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Fig. 7.6.: Experimental setup of the system to evaluate efficacy of PDTM.

is 1.3mm×1.4mm (with two dummy cores), which is limited by the number of pads.

This chip has been packaged in QFN with a thermal pad to aid in the heat dissipation.

However, no external heat sink is used. It is supplied by an external voltage regulator.

Due to a limitation on the number of pads, external test input vectors could not be

used. A PRBS input generator is therefore used instead. Power traces for various

benchmarks from the SPLASH2 benchmark suite were obtained by simulation in

McPAT and repeated until 0.5 second of real,silicon time elapses. These values are

quantized into eight frequency settings for the cores. As clock frequency is used as

an input, we are limited to utilizing an orthogonal thermal management technique in

this case is core-hopping. However, it must be noted that our sensor can be used to

perform DVFS or fetch toggling in a real system. The core-hopping algorithms are

implemented as a MATLAB code running on a laptop which communicates with the

processor via a FPGA.

Worst-case settling time for the PLL is less than 2μs which is higher than even a

conservative estimate of the transition penalty imposed due to activity migration [78].
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In order to keep this overhead small (<2%), the algorithm reassigns tasks in intervals

of 100μs or larger. We use three controls for the experiment

RTM Randomized thread migration

TTM Temperature based migration where tasks between hottest and coolest cores

are exchanged and so on

VMDTM The complete power sensor based solution for reducing spatial skews in

temperature

Each benchmark has its own distinct power and thermal signature, Hence, we nor-

malize all results (TTM, RTM, VMDTM and PDTM) to the case when the benchmark

is run without any thermal management (NODTM).
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Fig. 7.7.: Incidence of hotspots in a system running RTM.

First set of experiments involved varying the activity reassignment interval- From

a minimum interval of 100μs, benchmarks were run for varying interval lengths up

to 10ms. In case of RTM, it is seen that the number of hotspots (with temperature

>350K) decreases with decreasing interval length. However, the gains taper off.
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Fig. 7.8.: Incidence of hotspots in a system running TTM.

(Fig. 7.7) In the case of TTM, We observe a similar trend in the reduction of hotspots

(Fig. 7.8).
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Fig. 7.9.: Incidence of hotspots in system running VMDTM.
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Fig. 7.10.: Incidence of Hotspots when running PDTM.

Fig. 7.9 and Fig. 7.10 show the hotspot count (normalized to NODTM) while

running VMDTM and PDTM for various scheduling intervals. The hotspot count de-

creases as the scheduling interval gets smaller. However, unlike with the temperature

based migration, power based task migration continues to show improvements even

at fine-grain lengths for task migration. This can be explained by the fact that RC

time constants for on-die heating/cooling was observed to be around 9ms (Fig. 7.3).

At <0.5ms, as temperature values do not change sufficiently, results of temperature

based migration approach that of randomized task migration. However, it must be

noted that power-based thread migration performs better than either at all grain-

lengths in most of the benchmarks. In addition, the sorting heuristic algorithm works

almost as well as the exhaustive search in all cases.

Fig. 7.11 shows the comparison of the best cases of TTM, RTM with a 1ms

migration interval for PDTM. It can be seen that PDTM reduces the incidence of

hotspots quite effectively. In order to investigate the effects of spatial thermal stress

standard deviation was calculated for average temperatures across a 1ms interval. It
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Fig. 7.11.: Comparison of incidence of Hotspots.

can be seen that PDTM is more adept at reducing incidence of thermal stress than

TTM and RTM (Fig. 7.12).
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Fig. 7.13.: Comparison of Peak temperatures.
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Fig. 7.14.: Comparison of incidence of thermal cycles.

Fig. 7.13 shows the peak temperatures in each cases averaged over 100μs intervals.

And an overall reduction of 5oC on average can be seen. Fig. 7.14 shows the incidence

of thermal cycles. Fig. 7.15 shows the average amplitude of these thermal cycles in
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Fig. 7.15.: Average amplitude of thermal cycles.

the case of each benchmark. All results have been presented as a percentage of the

case with no activity migration. Therefore, PDTM has shown an average reduction

of 2.97oC standard deviation, 13.8oC in peak temperature, 82% in hotspot occurence,

and 70% in frequency of thermal cycling compared to TTM and paves the way for

finer-grained thermal management of the future.
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8. FUTURE OF POWER MANAGEMENT

With the advent of multi-core and many-core processors into mainstream comput-

ing, kernel level scheduling algorithms that implement core-stopping, thread-hopping,

global and local DVFS techniques to reduce the incidence of hot-spots and improve

reliability as well as improve throughput will become more popular [102]. As the

number of cores increases, a given core-temperature depends on chip-level heat dis-

sipation and cooling effects rather than just the local (core-level) heat dissipation.

