
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2003

vBET: A VM-Based Emulation Testbed vBET: A VM-Based Emulation Testbed

Xuxian Jiang

Dongyan Xu
Purdue University, dxu@cs.purdue.edu

Report Number:
03-014

Jiang, Xuxian and Xu, Dongyan, "vBET: A VM-Based Emulation Testbed" (2003). Department of Computer
Science Technical Reports. Paper 1563.
https://docs.lib.purdue.edu/cstech/1563

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

vBET: A VM-BASED EMULATION TESTBED

Xuxian Jiang
Dongyan Xu

Department or Computer Sciences
Purdue University

West Larayette. IN 47907

CSD TR #03-014
April 2003

vBET: a VM-Based Emulation Testbed

Xuxian Jiang
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907, USA

jiangx@cs.purdue.edu

ABSTRACT
''''ith the increasing requirement ofrohustncss and predictabil­
ity for network protocols and distributed systems, it be­
comes desirable to develop realistic, cllstomizablc, and scal­
able emulation testbed~ for the testing and Cv;ll\lation of
network and distributed protocols. A ll\lmher of recently
proposed emulation testbeds have dearly demonstrated the
advantage and promise of this approach. Meanwhile, more
efforts are necessary to achieve higher degree of flexibility
and reality, as well as customizability, such as stronger sup­
port for arbitrary topology setup and core node customiza­
tion.

In this paper, we present vBET, a versatile and scalable
emulation testbed based on the virtual macWne technology.
vBET is formed by one or more physical commodity servers,
and is therefore readily and locally deployable in a research
lab. vEET creates a virtual distributed environment with
both network infrastructure and end systems. Each entity,
such as a router, a switch, a firewall, or an application-level
proxy, is emulated by a virtual machine running unmodi­
fied system or application software. Furthermore, the en­
tities emulated by vBET are user-configurable and can be
deployed on-demand. The same vBET (physical) server can
be easily configured and setup as the testbed for different
purposes, such as Internet routing, distributed firewalls, or
peer-to-peer networks.

We describe the implementation and application of vBET.
For the implementatioll, we present key enabling techniques
including virtual as, virtual topology, small-footprint file
system, as well as a. network topology modeling language.
For the application of vBET, we present the creation of
different experiment environments using vBET, including
OSPF routing, distributed firewnll, and Chord pccr-to-peer
network. These experiments demonstrate the versatility,
customizability, efficiency and scalability of vBET.

Dongyan Xu
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907, USA

dxu@cs.purdue.edu

1. INTRODUCTION
There has been increasing reqllirement of robustness and
predictability for network protocols and distributed systems,
such as IP routing [18, 21] and packet scheduling [23], peer­
to-peer systems [8, 10, 17], overlay networks [6, 5], and
the computation/data grid [11, 71. It has become desirable
to develop realistic, customizable, and scalable emulation
testbeds for the testing and evaluation of these protocols
and systems.

Meanwhile, traditional simulation tools, such as the widely
used ns-2 [1), are more available and economical, dlle to their
easy installation, management, and relatively low resource
requirements. Unfortunately, simulation-based experiments
may be deemed less convincing, due to their lack of fidelity to
real-world environments, 011 the other hand, real-world ex­
periments are based on realistic settings and therefore more
credible. However I they are highly complex and costly to
set up, control and monitor. Between the two ends, emu·
lation provides a good trade-off between fidelity and cost.
The goal (and challenge) of emulation testbed development
is therefore to achieve controllability, configurability, repro­
ducibility, ease of setup and management, and sc:alability. In
particular, the emulation testbed should be flexible enough
to create arbitrary network infrastructure and topology for
different experiments,

Recently, a number of real-world or emulation testbeds have
been successfuUy deployed. Representative tcstbeds include
PlanetLab[20J, Netbed[26], aJld ModeINet[25]. These testbeds
clearly demonstrate the advantage and promise of emulation­
based experimentation. However, tbere still exist a number
of challenges which are yet to be addressed. In this paper,
we consider tbe following requirements for the design and
implementation of an effective emulation testbed.

• E05Y and wide deployment The testbed is expected to
be ea.!lily and locally deployable in any research lab
equipped with commodity servers or Wgb-end desk­
tops. Therefore, researchers will have full control over
the testbed and enjoy more convenient execution and
monitoring of the experiments. None of PlanetLab,
Netbed, and ModclNet can be readily deployed with­
out the awlilability of substantial hardware resources.

• Sclup of orbitrn'1l network topology Tbe testbed should
be able to accommodate as many distributed systems
as possible to ma."'(imize testbed utilization. But once

devices are procured and te.,>tbed is physically deployed,
some limitations arc also created, such as the number
of ports available in one particular switch or router
a.s well as the same routing code always running on
the Siune devices. Furthennore, it is cumbersome and
not easy to re-wire the plLysicai connection among the
testbed l

• There is a need for stronger virtualization of
network connection in order to set up flexible network
topology.

• Customization oj core nodes Most current emulation or
real systems, such as PlanetLab[20], Netbed[26J, Mod­
eINet[25J, arc capable of customizing the end systems.
Unfortunately, they provide rather limited support for
the customization of core \lodes of the system, such a.,>
replacing the packet queuing discipline or employing
a different route lookup algorithm in one particular
router. It is also desirable to completely change the
roles of core nodes in different experiments· for exam­
ple, a core node may be a high-perfonnance router in
one experiment setup, and an advanced stateful fire­
wall in another experiment.

• Fast setup of experimental topology Most current avail­
able emulation testbed..~, except Netbed[26], lack the
capability of fast setup of experimental network topol­
ogy. It is expected that such setup be automatically
perfonned within seconds, so that the researchers do
not have to experience long waiting time during the
experiments.

