
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2003

Corner Cases in Value-based Partial Redundancy Elimination Corner Cases in Value-based Partial Redundancy Elimination

Thomas VanDrunen

Antony L. Hosking
Purdue University, hosking@purdue.edu

Report Number:
03-032

VanDrunen, Thomas and Hosking, Antony L., "Corner Cases in Value-based Partial Redundancy
Elimination" (2003). Department of Computer Science Technical Reports. Paper 1581.
https://docs.lib.purdue.edu/cstech/1581

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

CORNER CASES IN VALUE-BASED
PARTIAL REDUNDANCY EUMINATlON

Thomas VanDrunen
Antony L. Hosking

Department or Computer Sciences
Purdue University

West LarayeUe, IN 47907

CSD TR #03·032
October 2003

Corner cases in value-based partial redundancy elimination
CSD TR# 03-032

Thomas VanDrunen Antony L Hosking

November 4, 2003

In this technical report, we discuss extensions to our GVN-PRE algorithm [2] needed for full optimality.
In terms of Knoop et al's categories [I], we need partial anticipation to fully cover code motion; We need a
system of predicates to analyze hypothetical insertions in order for this optimization to be cDde placement.

The basic algorithm uses the following flow equations.

AVAIUN[b]

AVAIL-OUT[b]

AVAILOUT[dom(b)]

canon(AVAIUN[b] U PHLGEN(b)

UTMP_GEN(b))

(1)

(2)

!
{'I' E ANTICIN[,ucco(b)]A

Vb' E succ(b), 3e' E ANTJCIN[b']1
ANTICOUT[b] = lookup(e) = lookup{e')} if Isucc(b)I > 1

phi_translate{A[succ(b)], b,succ(b) if Isucc(b)1 = 1

ANTICJN[b] ~ c1"n(canon,(ANTICOUT[b] U EXP_GEN[b]

- TMP_GEN(b)))

(3)

(4)

phi_translate(S, b, b')

pet, 5, b,hI)

/l(Vl op v2,S,b,b')

c1ean{S)
live(vl op V2, S)

{~(" S, b, b')le E S)

{
t, in; ~ p"d(b') A b ~ b, A t t- ¢(t) E b'
t otherwise

= lookup(M(el,S,b,b')) op [ookup(M(e2,S,b,b')),

where el,e2 E S, lookup(ed =Vl, lookup(e2) =V2

{'I' E S,I;,,(e,S)j
(3e E SlIive(e, S), lookup(e) = vtl

/\(3e E S[live(e, S), lookup(e) = V2)

1

(5)

(6)

(7)

(8)
(9)

(a)

,
,~ ... 10 + /,

(b)

,

,

Figure 1: The need for partial anticipation

1 Improving precision: partial anticipation

Consider the program in Figure l(a). The instruction ta f- ts + t l in block 5 is fully redundant, although
there is no available expression at that point. A no-cost phi inserted at block 4, however, would allow us
to remove that computation. See Figure l(b). However, our algorithm would not perform this insertion,
because the expression is not anticipated at block 4.

To improve on this, we define partial anticipation. A value is partially anticipated at a program point if
it is computed on at least one but not all path to program exit. We will define flow equations for calculating
PAJN and PA_OUT sets for block which are similar to those for ANTIC-IN and ANTIC-OUT, except that they
also depend on on ANTICJN and ANTIC-OUT, and they require a value-wise union instead of intersection.
The versions of phi_translate and clean, dep_phdrans and dep_c1ean respecrively, rely on ANTIC-IN.

"non,(U (ANTICJN[b'] U PAJN[b'J))
b'Esucc(b) •...,b';;.b

-ANTICOUT[b]
dep_ph i_trans(PAJ N[succ(b)1,

ANTICIN[,"cc(b)])

PAJN[b] ~ dep_c1,,*,non,(PA_OUT[b]- TMP_GEN[b]

-ANTICJ N[b], ANTICI N[b]))

Other definitions:

l,uce(b)1 > 1

1,"cc(b)1 ~ 1

(10)

dep_phdrans(S, S', b, bl)

j1!(t, S, S', b, b')

/L'(v} op v2,S,S',b,b')

dep_c1ean(S, S')

~ {p'(e, S, S', b, b')le E S}

pet, S, b, b')

== lookup(/L'(e},8,8' ,b,b')) op [ookup(/LI(ez,8,8',b,b')),

where e1, e2 E 8 u 8', lookup((1) == VI, lookup((2) == V2

~ {ele E S, (I;ve(e, S) A nve(e, S')))

2

(11)

(12)
(13)

(14)

<, ~
<, ~
<, ~
Ii ... !~ +!1

,
t. t- ¢(12,/7)

Ie +- ~(t3, t.)

