and Naor & Pinkas

(1999).

First, we describe two cryptographic definitions that are used in the protocol.

Computational Diffie-Hellman Assumption: Assume that p is a very large prime num

ber and 9 is the generator of its multiplicative group (i.e. every number between

1 ... p - 1 can be written as 91.: mod p fol' some k between 1 ...p - 1). The computa

tional Diffie-Hellman Assumption states that given ga mod p and gb mod p (Note that

a and b is not given), there is no efficient way to compute gnb mod p. This assumption

is the basis for the Diffie-Hellman key exchange protocol; if it docs not hold many

8

cryptographic techniques would be breakable.

Random Oracle Assumption: In the construction of the protocol, we will use a crypto

graphic Hash function H. vVe assume that this function is known to aU parties (e.g.,

SHA) and it maps its input to what appears to be a random output. Again, this is a

common cryptographic tool llsed in many protocols.

Now using the Diffie-Hellman Assumption and a hash function H, we can implement a lout

of n oblivious transfer that discloses no information even if one of the parties tries to deviate

from the protocoL

For simplicity, we will describe lout of 2 oblivious transfer (OTn first, then show a

method to extend any OTI
2 protocol to arbitrary aTr using log(n) aT? operations. In the

following protocol, let fJ be the index of the box that b,. wants to open. (Note that in aT?,
we have only two boxes), and that Bo and B I are the contents of boxes 0 and 1 respectively.

Also note that every operation except evaluating the function Hand ffi (exclusive or) is done

mod p.-

1. 0 publishes a random number G between 1, ... ,p - 1 along with 9 and p.

2. /;i picks a random number k between 1, ... ,p - 1, sets Pu = gk and H-u = G/ Pu, and

sends Po to O.

3, 0 finds P, by evaluating CIPo, creates Eo ~ (g", H((Po)'")ffiBo), E, = (g", H((P1)")ffi

B I), by randomly choosing TO, rl between 1, ... ,p - 1, and sends Eo, E r to 6.

4, 6 computes H((P.)'") = H((g'")k)) to find B.,

In the above protocol the choice of 6 (fJ) is not revealed because all 0 receives is either g~.

or CJgk, where k is chosen randomly. Since operations are done in mod p, both gk or GJgk

values are uniformly distributed between 0, ... ,p - 1. Therefore, 0 does not see anything

more than a random number. 6 learns nothing by receiving the random C, or (because

of the random oracle hash function) from inspecting Eo or E1 . vVhile 6 can decrypt Eu

to obtain the final result, by the original Diffie-Hellman assumption it cannot determine

(gr"'_I)k to decrypt the other box. If bigtriangleup could decrypt both Eo and E1, it means

that it knows a efficient way to find t such that C = 91 mod p for given randomly chosen

C. This would contradict with the Diffie-Hellman assumption, because given gQ mod p and

g'J mod p, 6 can calculate a and b to get gab mod p.

9

Vve now give an overview of how to use the OTf protocol to create a OTf'. Instead of

H above, we use an encryption function E (e.g., DES). For simplicity, assume that 0 has

B 1 ... Elf; and 6. wants to learn E7 .

1. 0 generates 4 key pairs

(I(~,I(i),(I(~,I(i),(I(~,I(i),(I(~,I(l)

where each J(j is a randomly chosen key for E. For 1 ::; i ::; 16, with binary represen

tation (iI, i2 , i3 , i4), 0 creates EE, = Ei EEl EKil (i) EEl E K i 2 (i) EB EKiJ (i) EEl EK;~ (i)
I 2 3 I

2. Since 7 (the box number 6. wants to open) has binRly representation 0111, using four

OTl, 6. learns J(r, J(~, J(j, J(J.

3. 0 sends all EE; to 6..

It can easily be proven that if the encryption scheme and OTl are secure then the above

algorithm is secure. Since it only retrieves one key from each pair, 6. accurately decrypt at

most one message.

Those who are following closely will note a problems: the space and communication

cost is linear in the possible choices for comparison. "Ve really just need to compare two

numbers, the cryptography community has shown how to do this in time O(logn). This will

be discussed further in Appendix A.

The next section gives a formal treatment of the algorithm, along with proofs that it

achieves a one-dimensionally optimal result, that nothing is disclosed that is not obvious

from the result, and that cheating is either caught or detrimental to the cheater. In Section

2.4 we show that the algorithm can be used among multiple parties, and will converge on

a globally optimal solution. Section 3 analyzes the improvement that would result from

using this approach on a set of real shipping transactions. In Appendix A we give more

background on secure comparison, showing how to handle the efficiency issues with the

above simple approach.

10

2. Secure Relative Outlier Detection (SROD) Algo
rithms

This section gives the detail of the algorithms that have been discussed above. We start

off by introducing the notation used in the rest of the section, and also give some necessary

definitions. Subsection 2.3 describes the one dimensional secure relative outlier detection

(SROD) algorithm and also gives a proof of correctness, a proof of security and a proof of

honesty for the algorithm.