• Coordination be~ween core nodCti In current testbeds,
it is cumbersome to coordinate between core nodes,
due to the constrains on physical connection of nodes.
Software or dedicated physical wire [26J is used for
the coordination between core nodes. As a result, dis­
tributed systems, sllch as distributed firewall or dis­
tributed reverse firewall, arc hard to be deployed and
experimented with.

• Reproducible errors and faults Error identification lUId
isolation is another important task in distributed sys­
tem evaluation. Current emulation testbeds usually
provide error-free environment for testing systems un­
der normal conditions, and have weak or even no effi­
cient mechanisms for the generation lUId reproduction
of software errors or faults.

In this paper, we present vBET, a versatile and scalable
emulation testbed based 011 the virtual machine technology.
v8ET is formed by one or more physical commodity servers,
and therefore readily and locally deployable in any research
lab. v8ET creates a virtual distributed environment with
both network infrastructure and end systems. Each entity,
such as a router, a switch, a firewall, or a application-level
proxy, is emulated by a virtual machine running unmodi·
fied system or application software. Furthermore, the en­
tities emulated by v8ET are user-configurable and can be
deployed on-demand. The same vBET (physical) server can
be easily configured and setup ilS the testbed for different
purposes, such a.~ Internet routing, distributed firewalls, or

LVLAN technique can alleviate, but can not eliminate rc­
wirinl; load

peer-to-peer networks, We will describe the implementa­
tion and application of v8ET. For the implementation, we
present key enabling techniques including virtual OS, virt\lal
topology, small-footprint file system, as well as a network
topology modeling language. For tbe application of v8ET,
we present the creation of different experiment environments
using vBET, including OSPF routing, distributed firewall,
and Chord peer-to-peer nctwork. OUI experiments demon­
strate the versatility, efficiency and scalability of vBET.

The rest of the paper is organized a.~ follows, Section 2
describes the v8ET architecture. Section 3 prescnts a net­
work topology model language, which is powerful to model
arbitrary experimental network topology. Section 4 presents
the enabling techniques in vBET implementation. Section
5 demonstrates the versatility, configurability and scalabil­
ity of vEET by setting up environments for a broad range
of experimenL~. Section 6 compares our work with related
works. Finally, Section 7 concludes this paper.

2. OVERVIEW OF VBET
Figure 1 illustrates vDET system in operation. Three differ­
ent experiments are set up in the three vBET servers: vBET
server 1 hosts a simple three-node environment for the eval­
uation of OSPF protocol. vDET server 2 creates a standard
multi-LAN environment, and vBET server 3 contains a dis­
tributed firewall testing environment. Each node inside an
emulated environment is it. virtual machine, inter-connected
by emulated link.

vEET ha.~ the following salient feature.~:

• Etl5y and local deployment vEET can be easily and lo­
cally deployed in any research lab equipped with com­
modity servers or high-end de."ktops. And researchers
will enjoy full control over vBET, as well as convenient
manipulation and monitoring of their experimenL~.

• Flexible and controllable topology deploymen! vEET
can create a flexible and controllable network topol­
ogy thanks to the it.\'ailahility of different virtual de­
vices, such a.~ virtual router, virtual switch, and virtual
hub. The experimental network topology has no lim­
itation on physical port number available in a router
or switch, and no limitation on the number of network
conncctions. Furthermore, in the middle of an exper­
iment, network failures (such as it. partition) can be
injected, so that researchers can test the reaction of
the experimented softwaxe to these failures.

• Customizlltion of core and end system nodCti Although
vEET has provided the ba.~e implcmelltation for differ­
ent types of virtual node, every node inside the topol­
ogy can still be further customized and extended to ac­
commodate new features or it can be entirely replaced
with a different implementation.

• Fast setup of network experiments Due to the capabil­
ity of on-demand instantiation and shutdown of virtual
machines, vBET achieves higWy efficient setup of dif­
ferent experiments. For example, in our sample exper­
iment for the eva.luation of routing flapping In OSPF,
Ollce the virtual topology is specified, it can be set up
in about 6 seconds and tore down in about <I seconds.

vDET s"rvcr I

'''0''-' m
i-(~LI

1,,:11.',")

Figure 1: An overview of vBET

• Scalability In our v8ET implementation, one vBET
server (a Dell PowerEdge 2650 server) can emulate up
to 60 virtual nodes. This feature can potentially be
contributed to current testbeds such as Netbed[26] and
PlanctLab[20].

• Better resaurce utilizatian vBET achic\·es better uti­
lization than dedicated testbed environment due to the
finer granularity of virtual machines and the sharing
of vBET server resources among them.

vBET is based on the following key techniques:

• Virtual OS Due to the tremendous improvement in
server perfonnance, it L.. feasible to run multiple virtual
machines inside one commodity server maclline. In our
laboratory, one Dell PowerEdge 2650 server with Pen­
tium 4 CPU and 2G memory running linux-2.4.19 en­
hanced with our CPU proportional sharing capability
and customized small footprint root file system, can
support up to 60 virtual machines running User Mode
Linux (UML) [9], an open-source Linux·based virtual
as. 60 virtual nodes2 with arbitrary topology can sat­
isfy the need of a large number of experiments.

• ResalJrce shaTing Some existing emulation systems usc
one physical machine as the minimum unit of allo­
cation, which may result in low re.'iOllTce utilization.
PlanetLab[20] defines a slice as the allocation unit,
so that multiple slices can share the same physical
machine and thus achieve better resource utilization.
vBET adopts the same philosophy by running multiple
virtual machines in the same physical vBET server.

• Resource and performance ilia/aLion To emulate real­
world nodes, virtual machines must have resource guar­
antees, so that they can run as real nodes with dedi­
cated resources. In other words, the resource and per­
formance of virtual machines needs to be isolated in
order to acllieve fidelity to the physical nodes.

• On-demand instantiation and tenrdown A virtual ma­
chine can be bootstrapped and tore down whenever
necessary. Such an on-demand property is desirable for
fast e.-q>eriment environment setup and destruction.