,

<, ~
<, ~
<, ~
14t-1~+tl

III /3 + I,

,
I. I- ";(/2 ,17)

10 <--- 0;>(/3,'.)
tID !- ¢(/4' '9)

La +- ¢(/",/,O

'7 +- '12

Figure 2: Why partial anticipation is tough

(15)

To implement partial anticipation, it would be very inefficient to union all successor full and partial
anticipation sets, then choose canonical representatives, and then to delete those that are fully anticipated,
as the flow equation suggests. Rather, iterate through each expression in ANTIC-IN and PAJN for each
sucessor, and if the expression's value is not already in PA_OUT or ANTIC-OUT, we add it to PA_OUT.

Notice that the flow equation for PA_OUT where there is more than one sucessor excludes passing partially
anticipated expressions across a backedge (that is, when the sucessor dominates the block). This is necessary
for termination. Consider the program in Figure 2(a). In the body of the loop, a value is incremented each
iteration, but the result is rotated around t s and t6 , so that the value from a previous iteration is preserved.
The computation ts +h is redundant in all cases except when the loop body is executed exactly twice: if the
loop is executed only once, its value is stored in t4; if it is executed more than twice, its value was computed
in the third-to-last loop execution. Assuming we name values with the same numbering as the temporaries
which represent them, the expression V5 + VI is fully anticipated into block 3. On a first pass, it is not
anticipated into block 4, so it is partially anticipated in block 2. If we were to propagate it accross the back
edge 4-2, it would become V7 +VI in block 4, which would require a new value, say VlJ. On the next pass, it
would become partially anticipated in block 2. If we propagated partial anticipation through the backedge
again on the next iteration, it would become Vs + VI since V7 is represented by V6 +VI which maps to V5 +Vl,
representing Vs. This new expression would again need a new value; this process would recurr infinitely.

Disallowing partial anticipation propagation through a back edge, however, does not prevent us from
identifying and eliminating the redundancy in this case. On the second pass, block 4 anticipated V5 + VI,

making that expression now fully anticipated in block 2. Since it is partially available (t4 from block 1), we
insert t ll t- t7 + tl in block 4. This insertion makes the value for V6 + VI partially available, and since it is
fully anticipated at the beginning of block 1, we insert tll t- ts + t l in block 1. The phis tlO t- ¢(t4, tll) and
t12 t- ¢(tll,tlO) allow us to eliminate the computations for t7 and ts , shortening the single-loop interation
scenario. See Figure 2(b).

For Insert, we add an extra step for each join point where we iterate over partially anticipated expressions.

3

•
10 1-.

'I l-.

t, <--.

, /" ,"--
I '6 <---. 11 13

1-11 +10 I'41-1,+10

"- /"

f O <--- ¢(to"ll
/7 <--- 9(/0. -oj

• /" G
1181-/0 +10 I IIUI-17+tO I

(aJ

to +- •
'I I- •

t,

, /" ,"--
ItO 11 13 1-1 1 +/0 I'10<---10+'0 ,4 1'+10

"- /"
flO <-- 9(110. 'a)
fl, +- 9(/10. I,)

to I- 9(/0, III

17 <--- 9(/0. to)

• /" ."--
I 18 tlO I I tg +- 'I' I

(bJ

Figure 3: Code placement

We do not want to make insenions if something is only partially anticipated, so we create a phi only if the
equivalent value exists in all predecessors We need an extra variable by_all which we set to false if we inspect
a predecessor where findJeader returns null. We insert only if by_aU is true.

2 Improving precision: Knoop et aI's frontier

2.1 Problem

OUf goal is to eliminate redundant computations without introducing spurious computations. Therefore
as our algorithm makes changes in the program, we make sure never to lengthen any program path by a
computation, though we may lengthen it by moves and phis. So far, our rule for merging values (or leaders
of the same value) in a phi is that such a merge is appropriate at a join point either if the corresponding
expression is fully anticipated and at least partially available or if it is at least partially anticipated and fully
available. In the former case, we are assured that any insertion we may need to make will allow an elimination
later in all paths from that point. In the later case, we are assured that no insertions of computations arc
necessary.

Although this approach is safe, it is not complete. Consider the program in Figure 3(a). At the join point
in block 3, the expression tG + to is partially anticipated. It is available from block 2: translated through the
phis, it becomes t l + to, the leader of whose value it t3. It is not available in block 1. The ex--pression t7 + to
is also partially anticipated, and it also is available from block 2: translated through the phis, it becomes
t2 + to in block 2, the leader of whose value is to\.. It is not available in block 1. Partially anticipated and
partially available, these do not qualify for optimization in the algorithm defined so far. However, they can
be optimized according to our goals. Both of the expressions translate through the phis to t5 + to. If we
insert that computation in block 1 and store it in tID, we can use tlO as the operand to two phis, one to
merge it with t3 and knock out the computation t6 + to, the other to merge it with t4 and knock out t7 + to.
See Figure 3(b).