2.1 Notations

Sk = {st, s~, ,s~}, a set of m k-dimensional points

Ok = {at, o~, ,o~}, a set of n k-dimcnsional points

T, ~ {s'ls' E Sk}.. "
To' = {oiloi E Ok}

SF =A space filling curve

[a, b] " The range of SF

2.2 Formal Definition of Relative Outliers

Definition 1: (Relative outliers) T~k and TrJ< are relative outliers with respect to Sk and O~·

if:

• Cost of the optimal Hamiltonian cyclcs related to both Sk and Ok is minimized after

the memberships of all points in T5 k are swapped with those of all points in Td<

• T5 k and Tok are smallest such sets

Definition 2: (Extreme Points with respect to X and dx)

• X is a set of points, dx is a direction (i.e. left or right) related to X

• An extreme point is a point in X that is the furthest away from dx

• ith extreme point is a point in X that is the i/Ii furthest away from dx

Definition 3, (Extreme_POS(X, dx, 'i))

11

• X is a set of points, d;r; is a direction (i.e. left or right) and i is an integer

• The function returns the posi tion of the i th extreme points with respect to X and dx

• If i > IXI, the function returns a position beyond the range limits (e.g., -00, +00) in

the direction dx .

Formally, Extreme_POS(X, d;r;, i) is:

Reorder X in ascending order according to position

if d;r; =right then

Return the position of ith item of X (+00 if i > IX!)

else

Return the position of the (IXI + 1 - i)th item of X (-00 if i > IXI)

end if

To illustrate, in Figure 7 ExtremeYOS(Sl, left, 2) returns 12, and Extreme_POS(S1, left,6)

returns -00.

", 0', ", 0; 0', s'.. 0; s ~ 0'o......
3 5 7 9 11 13 15

Figure 7: Illustration of extreme points

2.3 One-dimensional Secure Relative Outlier Detection (SROD)
Algorithm

'We gave a brief example of the way our protocol works in the introduction. The basic

idea of the protocol is that the parties perform a binary search for the maximum number of

beneficial points to swap. Given a number of points k, the parties compare their kth extreme

points. If the locations don't cross, k is a lower bound and the parties try 2k. Once the

locations cross, k is an upper bound, and the search continues between the upper and lower

bounds until the right number of points is found. The set of extreme points become the

relative outlier set at the end of the execution of the protocol.

The detailed protocol is given in Algorithm 1. Line 2 through line 6 determines initial

directions to start the protocol. Because both parties may request the same direction, if one

12

Algorithm 1 SROD: One Dimensional Secure Relative Outlier Detection
Require: 8 1

, ds , 0 1, do
1: {Line 2 through 6 determines initial direction}
2, if ISII '" 10'1 then
3: do ~ds
4: else
5: ds~do

6: end if
7: lbound ~ 0

8: ubound ~ oa
9: i ~ 1

10: {Line 11 through 18 determines the maximal size of i}
11: while (ubound -lbound > 1) do
12: if Extreme_POS(St,l,i) > Extreme_POS(Ot,r,i) then
13: lbound ~ i
11: else
15: ubound ~ i
16: end if
17: i~min(i*2,llbOlmd~1Jbo1JndJ)

18: end while
19: return i

party h(1.'; more points than the other it gets its choice of direction (this ensures an optimal

result.) Lines 11 through 18 finds the maximal size of the relative outlier set.

The only communication occurs in lines 2 and 12, each of which is a comparison. vVe

have given a brief idea of how this is done, the details (from (Yao 1986)) are given in the

Appendix. To make lines 2-6 secure (only revealing the direction, so that if both get their

choice neither learns who has the larger set), we need a slightly more complex protocol. As

the secure comparison method builds on securely eva.luating a boolean circuit, it is straight

forward to extend this to returning the direction rather than the comparison result. The

only requirement is a simple circuit that takes the desired of each and the comparison result

as input, and outputs the result direction. Merging and evaluating both circuits as one (as

described in the Appendix) allows these to be compared securely.

2.3.1 Illustration of BROD Execution

Let 0 and 1:::" be two parties, with original routes shown in Figure 8(a). Figures 8{b) and

8(c) present a space transformation process via a Hilbert curve. We now show the execution

of the algorithm from O's point of view.

13

..
..

" . "...
, I I'"
II " "

..,

(aJ (bJ

/"
~

/,
I

\
I

••••..e-,--,-,-,
1 , , 1

(oj (dl

Figure 8: Execution of SROD protocol between two parties

14

Initially, lbound l- 0, ubound l- 00 and i l- 1. Sincc the difference between lbound and

ubound is greater than 1, the execution enters the while loop. Extreme-.POS(O, left, 1)

returns 15, which is greater than the index returned from Extremc_POS(b., right, 1) (1),

so lbound l-1(i) and i l- 2. In the next iteration, Extreme-.POS(O,left,2) = 13 is still

greater Extreme-.POS(b., right, 2) = 3, so lbound l- 2 and i l- 4. Extreme_POS(O, left, 4) =

6 < Extreme-.POS(b., right, 4) = 9, so ubound l- 4 and i l- 3. Extreme_POS(O, left, 3) =

11> Ext1·eme_POS(b., right, 3) = 4, so lbound l- 3 and i l- 3. since ubound-lbound = 1,

the execution exits with 3 as the number of relative outliers, or points to be swapped

Figure 8(d) shows the resulting routes after each party gives lip their worst three points.