2.1 Phases of Emulation Using vBET
To perform emulation experiments using v8ET, there are
three main phases:

• Resource virtualizatian Resoluce virtualization is help.
ful for the generalization and allocation of underlying
resources to different virtllal machines. Resource vir·
tualization techniques, such as pipein [25], can increase
tbe scalability and efficiency of emulation testbeds.
Virtual control terminal and virtual network in!erface
card are two representative examples. Furthermore,
wide-area resource virtualization can facilitate wide­
area. emulations by hiding the specifics of the underly­
ing distributed environment.

2Virtual node and virtual machine arc used exchangeably ill
the following sections

• Topology spedjication A researcher will use a simple
but expressive topology modeling language (to be de­
scribed in Section 3) to specify the experiment net­
work topology. The topology model language provides
several primitives, such as alloc/dealloc, attach/detac/i
and link/unlink.

• Resource mapping and virtlJal topology gcnerntion Based
on the topology specification, the next step is to map
virtual resource requirement to underlying available
physical resources. For example, an OSPFroutershould
be mapped to a virtual machine which is able to com­
municate with its neighbor OSPF routers as specified

in the OSPP pmtocol. During this phase, vBET per­
forms both virtual node creation and virtual topology
deployment. Virtual node must have the specified ca­
pabilities, such as running a particular routing proto­
color being capable of traffic shaping. On the other
hand, virtual topology deployment needs to manage
the layout of virtual nodes.

Currently, we have prototyped virtual nodes based on
UML but with extended functionalities, such as mut­
ing, prmc:ying, firewalling and network address trans­
lation, so that there is a functionally accurate one-to­
one mapping from ca.ch node in the topology specifi­
cation to the corresponding virtual machine. Also vir­
tual switch (or hub) or virtual muter (or firewall) can
be employcd when necessary to glue different virtual
nodes. As a result, tlLis phase creates the nece.-.sary
scripts which are reuscd in ac!ual TUn phase.

• Actual "HI In the last phase, vBET starts tlLe ex­
periments by invoking the scripts created in previous
phases. An experiment may run in a 'slow-motion'
mode, due to the constraint of physical vBET server
resources. Another key issue is the 1P address a-.sign­
ment and network segregation for each virtual node.
Tn vBET system, every virtual node has one unique
reserved IP address, and port redirect technique is em­
ployed to provide remote researchers with console ac­
cess to each virtual node for runtime monitoring and
management.

3. NETWORK TOPOLOGY MODELING
Modeling network topology helps identify core abstract re­
source types and their primitive operations. The network
topology modeling language of vBET is similar to the fa­
cilities provided by ns-2, but easier to understand. Tllough
it is simple, it is powerful for the modeling of network and
distributed environments, especially for the composition of
complex network topologies based on simple ones,

3.1 Resource Type
Currently, the vBET network topology modeling language
supports four different resource types.

• Network A ne/work represents a medium for commu­
nication among network devices. A network can be
logical or physical medium depending Oil the granular­
ity of topological composition.

• Network Device The term nelwork dcvice is used to
refer to the communicating entities, such as bridge,
switch, router, firewall, NAT box or even end !lost,
which can generate, fonvard or accept the real packets
and communicates over networks.

• Network Interface Card Nelwork intcrface earn or
NICis the entity which cnables the actual packet send­
ing or receiving and is flexible enough to be dynami­
cally attached to or detached from nctwork device.

• Cable Cable refen; to the physical or emulated com­
munication link which cnables the real transmission
from one nctwork device to another device.

3.2 Primitive Operations
Ba..,>ed on the abstract resource types we have defined, the
lanl;uage further dcfines tlLree pairs of primitive opcrations.

• nlloc/dealIoc: A simple re.'iOurce, such as a deVice,
NIC or cable can be allocated and dcallocated for an
cxperimcnt environment.

• attach/detach: One NrC call be attached to or de­
tached from a ne/work devicc. For brevity,

attach(device,NIGI,NIG~,... , NIGn)

can be equivalently used a'>

attac1t(attach(attach(device, N IG I), N IG~), . ., N IGn)

NIC(device, n) will return the the nIh NIC aV"dilable
in the device.

• lInk/unlinl..~ Cable can be 1lSCd to link two NICs a/­
faclled to two network devices. A link can be broken
by the unlink operation. The link (unlink) operation is
achieved by perfonning the action of plt<g (or t<nplt<g)
on both ends of cable,

3.3

Figure 2: Simple Ethernet topology

To illustrate network topology modeling, we show the follow­
ing simple example. Figure 2 shows a simple network with
three hosts connected by II switch. The detailed modeling
script is shown in Figure 3:

S....ilChl " !~I"oh(alloc(s...i!oh). ~l1oc(N1C).aU,-,,(NIC). aU'-"(NIC)) I
hostl = 'llxh(a1I",,{ho<L). a1loc(NIC») h"12,, OlL:l<h(alloc(h"'t}. oU",,(NIC)}
hrnt3 = 'llach(,lloc(h"'t).•lloc{NIC) cablc)" allo::(e~bJe}

c.blel "oll",,(coble) coble2 = ,llo::(coble)

pJu&(c~blcL. Nlq,...i'chL) plug(c,blc2. NIC(.... ilChl)) plug(cablc3, NIC(,...itchl»
pluS(coblcl. NIC(hrnLI)) plug(c.blc2, NIC(brn12» plag(c,blc3. NIC(hCklO})

Figure 3: Network topology modeling script: II sim_
ple example

If individual port numbers are self-evident from the context,
a simple Ethernet can be simply modeled as shown in Figure
4,

Figure 4: A script for Ethernet topology Illodeling

4. VBET DESIGN AND IMPLEMENTATION
This section presents vBET's design goals of flexibility, scal­
ability, and f:w/omizabilily, as well as its implementation
details, including basic building hlocks such a~ virtual OS,
uirtual networking, small footprint file system and resource
wolation.