4

2.2 Solution

An enhancement to our algorithm covering these cases is complicated but still elegant. Consider what is
happening at the join point. The computation needed at the join point is ts + to. The question is, should
we insert that computation? Since it is not equivalent to any fully anticipated expression, we know it will
not be used in block 4. Therefore the answer is, it should be inserted if it is used in (all paths from) block 5
and (all paths from) block 6. How do we know if these will indeed be used? It will be used on block 5 if we
make a phi for to + to; it will be used on block 6 if we make a. phi for t7 + to. How do we know if we should
indeed make these plLis? We should make a phi for a given expression ifit is partia.lly available (which is true
in our cases) and is fully hypothetically available (in other words, if it is already available or will be after
safe insertions). Thus an expression at a join point is "fully hypothetical" if on every predecessor either it is
already available or we will insert a computation for it.

In the words of a children's song, there is a hole in the bucket. Whether or not we insert a computation
ultimately depends on whether or not we will insert it. To state the situation formally, suppose 1T stands
for an expression that is partially anticipated and partially available (a "partial-partial"). Let u range
over expressions which would be the right-hand side of hypothetical instructions, possibly to be inserted.
Suppose that for each partial-partial1T, we have a map IJ.7f which associates predecessors to expressions for
hypothetical instructions. Suppose further that for each expression for a hypothetical instruction u, we have
a map /l-" which associates successors with sets of partial~partials. We then have the following system of
predicates:

wiIUnsert(u)

used(u,s)

make_phi(1I")

part...avail(1I")

avaiJ(1I",p)

foILhyp(rr)

avail_oLhYP(1T,p)

v s E succ, used(u, s)

;::: 311" E ,uu(s)lmake_phi(1T)

part_avail(1T) 1\ ruILhYP(1T)

3 p E predlavail(p,71")

find Jeader(ANTICJN[p], lookup(equivalenLexpression(succ(p), p, 1T)))

#:- null

== Vp E pred,avail_or_hYP(1T,p)

;::: avail(p,1I") VwiILinsert(,urr (P))

(16)

(17)
(18)
(19)

(20)

(21)

(22)

(23)

The system is recursive, and if willJnsert is true, the recursion will be infinite. We believe the converse
is true. Thus we search for a contradiction to this system, and consider it to be true if no contradiction is
found. In terms of implementation, wilLinsert should return true if it is reentered for the same argument.

2.3 Algorithm

To implement this solution, we need a small change to BuildSets: we need to build and maintain a map,
parLsucc_map, which associates an expression with the set of blocks on which the partially anticipated
expression is fully anticipated but which are successors to blocks on which it is partially anticipated. Note
that this might not be simply a single block; if a block has three successors and an expression is anticipated
on two of the three, we need to know about both. Thus parLsucc_map is not a simple map associating a key
with a single entry but a multi-map associating a key to a set of entries. Thus we assume another operation

5

on this map, set...add, which takes a map, a key, and an entry; instead of overwriting any older entry for the
given key, it adds that entry to the set of entries for that key_

More needs to be done to Insert. We need a map (hyp_map) which will associate hypothetical compu­
tations with maps (J.lLl) from successors to sets of partial-partials, and a map (parLparLmap) which will
associate partial-partials with maps (p.,.) from predecessors to hypothetical computations. While doing in­
sert for partially anticipated expressions in a given block, if an expression is also partially available (if it is a
partial-partial), take note of it by making a 1L" for it; for each predecessor, 1L.,- should have a simple expression
already available or a hypothetical computation which could be inserted. Each hypothetical computation
should have its p", which we populate by the successors of the current block found among the blocks at which
the current partial-partial is fully anticipated. After iterating through the partially anticipated expressions,
we consider what hypothetical computations should have insertions and which partial-partials consequently
should phis be made for.

References

[1] Jens Knoop, Oliver Riithing, and Bernhard Steffen. Code motion and code placement: Just synonyms?
Lecture Notes in Computer Science, 1381, 1998.

[2J Thomas VanDrunen and Antony L Hosking. Value-ba.'led partial redundancy elimination. Submitted,
2004.

	Corner Cases in Value-based Partial Redundancy Elimination
	Report Number:
	

	tmp.1307986960.pdf.T8UXQ