2.3.2 Proof of Correctness

A simple inductive proof demonstrates that the process terminates with the optimal (in one

dimension) results.

If ubound ~ lbound then the following hold

• lbound::; i ::; ubound

• since only way to change ubound and lbound is to set to i, ubound ~ lbound holds

(induction step)

If Extreme_POS(S,l, i) > Extreme_POS(O, r, i) then i is not greater than

• targeLresult,

• lbound gets set to i, othenvise lbound is not changed, so

• lbound::; targeLresult

• i > targeLresult

• ubound gets set to i, otherwise ubound not changed, so

• ubound > targeLresult

If ubound - lbound = 1 then

• ubound > targeLresult

15

• lbaund::; target-result

• so lbound = targeLresult

If ubound ~ lbound = 1 then

• i set to lbound

Therefore, at the end, i = lbound = target-result.

One caveat: If both parties want the same end, it is possible (but not certain) that the

smaller party will cnd up with a longer tour than it started with. The global cost cannot

incrcase: the benefit accruing to the large party will be at least as great as the loss faced by

the smaller party. If this is a problem (i.e., parties will only participate if they are guaranteed

not to have a longer tour), steps 2-6 can be modified to abort the protocol if both parties

choose the same direction. If the protocol is aborted, the only information revealed is that

the two parties have their business concentrated on the same end of the line.

2.3.3 Proof of Security

Theorem 2.1. Algorithm 1 is secure under the definitions of Secure Multiparty Computa

tion.

Proof Communication occurs from line 2 to line 6 and line 12. To prove the protocol is

secure, we only need to show these two parts of the protocol can be computcd securely.

This is done with a simulation approach. We can build a simulator such that given one

party's inputs, the number of relative outliers, and a direction, we are able to simulate what

that party sees during every step of its execution. Since directions are parts of the final

results, we can simulate the first part directly from the final results. A party may know

the other party has a larger dataset if the returned direction is different from the party's

requested direction. However, this additional information is not considered as an information

leak because it is inferred from the final results. Therefore, this first part of the protocol

is secure. Let S_5ROD(51, d", n) be simulator of line 12 of the SROD protocol where n

is the number of relative outliers and d.. is a direction. ·Without loss of generality, assume

ds = left(l). The simulator is given in Algorithm 2.

The basic idca of the simulator is the following: let n be the number of points to swap,

and t be a temporary size of the relative outlier set of 51. If t is less than n, 51 knows t

has yet to be maximal, and the protocol will double the size of t. On the other hand, if tis

16

Algorithm 2 Simulator for SROD Protocol
Require: 51, dsl, n
l:il--l
2: Iboun.d l-- 0
3: ubound l-- 00

'I, while (i of n) do
5: if i < n then
6: [{nown: Extreme_P05(S',I,i,) > Extreme_POS(Ol,r,i)
7: Ibound l-- i
8: i{--i*2
9: else

10: [{nown: Extreme_POS(SI, I, i) < Extreme-POS(Ol, r, i)
11: ubound l-- i
12: i {-- llbn"nd~"bolmdJ
13: end if
14: end while
15: [(nown: ExtremeYOS(81,1,n) = Extreme_P08(01,r,n)

greater than n, S1 knows t is too big to be maximal, and the protocol will decrease the size

of t to a value that is in the middle of its upper and lower bounds. If t is the same as n, t

becomes the size of the relative outlier set of 8 1, and the protocol terminates its execution.

From the simulator, it is oblivious that the shared results from the protocol plus a party's

input are sufficient to precisely simulate each execution of the protocol. Therefore, because

the simulation process and execution of the protocol are computationally indistinguishable,

the SROD protocol is secure.

2.3.4 Proof of Honesty

o

To show that the protocol is incentive compatible, we define an objective function, and then

prove that by cheating:

• the cheating party gets caught

• the cheating party loses due to the decrease in its objective function

• cheating results in no change in the true solution (solution without cheating)

The objective function for a party is defined as the tour length for its points. Formally, the

cost for a party P, Cost(P) is

{Let S represent the list of points owned by P}

17

Reorder S in ascending order according to position

Cost = Position(Slsl) - Position(SI)

The following discussion assumes that P is the cheating party, and Q is the honest party.

'Ne use the following definitions:

• Sp (resp. Sq) represents pIS (resp. QI s) original set of points.

• Swappl (resp. Swapqd represents the set of points of P (resp. Q) that are swapped in

a true run of the protocol (i.e., if P was honest).

• Swappe (resp. Swapqc) represents the set of points of P (resp. Q) that are swapped

after a "cheating" run of the protocol.

• Cost(P)truc represents piS final cost after correctly executing the protocol.

• Cost(P)dICfJf represents piS final cost after "cheating" in the protocol.

• Pos(X) represents thc position of a point X.

• nswaptrue = ISwappt! represents the number of points to swap in a correct execution

of the protocol.