4.1 Design Goals
Besilles the versatility for a wide range of network and dis-­
tributed systems, vBET has the following design goals.

• Topology fle.xi.bility The network topology can be tai­
lorcd for one particular distributed system; and mul­
tiple network topologies can be created for onc ex­
periment environment. Such a flexibility is desirable
for on-demand creation of ;ubitrary network topolo­
gies, especially the ones composed by simple network
topologies, such as ring, star, or switch-enabled LAN.
There shoull! be no physical limitation on the num­
her of physical network connections for each network
device.

• Node cuslomizabiWy Every node in the created net­
work topology can be further customized to experi­
ment with different network services and software (such
a." different service disciplines and routing algorithms).
Current emulation systems have limited or even no
support for the customization of core network nodes
such as routers and firewalls.

• Scalability Instead of scaling the number of physical
nodes in the testbed, vBET focuses on the scalabil­
ity with respect to the number of virtual machines
inside one physical vBET server. Current virtual ma­
chines techniques, such as VMWare[3] and the original
UML[9], axe not lightweight eno\1gh to enable many
physical nodes in a complicated network topology. Our
techniques to achieve scalability can potentinlly be con­
tributed to the existing emulation or real-world testbeds.

4.2 Virtual Machine
To implement virtual machines, there are mainly three lev­
els: host as, guest OS and virtutll mtlchine monitor. Host
OS provides the ultimate physical I/O and memory access
for guest OS and schedules the guest OS processes as regu­
lar processes based on its scheduling policies, such as round­
robin or fair queuing [24]. Virtual machine monitor provides
fundamental underlying resource virtualization and may be
responsible for the accounting of resource consumption 3.

Guest as provides a confined environment for all processes
running inside it. The isolation includes the administmtion
isolation, fault/attack isolation and resource isolation [16].

vBET supports Linux as the host as and leverages UML,
an open-source virtual OS project. Unlike other virtual ma­
chine techniques such as VMWare[3], a UML rum; directly
in the unmodified user space of the host OS; And processes
within a UML will be executed in the virtual server exactly
the same way as they would be executed in a native Linu.~

machine, which can have perfonnance benefit without the
overhead for instruction-level recognition and interpretation
such as Java VM [12]. In UML, a special thread is created
to intercept the system calls made by all process inside the
UML and redirect them into the host OS kernel. Additional
process context environment may be created to store or re­
store upon the entry or exit point of system call, wlJich can
reduce the context switch overhead, and thus increase the
scalability and availability of VM.

3Host OS can also assume the responsibility of resource ac­
counting if one unique ID can identify a virtual machine.

We have extended UML virtual machine, especially from
host as perspective to enable proportional resource sharing,
and implcmentcd small footprint root file system for UML,
wltich significantly increases the scalability of UML.

4.3 Virtual Networking
Virtual networking enables the communication among vir­
tual nodes, and is essential to topology fie.-cibility. We cla<;­
sify different virtual nodes according to their roles as follows:

• Virtual hub/switch Like a regular physical huh (switch),
virtual hub (switch) enables simple packet forwarding
to construct one simple LAN environment. Virtual
hub will forward every packet receivcd to every avail­
able port, which may re:;\1lt in degraded perfonnance
due to the multiple copies of packets. Virtual switch
adds intelligence to packet forwarding, so that only
designated receivers will receive the packet. In the
vBET prototype, one temporary UNIX domain socket
is created as the concentration point for one particular
virtual hub (or switch), and it can receive incoming
connection request and create one additional virtual
port for incoming connection, which hil..~ically elimi­
nate the physical port number limitation. Advanced
packet queuing and forwarding polices can be applied
to virtual hub (or switch) to model any link character­
istics, such as link bandwidth, latency, loss rates and
congestion.

• Virtual router/flrewall A router or firewall operates
as one part of the network infrastructure and enables
communication between netwtlrk devices which are not
connected to a common network Router mainly fo­
cuses on the fast packet forwarding and firewall per­
forms the packet filtering and content im;pection. We
have designed a multi-purpose minimal e.xt2 file sys-­
tern, which is extensible for different functionality mod­
ules (Sectiou 4.4). Different functionality module can
be included during the resource mapping tlnd virtutll
lopology generntion phase, or more specifically virtual
node generalion.

• Virtuallink/NIC Virtual link is constructed or de­
constructed during the connedion establislllnent or
teardown with one particular virtual switch (or hub).
We shift modeling responsihility of link characteristics
to virtual hub/switch for easy prototyping. Virtual
NIC is made avdilable as TUN/TAP device or virtu­
alized as another UNlX domain socket who make the
connection request to the virtual switch (or hub). As
mentioned before, there are no practical limitation on
the number of available virtual NICs for each network
device.

4.4 Root File System
Upon finishing the boot sequence, the Linux: VM kernel at­
tempts to locate and mount a root file system. In order to
increase the scalability of VMs, the root file system need to
have small memory footprint, and should be tailored for a
specific purpose by excluding unnecessary services. In Ollr
prototype, we impose the space size (32 MBytes) for hold­
ing root file system (with type e.xt2), which is reasonably

Figure 6: Network topology for testing routing flap­
ping in OSPF

and host OS CPU scheduler performs resource con­
sumption accounting and enforces resource usage lim­
itation for virtual nodes based on their user id.

-"'-'"''-'''

OSFFrooIi......,.'''''''pr.,
...."',"""";''''......~....
...."'k ,"'-,«I '''''' 0"".<rl'",-,,, ~""' 0,

....' or'
m1;.,,; ~R....

.."' 19L'«I ,,,,,..... 0,

O'FFroaI"........ '.."'l'''

5.1 Routing Flapping in OSPF
This experiment examine; an interesting scenario involving
the OSPF protocol, which demonstrates that baneful persis­
tent route flaps may exist. The logical network setup for this
experiment is shown in Figure 6. The corresponding topol­
ogy modeling script is shown in Figure 7. To highlight the
efficiency of vBET, we note that the whole system L~ boot­
strapped witllin 6 seconds, and can be torn down within t\
seconds.