As a result, reliability of thermal sensors for power management decreases. At the

same time, the number of computations required to back annotate temperature values

to local power dissipation increase with the number of sources of power dissipation,

which lead to higher power management overheads. Therefore, sensors that rely on

true power estimation such as the one presented here are essential in next-generation

computing.

Furthermore, there has been growing recognition of the need to define efficiency

of algorithms not just in terms of the orders of computational complexity, but also

in terms of energy efficiency [103]. Power sensors with quick response times become

essential to validate not just the algorithms, but also in order to evaluate the validity

of such metrics. In addition, as testing becomes more complicated, sensors needed for

on-line testing after the chip has been packaged also become relevant. These sensors

enable the implementation of such online test and debug schemes due to the ready

availability of output readouts in the form of digital codes.

As more and more electronic systems are connected through networks, saving the

power in just one system regardless of its interactions with the other connected sys-

tems is insufficient. As an example, most mobile systems (smartphones, tablets, and

laptops) are connected to the Internet through wireless networks. When a mobile

user watches streaming video, power is consumed on the mobile system, as well as
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Fig. 8.1.: Envisioned future of power management in a connected world.

wireless access points, network routers, servers, and storage. It is inadequate to sepa-

rate these connected systems and reduce their power consumption independently. A

recent paper [104] proposes the concept of End-to-End Energy Management, suggest-

ing the need to consider multiple connected systems as a whole for power reduction

(Fig. 8.1).

Real-time power sensors are essential components for realizing end-to-end energy

management because we are able to monitor the power dissipation of multiple systems

as they communicate through networks. Moreover, the premise of cloud computing

is the ability to autonomously migrate computing to meet performance requirements

and resource constraints. The information of real-time power consumption enables

researchers and engineers to dynamically adjust power management strategies across

systems to ensure better efficiency. Thus, tomorrow’s power management strategies

require coordination across layers and optimization involves a combination of algo-



84

rithms at the network, software, kernel and hardware levels (Fig. 8.2). On-chip power

sensors that provide real-time power readings with minimal overheads are, therefore,

crucial in realizing this future.

Network

• Optimizing power from multiple sources on a network

• Power consumption of each node on the network is needed.

Software

• Task-based power management.

• Scheduling on workload predictions, user preferences.

Real-time 

• Distribute workload to avoid hotspots.

• Thread management, DVFS, Vdd stand-by etc.

Physical

• Critical interrupts from sensors.

• Reliability, battery power conservation etc.

Fig. 8.2.: Cross-layer coordination for smarter power management.
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9. CONTRIBUTIONS

Two on-chip power sensors with fast response times have been reported for the first

time. Both the sensors can also be used as temperature sensors with same response

times which are faster than any others reported thus far. Low area and power over-

heads of these sensors enable replication at multiple levels on a chip for fine-grained

power management. A low area-overhead current sensor with low temperature coef-

ficient has also been reported. Operating in weak-inversion, this sensor is inherently

more tolerant to aging related defects and allows for a PVT and aging tolerant power

estimate which paves the way for a smarter, fine-grained power management in both

spatial and temporal domains for high-density systems like microprocessors.

Power sensor was modeled into a four cour processor environment and a EDP

minimizing DVFS governor was demonstrated to have significantly improvements

over hardware performance counters. This system was also used to demonstrated

improved performances of PDP and ED2P minimization governers.

A new algorithm was proposed using the readings from the proposed power sensor.

In order to demonstrate the efficacy of these sensors and the proposed algorithm, a

mulit-core system was fabricated in 45-nm SOI. Predictive thread migration signifi-

cantly reduced the incidence of hotspots and thermal cycles, and also ensured a more

equitable distribution of power dissipation in a multi-core environment, which results

in a lower spatial variation of temperatures.
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