• nswapdleat = ISwappcl is the number of points to swap achieved by "cheating" in the

protocol in some way.

• ISpl = n is the total number of points originally owned by P.

There are two ways that a party can cheat.

1. Falsifying the input to the protocol:

(a) 'Withholding points from the protocol entirely,

(b) 'Withholding points from execution, but adding them to swap, or

(c) Adding fake points

2. l'v1odifying or causing aberrations in the execution of the protocol:

(a) Aborting the protocol,

(b) Lying / LvIodifying step 12 of protocol 1, or

18

While it would appear there are other ways of cheating (e.g., lying in steps 2-6), any such

cheating is equivalent to one of the above. For example, any cheating in the secure protocol

computing steps 2-6 will give an execution of those steps equivalent to some falsified input.

With one exception (cheating at Step 2, discussed later), each form of cheating leads

either to a suboptimal result from the cheater's point of view, or the honest party is able to

detect that cheating has occurred. We will prove this on a case-by~case basis. 'Without loss

of generality, we assume that P holds the left direction while Q holds the right direction.

Case la: Here a party withholds points from the protocol entirely. Assume that P with

holds a point X from the protocol. Either X f/; Swappt or X E Swappt.

x ¢. Swapp! =} Swappt = Swappc =} Swapqt = Swapqc
=} Protocol is unaffected

X E Swapp' => either (3Y E S,IY E Swap" 1\ Y rt Swap"l\pos(Y) < pos(X))
or (3Y E SplY E Swapp< 1\ Y rt Swapp' 1\ pos(Y) < pos(X))

=} Cost(P)chefJt > Cost(P)true

In this case, either the points would not have been swapped anyway, and thus do not

affect the protocol, or they would have been swapped. In the latter case, again there are

two possibilities. The first is that there were closer points that P could have gained, so the

cheating party ends np with a longer travel distance than if it had behaved correctly. The

other is that P could have given up some of these points instead of some of the points it

will now have to swap. But even in this case, the points withheld have to be farther for P

than the points swapped, thus it still ends up with a longer travel distance. Both of these

could in fact be considered legitimate - one party may choose to withhold some loads from

the ones that may be swapped.

Case Ib: Falsifying input can also occur through withholding points during the execution

of the protocol, then adding them to the swap (instead of legitimate points). Assume that P

withholds a point X from the execution of the protocol but adds it to the swap instead of some

point Z. i.e. X 1: Spf\X substituted for some point Z E Swappc. Again, either nswaplrue =

19

nswapchcat + 1 or nswaptrue = nswapcheat (Note: nswaplrue cannot be nswapc/zeat - 1).

nswaplruc = nswapclleat + 1 => X E Swappt => 3Y E SwapqdY ¢. SwapqcA
(pos(Y) < pos(X) V pos(Y) < pos(Z))

=> Cost(P)chcat > Cost(P)trlJc
nswaptrue = nswapcheat => either X E Swappt => (3W E Sp!lV E Swappc A W ¢. Swappl)

ifZ=W
=> Protocol is unaffected
if Z # W => pos(Z) < pos(W)
=> Cost(P)chcat > Cost(P)truc

or X ¢. Swappt => Swappt = Swapl'c => Z E SwaPl't
=> pos(Z) < Pos(X)
=> Cost(P)chcat > Cost(P)tTUC

The +1 case, where the withheld point would have been swapped, P is keeping a point

that it could have traded for a better point from Q, giving P a higher cost. If the withheld

points would not have been swapped, there are two possibilities:

• 'Withheld points are further away (costlier) than the points swapped by Q. In this

case, Q detects the cheating at the time of the swap.

• 'Withheld points are not further, but are not as close as alternative points In this case,

though cheating is not detected, P party ends up swapping some points which are

closer for it than some of the points it would have swapped had it not cheated, so P

loses from cheating.

Case Ie: Alternatively, P can add "fake" points to the execution or the protocol, and then

swap real points instead (swapping fake points would clearly be caught, when the honest

party goes to pick up the non-existent load.) In either of these cases, the honest party will

get points that are further than some it gave up, or the cheating will be detected.

Formally, assume that P adds a point X to the protocol, where X ¢. Sp' Either X ¢.

Swappc or X E Swappc .

X ¢. Swappc => Swappc = Swappt => Swapqc = Swapq!
=> Protocol is unaffected

X E Swappc => either nswapchcat = nSWaplTlJC + 1
=> Chea ting is detected

or nswapchcal = nswaplruc
=> either (3Y E SplY E Swapp/A Y substituted for X in Swappc)

=> Protocol is unaffected
or (3Y E SplY ¢. Swappt A Y substituted for X in Swappc)
=> Cheating is detected

20

Case 2a: If the protocol is aborted by either party, the other party immediately knows

this and can demand an explanation. If the explanation is unsatisfactory, clearly the party

is cheating.