• Network bandwidlh isolation includes the internal traf­
fic isolation and ext:emal traffic isolalion. Internal
traffic is restricted inside the virtual network topology,
and will not consume real-world network bandwidth.
External traffic generates reallletlVork traffic between
vBET servers. For internal traffic, we equip each up­
stream virtual node with tmffic 5haping capability by
including tmffic shaper module. For external traffic,
a traffic shaper runuing inside the host OS enforces
the fair share of outbound bandwidth among virtual
node;. Since every virtual node has its own IP addres.'l,
the traffic shaper can easily idcntify and thus chaxge
the node responsible for eadt outgoing packet.

• Memory isolation is critical for the performance of vir­
tual nodI'S. vBET simpl)' leverages the me.mory usage
limit feature of U!\IL: the maximum amount of mem­
ory available to a virtual node can be specified when
the virtual node is started.

5. CASE STUDY
We have created several interesting experiment environments
to demonstrate the salient featllIe.~ of vBET: The first ex­
periment tests routing fiClpping in OSPF, which shows an
infrastructllIe-critical routing protocol ca.n be deployed and
customized in the core nodes. The second experiment is
in another interesting application domain: dislribute.d fire­
woll. One flexible network topology is created to enable the
coordination of a set of distributed firewalls to protect one
central server. The third experiment emulates application­
level peer-to-peer lookup service, and subjects the service
to different failllIe models (such as network partition) under
different network topologies.

Figure 5 ilhl.~trates the sct of six optional packages. The
FirewClI/ module contains code that implements an Inter­
net firewall subsystem, and it provides stateless or stateflll
packllt filtering. The NAT modllie handles packet header
translation and even packet payload mangling (such as for
the FTPdataconnection) needed for network address trans­
lation. NAT can be integrated with a firewall or be used
separately. The rouling module contains code for routing
protocols, including HlP, OSPF, and BGP taken from ZIO­

bro 115J package. The Proxy modllie provides functionality
of SOCKS proxy services. and 'I'roffic 3haper modllie can
be employed to experiment with transmission rate moni­
toring and policing. Performance mea5urement modllie in­
dudes some perfonnance measurement routines, such as ttcp
[2]. All of the modules depend on the underlying Minimal
LinlJX 5y5tem, which contains basic system4_wide configu­
ration, daily routines and is thus required for operation of
each virtual node.

FigUl:e 5: Optional file system packages and the min­
imal Linux system

small but t:Ontains sufficient ba~ic functionalities. Also thc
base root file system should be extcnsible to include optional
pac:kage;, which are a"Sociated with a gencral domain or ap­
plication.

• CPU capacity ~olation is achieved by implementing
a coarse-grain CPU proportional sharing scheduler in
the Linux host OS. The scheduler enforces the CPU
share allocated to each virtual node, The CPU shar­
ing of a virtual server is decided during the virtuol node
genemtion. Usually every virtual node gains the fair
share of CPU cycle if not explicitly specified. Within
one virtual node, all processes bear the same user id,

4Here, 3Y3tem means one particular virtual node

4.5 Resource Isolation
To achieve performance isolation of each virtual node, re­
source sharing and isolation need to be guaxanteed by un­
derlying host OS or virtual machine monitor. Resource iso­
lation can prevent malfunctioning virtual node from monop­
olizing the CPU or eating up all of available network band­
width. Resource isolation is necessary for creating high.
fidelity emulation environment. Via extensions to host OS
(Linux), vBET implementation supports CPU, network band­
width, and memory isolo.tion.

-

,v

In Figure 6, there arc three routers - R I , R~ and R:J, each
of which is rllll.lling ospfd from Zebra [15J routing software.
Each of routers R I and R3 intentionally ha." one interface
configured to have the same IP address 192.168.0.1/2<1, a.nd
router R I advertises route entry for 192.168.0.1/32 with
metric 20 (default value) anll router Ra advertises for same
destination with smaller metric 10. Since router R:i incurs
lower cost to reach destination 192.168.0.1/24, router R 2

should choose R:i for destination 192.168.0.1/24 when the
network is stabilized. Detailed OSPF configuration and IP
address assignment for each router arc shown in Figure 6.

<1 'IL:loh(,lkc(rDU'or). ,lIoc:(NIC). ,lIoc(NIC))
rl = OIL:1oh(olkc(routor). ,lIoc:(NIC). ,1loc(NIC))
rl = ,uooh(,lIcc(rDU'cr). ,lIoc:(NIC). ,1loc(Nll))

Figure 9: Screenshot of OSPF experiment when the
better route to 192.108.0.1/24 is down

- - ----------'

link(N1C(d.l). N1C(rl. I))
link(N1C(r2.1). NIC(rl. 1))

Figure 7: Network topology Illodeling script for the
testing of routing flapping in OSPF

At the beginning, router R I and R2 are bootstrapped, then
Ra L" started. When routing tables are stabilhr.ed in all
three routers, from the screenshot ill Figure 8, we can sec
the router R 2 (i.e., ospf2 in Figure 8) adopts the route to
192.168.0.1/24 via router & (Le., ospffi in Figure 8), which
is correct since & contains smaller metric for destination
192.168.0.1/24.

",~lnu"""U1.""50r,o, 1_ ~':o!

"I-'-=-~;~}:~f ~l~:~:l~-Ei,-l~"",,"",~-~~.,~.•.';;.'-"--' .---
"""'" """,,06 0'Y'f, """'.lu' II' r.,.,.1.,.IlS~,'_l--e:o '" 1~.1C9.0.""'.""1I"""'" :>o,<:Z,'" OIJ'f, , ' 1, ' ', .

_lI<><n9 "':o"OG llIJ'F, ""' , , """. " " ...1 __ _ _
•

• "«nI'l ' '-""."".0.'50 "'lAo•• :35.,-,"",255.255 ...
....." 1 , f"""'""""'v'''''IJ''.r...........
•,.. , C12.lGIl.O.l"""!&>'
•".." ""'" I) ,,...,..,~-""""V'......,__f""I1...........,.
i~..:;~;ff ..;;~j~~l 14'0~ _

.~ 'y~I1U.>' nQ~"':.!'''f!.!- " -: _ !j x:

j ,...,.n9 Z1:",OG"""-: """"'I"-'j' 0.1,,".... R5~'-ts. ... '02.''''.0.012<""'"..,.n9 Z1:Zl:OG lD'f: 0:.".".1 , -...,.J.[50 I, ..If ..-",,,,t.cl
""',,",n9 Z1:20,oo; ll5I'f: -.. 0:.....-....1 , COI"'I ";~I-u:. ... 1S2 '(;11.0 012<3M41'Z1 21;20:'" W'f'IE•....-....I1' ,,....-2,.

, U lMOl'Z1 '<2::!l.06 W'f, ",,"to 0:."""1 : MI,"' ",,"<0 "".=.0."'" I
_..... ·Vi,"'.IIllI~ ...""•• II· _ ~. '"

1
2«lJd>4ff.1 'U;:!l,O!> DSl'f, ""'..1.·...".,11: ,;;...~-~,~ ... " ,- --- -- - ----

, ~W<~ ~i~~: =i :::.': ~~: ;~:"'1.~'=~~~·~\"".o.orn
, ~"'" '<2::5:06 lG'F: _ E.......I , '\PO'" ""''''''.
j lIOUZI »:25:00 O\l'f: "'""" (,0,..,.,,1 : fi<o ""'" .. "'''''' _ _ _1

v ~~x.

ltO<n9 21:29:01-: """"I{',-,""Ij' c.I",) 1lS"'C".,.,.,.I-l.SIi ,. 1'Q.'GlI.O.M'
:/OOloM<lZI 21,:::1:01 W'/': """" E,,-,",,I , ''''''''"' .

~:i: ~;~i~~ =i-:::;-: ~::::::: ; ~:...,,~";;;-=':f.J:'~·~\GlI.O.M'f1lO<= 22;~:01 _0Sl'f: """'" 0:.......1 : .s-..,.,..,.H.501 " ,.If ..-ror~ ..,j

Figure 10: Screenshot of OSPF experiment when
better route to 192.168.0.1/24 is up again

vanced OSPF route flap damping features should be intro­
duced and the OSPF protocol performance can be improved
by learning from the routing flapping history and be lazy and
conservative in adopting new or better route entries. To the
best of our knowledge, this is the first time OSPF route flap­
ping effect can be so vividly demonstrated by an emulation
testbed. Our trace logs from this e....:periment are available
at http://www.cs.purdue.edu/homesfjiangx/vBET.

Figure 8: Sereenshot of OSPF experiment when all
routers are working

When we intentionally disable interface 192.168.0.1/24 in
router R.:l, R:J notifies R2 that the corresponding link state
age has reached M=Age, and th\1s is cOllSidered not usable
anymore. As a result, a more e..'~pensive route (with metric
20) to 192.168.0.1/24 via router R I (ospfi in Figure 9) is
adopted by router H2.

5.2 Distributed Firewall
This experiment enables the creation of a topology shown in
Figure 11, in which several Internet connections are available
to provide web services. A set of edge fire walls examining
the incoming requests for the service need to he coordinated
to ensure that the total request load for the service does
not exceed the server capability. The whole system is boot­
strapped within 13 seconds, and can be torn down within 7
seconds.

Then, we re-enable interface 192.168.0.1/24 at router R:i
to examine the routing flapping effect in OSPF. Figure 10
suows that router R2 has found the new route via router R:i
is better than current route via router RI for destination
192.168.0.1/24. As a result, better route for the destination
is updated in router R2.

After several rounds of enabling and disabling, persistellt
route flapping effect is clearly exhibited. Route flapping is
a baneful phenomenon and needs to be eliminated for more
stable and robust networks. Also it infers that more ad-

The virtual network topology is modeled by the script in
FiguTe 12.

\Ve create and compare two simple scenarios to demoIL.~trate

the effectiveness of distributed firewall. In the first scenario,
every firewall forwards requests to the central server without
any limitation, similar to a DDoS attack on central server,
In the second scenario, every firewall restricts the traffic to­
ward the central server in order to prevent the DDoS attack
pro-actively. Figure 13 captures the scrccnshot of an ac!ual
ron.

Table 1, Inbound data (request) rate regulated by
each firewall

.e" ''''
..w, '''' ''''., t

c:=~,.,

"II' "".,,',.
:~';~IJ{\'

Firewall
FWI
FW2
FW3
FW4
FW5

Amount of traffic
578.Bkbps
579.9kbps
579.4kbps
57!).9kbps
580.0kbps

Finally, we create Chord, a peer-to-pecr overlay lookup ser­
vice in vBET. The peer-to-peer network is deployed over
nodes in a network topology depicted in Figure 14. The en­
tire network is bootstrapped within 2 minute.'>, and can be
torn down witbin 1 minute.

_.
Figure 11: Distributed firewall testing environment

~n "'._"''', •...,""'JJ
fwl .,.""lr"••·...J.,_~,C). I..o ""'r~."N'C' ,
fw•••....,.""'r.....' ._mq _,...........,.!Lo«_•• ,.'''''.~1Cl_ ,,.,,._'r~ .•' ._~-.c:'_l
......,...,.. ;0.0, ""'«. N'CU". Il ~":U'''-''SlClr"",.NtC",Ul ~1Cl"'.'" ",

", HI

Figure 12: Network topology modeling script for the
distributed firewall environDlent

We measure the traffic rate observed by the server in both
scenarios. In the first scenario, the server can receive traffic
up to 84.66Mbps. In the second scenario, traffic destined
to tlle server is limited to 640kbps at each firewall with tc
command and as a result, the server only receives traffic at
a rate of 2.8Mbps. The individual traffic rates via the five
firewalls are shown in Table 1.