Case 2b: The effect of lying at step 12 causes the two parties to exchange a suboptimal

number of points. (i.e. nswapcheat -=J. nswaptrue) If this number is more than the optimal

number, this will be found out at the exchange phase and P will be caught. If the number is

less than the optimal number, the only result is that both parties have a longer than optimal

tour. This increases the cost for both parties (thoug,h possibly to an unequal extent), but

since P will have a higher than optimal cost, and cannot know for certain if Q or itself will

be hurt the most, there is no incentive for P to cheat.

nswapclu:at > nswaptrue ~ (3Y E SwappclY rt SwapptA
(3Z E Swap"IZ i Swapq' /\ pos(Z) > pos(y)))

=} Cheating is detected
nswapcheat < nswaptruc =} (3Y E SwapptlY fj. Swappc/\

(3Z E Swap"IZ i Swap" /\ pos(Z) < pos(y)))
::::} Cost(P)dLCat > Cost(P)true

Combination of the above A cheating party can indulge in any combination of the

above to confound the other parties. However, the cost effect of each individual cheating

is additive; there is no interdependence on the penalties associated with cheating. Thus a

combination of any of the above simply implies a combination of the individual penalties

and therefore, the cheating party will either be caught, have a higher cost than by being

honest, or the protocol wilt be unaffected.

Choice of direction: A party can successfully lie in steps 2-6 without detection. The

effect is to enable P to force Q to conform to its choice for direction. This is equivalent to

falsified input: a large number of fake points at the end of the scale in P's chosen direction.

Q cannot distinguish this from the true case where P has these points; if the points were

real they would never be swapped anyway. If Q party gets its choice of direction, or P really

has more points, then the protocol is unaffected. However, if the protocol is affected, one

party will end up with a higher cost than in an honest execution, the other with a lower

cost. 'While P cannot know which party will gain, it can make a reasonable guess based OIl

the distribution of its own points: If its points are already close together, then it is more

likely to lose if it is forced to swap all of these and take the other direction. As has been

21

pointed out, this is a problem even if both parties are honest; allowing abort after step 6 is

one solution.

2.4 Execution of SROD among Multiple Parties

Define the optimal result from the execution of SROD among multiple parties to be the

perfect partitioning among all parties' one-dimensional datasets. In other words, any two

of parties' ranges of their one-dimensional datasets arc disjoint. This results in the minimal

global tour (in one dimension).

Theorem 2.2. Execution of SROD among k-parties eventually reaches optimal: k partitions

(where k ~ 2.

PTOof This is proven through strong induction on the number of parties.

Base case: k = 2. From the previous examples, the base case is obviously true.

Inductive step: Let integer t > 2, and assume the claim is true for all k < t. We need to

prove that the claim is true when k = t.

Let k = t - 1. From the induction hypothesis, the execution among the k parties creates

k partitions. Then let another party (say I) join the k-parties and i be any party among the

k-parties or k partitions. If we leave i alone and execute the protocol among the re;t of the

k parties plus t. Then we have a new set of k partitions.

Considering i with the other parties, if the protocol is executed between i and anyone

of the parties whose dataset range not overlapping that of i, the protocol does nothing. Let

p be the number of parties whose dataset ranges overlapping that of i.

If p < k, the execution of the protocol among these p parties plus i eventually leads to

a set of disjoint partitions. These partitions plus the previously disjoint partitions with i

consist k + 1 disjoint partitions.

If p = k, first we need to point out the fact that either the right or left most partition

eventually belongs to the largest party (the one with the most points). During the execution

among the k + 1 parties, if the largest party is selected with any party that overlap with

it, the partition of the largest party will shrink. Since there are finite number of points for

each party, the number of times the partition can shrink is finite. Therefore, eventually, no

party's partition overlaps with that of the largest party. Then the execution among the rest

of the parties will lead to k partitions. Adding the partition of the largest party, we have

k + 1 disjoint partitions. As a result, the claim is true when k = t.

22

Because the baEie ca.<;e and inductive step are true, the claim is true for all k ~ 2. D

3. Experimental Analysis

1Point-swapping is a correct model if multiple trucks return to u central warehouse, such us the model
used by parcel carriers; the purpose of the experiment is to evuluatc the effectiveness of the approach under
more difficult conditions.

23

25'l'. ,-----------------------------,

20%
~PS

~AS

15%t------ ----------------""-=====1 ~OS

11109875432

-5% 1- ---'

1

Figure 9: Savings in Total Distance

24

.'
•

_PS(A)

_AS (A)
_______ DS (A)

··o··PS(B)

··IJ··AS{B)

··,o,··DS{B)
.G.·······O

g
.

.D .',.,., 0

.0

••Q ••••••••Q.

·A ••••••••"'••••••• -A'

--------.~.~.~_><p~~~..~..~.~..-".~.~.-~, '----i' ..'A-

40%

30%

20%

•~
".. 10%•
'""

0%

-10%

·200/0

2 3 4 5 6

Week
7 6 9 10 11

Figure 10: Savings in Individual Distance

guarantees positive savings, the average savings in total distance are 0.6% for PS, 5.7% for

AS and 17.8% for DS.

Figure 10 give the savings by party - again it is clear that destination swapping, by

optimizing the longest tour, gives the best results. It also shows that it is possible for a

party to get a longer tour, even when the global tour length decreases.