••••••• 'if.roll'
",

o

Though conceptually simple and straightforward, such ex­
periment is difficult, if not impossible, to setup and experi·
ment witll in real world without a dedicated testbed. Plan­
etLab is not helpful for this purpose since the nodes are
deployed as end systems. Netbed is able to experiment witll
small scale distributed firewall, hut has limitation on the
network topology lUld on the number of network connec­
tions available to routers in the topology. In addition, it is
difficult to isolate the traffic of this experiment from traffic
generated by other e.'~periments.

5.3 P2P Network

...........-- 0·..•••• 1 --- ..
, ""'I<CIOO to "lEt T..,<b«l ~ ~ IIolcoo.o to ulEt r",,<bed •,., ~_ __ ••_n _ ..
Kn-nol ~.l.l'r5tUo ,",' 16116 "'""'I 2.~.19-5'bo ,",. 'IllS
Flll looln' U . ~ FlIo 1""ln' U

.,v;;",U"-i':'.ilIJrW:! 1_ ~')(.,\rod....~;JW5;. _ ~'X.....---. --......-. ..-..... .
• UoT".... \0 ";::<1 r.,U>od • • 11010-0 '" .i:ET T.,.!>ool •.....-..........................-.- ,..-.- ..
....",1 2.~.1'r5tUo"". 'IllS ~J 2._.1'r5tUo '"'. lGOO

(~~~~..~'"~'~'~~;;;;;;;;;;;;~~~fII5 1<>9!n; U""'n rr.n,"",fWO -)(.,~~~i.!i!!~~I!!~~o~.~
,--. ~ ~ __.:•••n
I. 1101.- <0 ullET 1•• r.b<d • • 1101__ <0 uBET T..r.hed •

I -- - .._ - .
K<rnol 2.~.1~ on • ,m; ~2 2.'.~ "" • 'Wib. FV; 1"'n"U _ llI'lln' I

Figure 13: Screenshot of distributed firewall exper­
iment

Figure 14: A Chord P2P overlay network with 55
peers

In figure 14, there are 55 Chord peers, which arc instanti·
ated around the Chord ring (see screenshot in Figure 15).
One Chord node assumes the responsibility as bootstrapping
node. The 55 chord nodes resides in two LAL'I networks,
which is connected by a virtual router. Such topology is
useful to demonstrate and validate the reaction of Chord
to different failure models, especially the network partition
failure.

More complicated topologies can be created to experiment
different aspect.... of Chord network, such as CFS storage util­
ity [8], the peer-to-peer storage service based on Chord, Our
purpose here is to show vDET's flexibility of creating exper­
imental network topology and its customizability for every
node inside the topology. One of our on-going projects is to
design and apply trust models and reputation management
systems to overlay networks, and test them using vBET.

6. RELATED WORK
There have been some previous efforts in investigating the
usc of emulation in the context of their specific research
{13, 19, }II]. Recently, several general-purpose emulation
testbeds have been proposed and deployed [2U, 26, 25, 41.
vBET shares the same goal of providing high-fidelity em­
ulation or real environment for the experimentation with
distributed systems and network protocols.

Figure 15: Screenshot of Chord P2P network experiment

8.
[1]

[2]
[31
['I
[51

PlanetLab [20] is in the process of deploying hundreds of
nodes across the Internet to create Point of Presence (or
PoP), 50 that wide-area distributed systems can be deployed
and evaluated using real Internet traffic. Though e.'Ctremely
valuable because of real deployment, the experiment envi­
ronment is difficult for an individual researcher to gain full
control. And core routers are not allowed to run customized
software. As a result, it may not be feasible to experiment
with infrastructure-criticnl systems and protocols, such as
distributed routing and distributed firewall. vBET comple­
ments PlanetLab: the former can be installed in a PoP of
the latter, so tlmt experiments with infrastructure-critical
systems can be carried out locally.

Netbed (26J allows users to configure a subset of network
resources for i.!lolated distributed systems and networking
experiments. It provides an integrated environment that
allows users to set up target operating systems and net­
work configurations. Again, vBET can be integrated with
Netbed, especially by contributing the scalability (with re­
spect to the number of virtual nodes within one physical
machine) and flexibility (of topology setup) features to the
latter.

ModelNet [25] targets scalable and flexible emulation envi­
ronment, which can perform full hop-by-hop network emu­
lation. The basic mechanism for scalability is the pipe tech­
nique from dummynet (22]. As a result, it is difficult for
ModelNet to support tracerou!e-Iike applications. One im­
portant property of ModelNet is that it balanccs scalability
and efficiency by employing both emulation and simulation
techniques. vBET, on the other hand, provides complete
control and customization over core nodes. It can run third­
party softwares in core nodes, including routing protocol,
advanced stateful packet filtering or other network services.

Umlsim[4] is another recent effort parallel to ours which
exploits the virtual machine technology to LTeate simula­
tion/emulation platforms. Instead of focusing on a specific
application or protocol (such as Tep), vBET aims at pro­
viding a general-purpose testbed for different applications
and protocols.

7. CONCLUSION
Emulation testbeds are expected to be ea.sily and widely de­
ployable. In an emulation tcstbed, arbitrary network topol­
ogy can be created for different experimental systems and
protocols. Furthermore, it is desirable to support core node
customi~ation, including fault injection into core nodes, co­
ordination betwccn core nodes, as well as update or modifi­
cation of critical components in core nodes, such as routing
protocol. In this paper, we present the design and imple­
mentation of vBET, a." our initial efforts towards meeting
these goals. The salient features of vBET include easy de­
ployment, scalability, customizability, and efficiency. Our
experiments with different network and distributed systems
demonstrate the versatility of vBET. Furthermore, vBET
complements existing emulation or real-world testbeds and
can be readily integrated into the existing systems.

REFERENCES
The Network Simula.tor ns-2 .
http:/jwww.isi. wu/nsnQ,m/ns/
ncp. ftp:/lflpl.sunet.se/pub/network/rnQni/oriny/ttcp.
YM\Varc. http://www.QmWllrl::.com.
W. Almesberger. UML simulator.
htlp://W1J11JJ. almesberger.ne/jumlsim/.
D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. Re5ilicn~ Oveday Networks. Proc. l8th ACM
SOSP, Banff, C'mllda, Oct. 2001.

[G] R. I3raynard, D, Kostk, A. RodriguC".<, J. Chase, and
A. Vahdat. OpU!l: an Overlay Peer Utility SCn>ice.
Proceedings of the 5th IntCnlation,,' Con/erenCf!. on Open

Architectures 'l7ld Netwurk Programming (OPENARCH),
June 2002.

[7] A. Chen'cnak, I. FosLer, C. 5. C. Kessclman, and
5. Theckc. The DaLa Grid: Towards an Architecture for the
Distributed Management and Analysis of Large Scientific
Data Sets. Procct:dinys NctStuT'C'99, Oc~. 1999.

[8] F. Dabek, M. F. 1{aashoek, D. Karger, R. Morris, and
T. Stoica. \Vide-area cooperative sLorage with CFS.
Proceedings of Ihe 18th ACM Symposium un Operating
Systems Prineiples(SOSP'I), Oct. 2001-

[9] J. Dike. User Mode I.inux.
http://user-mode-/inux. sourcefurge.nel.

[10] P. Druschel and A. Rowstron. PAST: A large-scale,
persistent peer-to-pecr sLorage utility. HotOS VIII, Schoss
B/mau, Germany, May 2001.

[1I] 1. Foster, C. Kesselman, J. Nick, and S. Thecke. The
Physiology of the Grid: An Open Grid ServicC'l
Architecture for DiSLributed SysLCIIL'l Integration. OJl('n
Grid SenJice InjrastT1J.ctuT'C we, Global Grid Forum, June
2002.

[12] E, Gagnon and L. Hendren. SableVM: A Research
Framework for the Efficient Bxecution of Java Bytecode.
Jauo Virtual Machine Itesearch and Technology
Sympusium (JVM '01), Apr. 2001.

[13] G.Banga, J. Mogul, and P. Druscbel. A scalable and
explici~ event delivery mechanism for UNIX. Proceedings oj
the USENIX 1999 Annual Technical Conference,
Monlerey, CA, June 1999.

[14] H.Yu and A. Vahdat. The Costs and Limits of Availability
for Replicated Services. Proceedings oj the Efghteenth
ACM Symposium On Operating Systems Principles
(SOSP), Oct. 2001.

[15] K. Ishiguro. Zebra. http://1J11JIw.zebra.org/.
[16] X. Jiang and D. Xu. SODA: a Service-On-Demand

Architecture for Application Service Hosting UWity
Platfonns. Proceedings of The 12th IEEE Intemotionol
Symposium on Hi9h Performance Distributed Computing
(lfPDC-12), SeaWe, WA, June 2003.

[17] J. KubiaLowicz, D. Bindel, Y. Chen,S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. 'Veatherspoon, W. \Veimer, C. 'Veils, and B. Zhao.
OceanS\.ore: An Architecture for Global-Scale Persistent
Stora.ge. Proceedings u/ the Ninth inlemotiuna/ Confer>:.na:.
on Architectural Support for Programming Longuagu and
Operaling Systems (ASPl.OS 2000), Nov. 2000.

[18J J. Moy. OSPF Version 2.
http://!1I11lw.ietj.ury/..fc/rje2328.~t, Apr. 1998.

[19] D. Noble, M. Satyanarayanan, C. Nguyen, and R. Katz.
'I'race-Daood Mobile Ne~ork Emulation. Proceedings 0/
ACM SICCOMM 1997, Cannes, Prance, Sept. 1997.

[20] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for IIlLroducing Disruptive Technology into Lhe
Internet. Prrxeedings of ACM HotNets-I Workshop,
Prinee/on, New Jersey, USA, Ocl. 2002.

[21] Y. Ilckhtcr and T. Li. Border Gateway ProLocol4
(BGP-4). http://www.ietf.org/rfc/..jcI77/.~t, Mar. 1995.

[22] L. ruzzo. Dummynet and Forward Error Correction.
Prrxeedings u/ the USRNlX Annual Technical Conferenre,
June 1998.

[23] 1. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair
Queueing: Achieving Approximately Fair Bandwidth
Allocations in High Speed Networks. Prrxeedings of
SlGCOMM'98, Sept. 1998.

[241 V. Sundaram, A. Chandra, P. Goyal, and P. Shenoy.
ApplicMion Perfonnance in the QT.inux Multimedia
Operating System. Proeeeding~ of the Eighth ACM
Conference on Multimedia, Nov. 2000.

[25] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker. Scalability and Accuracy in a
Large-Scale Network Emulator. Proceedings of 5th
Symposium on Opernting Systems Design and
Imp/ementotion (OSDI), Dec. 2002.

[26] B. \VhiLe, J. Lepreau, L. Stoller, R. Ricci, S. GurupraBad,
M. Newbold, M. Hiblcr, C. Barb, and A. Joglekar. An
Integrated Experimental Environment ror Distributed
SysLems and Networks. Proceedings uf 5/h Symposium on
Operating Systems Design and Implementation (OSDI),
Dec. 2002.

	vBET: A VM-Based Emulation Testbed
	Report Number:
	

	tmp.1307986960.pdf.r7LKc