3.1 Empirical Results of N party collaboration

We now consider the observed empirical effect of running the algorithm described in the

previous section but for a dataset where we have (a) Individual points in 2 dimensions, (b)

pickup and drop off pairs associated with each shipment. The goal of this run is to identify

how much of the possible improvements can be generated by the algorithm defined and how

that is affected by the number N of transport companies involved.

vVe also used the first week's data from the dataset described earlier, but ignored the

pick-up and delivery pail' for each data set. At first, we randomly allocated the same number

25

of points to each company, named 1,2, ... , n. These points are converted to one-dimensional

data using SF. For every pair of company 'i and j where i -=j:. j, we applied the algorithm

and repeated until equilibrium was reached. After repeating this for 20 initial random

allocations, the average savings in total distance and individual distance are shown in Table

1 for several number of participants. The results are summarized in Figure 11. Note that

Table 1: Saving~ for multiple parties

n Distance Before Distance After Individual Savings Total Savings
Swapping Swapping (%) (%)

2
1 412.4 1 311.8 1 24.4%

27.7%
2 399.3 2 275.8 2 30.9%
1 332.6 1 255.4 1 23.2%

3 2 331 2 130.9 2 60.5% 39.9%
3 333.1 3 213.9 3 35.8%
1 283.3 1 214 1 24.5%
2 288.2 2 117.9 2 59.1%

45.2%4
3 298.6 3 117.4 3 60.7%
4 292 4 189.1 4 35.2%
1 264.7 1 192 1 27.5%
2 263.1 2 113.4 2 56.9%

5 3 264.6 3 72.2 3 72.7% 48.5%
4 263.8 4 149.2 4 43.4%
5 263.8 5 155.9 5 40.9%
1 244.5 1 182 1 25.5%
2 243.3 2 107.5 2 55.8%

6
3 256.6 3 62.3 3 75.7%

51.4%
4 240.8 4 71.4 4 70.4%
5 244.5 5 145.7 5 40.4%
6 239.8 6 147.7 6 38.4%

10 (Sum) 1986.6 (Sum) 792.3 60.1%
15 (Sum) 2534.6 (Sum) 847.1 66.6%
20 (Sum) 3097.4 (Sum) 856.2 72.4%

as the number of parties increase, the savings increase. This is to be expected, as the size of

each partition shrinks a~ the number of parties grows, whereas the expected tour length of

a random distribution of points changes little.

26

...
--?,.~..' '1""

__ •••e

• • • • • • 2400

•
•

....• •

.•

""

,..
'"

..+----_-----_-- ----10
2 4 6 8 10 12 14 16 18 ro

1- <l. DislarCO Boloro Swapping _Dis'aro::u,.' Swapping _% Savingsin Total Distaro::o I

Figure 11: Savings for different number of parties

27

4. Is the approach pro-competitive?

'While we have shown that the method will generally result in an overall cost savings for the

hauler, can we expect that some of these cost savings will accrue to the shipper?

What does it mean to say that this collaboration is pro-competitive?

• Decentralized operation of the algorithm generates the same solution for the shipper

as centralized operation.

• As N increases, the efficiency increases overall i.e., a viral effect.

• Individual transport companies cannot guess which set of points they would get hence

reducing the potential for collusionary pricing.

Consider a set of N independent companies each with m points. Assume that the m

points for each company are uniformly distributed along the line. As described in Section

2.4, repeated runs of the protocol will result in continuous improvement in tour length, with

each company retaining m points. Eventually equilibrium is reached, with a unique partition

of the line into N segments. Thus the decentralized operation of the algorithm generates the

same solution as the efficient algorithm offrred by a central decision maker.

Note also that as N increases, there is a greater ability to cluster sets of points close

together. Thus every possible transport company has the potential to both decrease its own

costs as well as decrease costs for all other companies. In that respect, the algorithm presents

an open system for potential collaboration and decreases the incentives for collusion.

Now consider how an individual transport company would bid for a supplier's work

knowing the existence of the opportunity for collaboration. Given the results described

above, an individual transport company cannot guess which segment or which set of points

it will end up with. In the absence of this certainty, an individual company is faced 'with

some probability of cost reduction through swaps and some probabilistic description of offered

load after swaps. This decreases the ability for individual transport companies to collude to

influence shipper prices. We do not explore the price consequences in this paper - we leave

such exploration to future research.

28

5. Conclusion I Future Work

vVe have described an algorithm that enables independent companies to identify opportu

nities for collaboration without sharing unnecessary data. The theoretical analysis shows

that the algorithm ensures that no information can be inferred except that from the shared

data, that truthtclling is incentive compatible and that features of the algorithm make it

procompctitive. In addition, application of the algorithm to an empirical dataset indicate a

substantial potential impact.

The specific problem described in this paper is a first step towards a greater integration

of data encryption techniques and theory along with problems in operations management.

An interesting open research question concerns the potential tradeoff between the use of a

heuristic approach to problem solution that admits a tight security property vs a closer to

optimal algorithm that permits data leakage. We leave such exploration to future research.

A. Secure Multi-party Computation

Substantial work has been done on secure multi-party computation. The key result is that a

wide class of computations can be done securely under reasonable assumptions. Any function

that can be represented by a polynomial circuit in terms of the number of input bits can

be evaluated in reasonable time. We give a brief overview of this work, concentrating on

material that is used in the paper. The definitions given here are from Goldreich (1998). For

simplicity, we concentrate on the two party case. Extending the definitions to the multi-party

case is straightforward.

A.I Security in the Semi-Honest Model

A semi-honest party follows the rules of the protocol using its correct input, but is free

to later use what it sees during execution of the protocol to compromise security. This is

somewhat realistic in the real world because parties who want to find out results for their

mutual benefit will follow the protocol to get correct results. Also a protocol that is buried

in large, complex software can not be easily altered.

A formal definition of private two party computation in the semi-honest model is given

below. Computing a function privately is equivalent to computing it securely. The formal

proof of this can be found in Goldreich (1998).

29

Definition A.I. (privacy \V.r.t. semi-honest behavior):(Goldrcich 1998)

Let f' {D, I}" x {D, I}"~ {D, I}" x {D, I}" be probabilistic, polynomial-time function

ality, where j, (x, y)(rcsp., j, (x, y)) denotes the first (resp., second) element of f (x, y)) and

let 11 be two-party protocol for computing f.
Let the view of the first (resp. second) party during an execution of 11 on (x, y), denoted

viewp (x, y) (resp., view¥ (x, V)) is (x, TI, ml,···, Tnt) (resp., (y, T2, ml,···, mt)) where TI

reprcscnt thc outcome of the first (resp., T2 second) party's internal coin tosses, and Tni

represent thc ith message it has received.

The output of the first (resp., second) party during an execution of 11 on (x, y) is denoted

outputP (x, y) (resp., output¥ (x, v)) and is implicit in the party's view of the execution.

11 privately computes f if there exist probabilistic polynomial time algorithms, denoted

5 I, 52 such that

{(So (xJ. (x, y)), j, (x, y))L "e{O .)" =c {(view~ (x, y), output~ (x, y))} "(1)
'" , x,yE{O,I}

((J,(X,y),S2(X,j,(X,y)))) e{o.)" _c {(output~(x,y),vicw~(x,y))} "(2)
x,y , x,yE{O,I}

where =c denotes computational indistinguishability.

The above definition says that a computation is seclll'e if the view of each party during

the execution of the protocol can be effectively simulated by the input and the output of

the party. This is not quite thc same as saying that private information is protected. For

example, assume two parties usc a secure protocol to compare two positive integers. If A has

2 as its intcgcr and the comparison result indicates that 2 is bigger than equal other site's

integer, A can conclude that B has 1 as its input. Site A can deduce this information by

solely looking at its local input and the final result - the disclosure is a fault of the problem

being solved and not the protocol used to solve it. To prove a protocol is secure, we have to

show that anything seen is not giving more information then seeing the final result.

In summary, secure multi-party protocol will not reveal more information to a particular

party than the information that can be induced by looking at that party's input and the

output.

A.2 Yao's general two party secure function evaluation

Yao's general secure two party evaluation is based on expressing the function f(x, y) as a

circuit and encrypting the gates for securc evaluation(Yao 1986). 'With this protocol any

3D

two party function can be evaluated securely in the semi~honcst model, but to be efficiently

evaluated the function must have a small circuit representation. To show how secure circuit

evaluation is done without going into too much detail, we will present a simple approach

here. In real life application where performance is an important issue, other approaches

must be used. For comparing any two integers securely, Yao's generic method is one of

the most efficient methods known, although other asymptotically equivalent but practically

more efficient algorithms could be used as well(Ioannidis & Grama 2003).

The circuit evaluation techniques depends on lout of 4 oblivious transfer. Oblivious

transfer was described in Section A.2.4. Details of all these techniques can be found in

Goldreich (1998).

A.2.1 Evaluating the Logical Gates Securely

It is known fact that every circuit can be built by only using XOR(E9) and AND(·)gates. If

we have a mechanism to evaluate these gates securely and combine the results securely, we

will be able to compute any circuit securely.

It must be clear that if we do not want to reveal more than the final result, we must

not be revealing anything during the intermediate evaluations. Let assume that after the

evaluation of each logic gate, the result of the logic gate divided into two random shares ,

such that T = Tl EEl T2 where T is the result. If Alice has the 7'1 and Bob has the T2, both of

them will not be able to predict the result(other part can have anything as the share). The

problem is that the output of this particular gate is an input to an another gate, therefore

in the evaluation of the next gate, we have to combine TI and T2 privately and again output

the random shares of the result. Clearly this process can be repeated to evaluate the entire

circuit. Now we will describe how to achieve this for each type of gate.

A.2.2 Evaluating an XOR gate securely

Given the random shares of each input wire, we would like to create random shares of the

result. Assume that Alice's part of each random share is (aI, a2) and Bob has (b I , b2). ·We

would like to create ar,br such that (a1 EEl bd E9 (a2 EEl b:!) = (ar E9 br). For XOR gate it is

easy to achieve this goal, just set ar = (a1 ED a2) and br = (b1EEl b2). This procedure is secure

because each party can evaluate its share without exchanging any information with the other

party, therefore other party cannot learn anything. Note that XOR of an hr , will give the

result of the gate. Since the initial shares are random, final shares are also random.

31

Table 2: AND gate evaluation

I (0, 1) (0, 1) (1,0) (1, 1)
I (a1" a2) (J)r (a\ "a2) (J) ," (at' a2) EIl T at . a2) EIl T

A.2.3 Evaluating an AND gate securely

Solution for the XOR gate was trivial because we were able use the commutative property of

the XOR function. For evaluating the AND gate, we will have to use the oblivious transfer

tool. Again Alice's part of each random share is (at, a2) and Bob has (bl , ~). Now Alice

and Bob want to evaluate (at EB bd· (a2 EIl b2) = (ur@br). Since Alice knows its inputs, it

can evaluate the result of the gate for each of the 4 possibilities. For example, if Bob has

(0,0) as its input, the result of the gate will be at . a2. Table A.2.3 shows the creation of

such table, one important thing to note is to T. This r will be the random share of the Alice

(ar). In other words, Alice creates its own random share. Now using the lout of 4 oblivious

transfer, Bob can learn its random share. Assume that Bob haC) (I,O),then Bob will get only

the third element which is (at· a2) @T. Clearly ar @br = al . a2, the required result.

A.2.4 Combining Everything

"Vith the help of previous constructs, given the random shares of each input wire, we can

construct the random shares of the output of each gate. At the start of the evaluation, each

party can xor its inputs with some random number and send the random number to other

site to create the initial random shares. After this step above procedures for evaluating gates

can be used until we get the final result.

Note that constant depth and logarithmic size circuits are known for comparison. Since

each gate is evaluated in constant time, this shows that it is possible to avoid the efficiency

issues posed by direct oblivious transfer described in Section.

A.3 Extension to Malicious Model

In the semi-honest model, we require that each party follow the protocol exactly. This

assumption makes it is easy to develop algorithms for semi-honest model. Although the

semi-honest modcl can be a reaC)onable in many cases, clearly a solution for parties that do

not follow the protocols (i.e., showing malicious behavior) is desirable.

32

It can be shown that any semi-honest algorithm can be modified to work in malicious

model. This can be achieved by using zero knowledge proofs and commitment schemes. The

key is making the oblivious transfer protocol proof against a malicious party (as shown in

Section 1.2); the rest follows ea,c;ily.

Acknowledgments

vVe thank Reha Uzsoy for contributions made to the formulation of this problem in initial

discussions of the work.

This work supported by a grant from the Purdue University's e-Enterprise Center at

Discovery Park.

References

Bandler, James. 2003. "How Seagoing Chemical Haulers May Have Tried to Divide Market."

The Wall Street Journal.

Bartholdi III, John J. & Loren I<. Platzman. 1982. "An O(N log N) planar travelling salesman

heuristic based on spacefilling curves." Operatiom Research Letters pp. 121-125.

Bartholdi III, John J. & Loren K. Platzman. 1988. "Heuristics Based on Spacefilling Curves

for Combinatorial Problems in Euclidean Space." Management Science 34(3):157-160.

Goldreich, 0., S. Micali & A. vVigderson. 1987. How to Play any Mental Game - A Com

pleteness Theorem for Protocols with Honest Majority. In 19th ACM Symposium on

the Theon} of Computing. pp. 218-229.

*http)jdoi.acm.orgjlO.1145j28395.28420

Goldreich, Oded. 1998. "Secure Multi-Party Computation.". (working draft).

*http://www.wisdom.weizmann.ac.il/ odcdjpp.html

Ioannidis, Ioannis & Ananth Grama. 2003. An Efficient Protocol for Yao's ~vIillionaires' Prob

lem. In Hawaii International Conference on System Sciences (HICSS-36). \Vaikoloa

Village, Hawaii: .

Kalagnanam, J., M. Trumbo & H. S. Lee. 2000. "The Surplus Inventory ?vfatching Problem

in the Process Industly" Operations Research 48(4).

33

Lin l S. & Brian W. Kernighan. 1973. "An Effective Heuristic Algorithm for the Traveling

Salesman Problem." Operations Research 21(2):498-516.

Naor l Moni & Benny Pinkas. 1999. Oblivious transfer and polynomial evaluation. In Pro

ceedings of the th.irty-first annual A CM symposium on Theory of computing. Atlanta,

Georgia, United States: ACM Press pp. 245-254.

Naor, Moni & Benny Pinkas. 2001. Efficient Oblivious Transfer Protocols. In Proceedings of

SODA 2001 (SIAM Symposium on Discrete Algorithms). Washington, D.C.: .

Yao, Andrew C. 1986. How to generate and exchange secrets. In Proceedings of the 27th

IEEE Symposium on Foundations of Computer Science. IEEE pp. 162-167.

34

	An Approach to Identifying Beneficial Collaboration Securely in Decentralized Logistics Systems
	Report Number:
	

	tmp.1307986960.pdf.eTY2n

