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ABSTRACT

With the increasing requirement of rabustness and predictabil-
ity for network protocols and distributed systems, it be-
comes desirable to develop realistic, customizable, and scal-
able emulation testbeds for the testing and evaluation of
network and distributed protacels. A number of recently
vroposed emulation testbeds have clearly demonstrated the
advantage and promise of this approach. Meanwhile, more
cfiorts are necessary to achieve higher degree of Hexibility
and reality, as well as custotnizability, such as stronger sup-
port for arbitrary topology setup awd core node customiza-
tion.

In this paper, we present vBET, a versatile and scalable
emulation testbed based on the virtual machine technology.
vBET is formed by one or more physical commodity servers,
and is therefore readily and locally deployable in a research
lab. vBET creates a virtual distributed environment with
both network infrastructure and end systems. Each entity,
such as a router, a switch, a firewall, or an application-level
proxy, is emulated by a virtnal machine running unmodi-
fied system or application software. Furthermore, the en-
tities emulated by vBET are user-configurable and can be
deployed on-demand. The samne vBET (physical) server can
be easily configured and setup as the testbed for different
purposes, such as Iuternet routing, distributed firewalls, or
peer-ta-peer networks,

‘We describe the implementation and application of vBET.
For the implementation, we present key enabling technigues
including virtual OS, virtual topology, small-footprint file
system, as well as 2 network topology modeling language.
For the application of vBET, we present the creation of
different experiment environments using vBET, including
OSPF routing, distributed firewall, and Chord pecr-to-peer
network. These experiments demonstrate the versatility,
customizability, efficiency and scalability of vBET.

Dongyan Xu
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Purdue University
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1. INTRODUCTION

There has beer increasing requirement of robustness and
predictalility for network protocols and distributed systems,
such as IP routing [18, 21] and packet scheduling [23], peer-
to-peer systems [8, 10, 17], overlay networks [6, 5], and
the comrputation/data grid [11, 7]. It has become desirable
to develop realistic, customizable, and scalable emulation
testbeds for the testing and evaluation of these protocols
and systems.

Meanwhile, traditional simulation tools, such as the widely
used ns-2 [1), are more available and economical, due to their
easy installation, management, and relatively low resource
requirements. Unfortunately, simulation-based experiments
may be deemed less convincing, due ta their lack of fidelity to
real-world environments. On the other band, real-world ex-
periments are based on realistic settings and therefore more
credible. However, they are highly complex and costly to
set up, control and monitor. Between the two ends, emu-
lation provides a good trade-off between fidelity and cost.
The goal {and challenge} of emulation testbed development
is therefore to achieve controllability, configurability, repro-
ducibility, ease of setitp and management, and scalability. In
particular, the emulation testbed should be flezible enough
to create arbitrary network infrastructure and topology for
different experiments.

Recently, a number of real-world or emulation testbeds have
been successfully deployed. Representative testbeds include
PlanetLab(20], Netbed[26], and MadelNet[25]. These testbeds
clearly demonstrate the advantage and promise of emulation-
Dased experimentation. However, there still exist a number
of challenges which are yet to be addressed. In this paper,
we censider the following requirements for the design and
implementation of an effective emulation testbed.

s Fasy and wide deployment The testbed is expected to
be easily and locally deplayable in any research lab
equipped with commadity servers or high-end desk-
tops. Therefore, researchers will have full control over
the testbed and enjoy more convenient execution and
monitoring af the experiments. None of PlanetLah,
Netbed, and MadelNet can be readily deployed with-
out the availability of substantial hardware resources.

» Setup of arbitrary nelwork topology The testbed should
be able to accommadate as many distributed systems
as possible to maximize testbed utilization. But once



devices are procured and testbed is physically deployed,
some limitations are also created, such as the number
of ports available in one particular switch or router
as well as the same routing code always running on
the same devices. Furthermore, it is cumbersome and
not easy to re-wire the plysical connection among the
testbed!. There is a need for stronger virtualization of
network connection in order to set up flexible network

topology.

s Customizalion of core nedes Most current emulation or
real systems, such as PlanetLab[20], Netbed[26], Mod-
elNet[25], are capable of customizing the end systems.
Unfortunately, they provide rather limited support for
the customization of core nades of the systern, such as
replacing the packet queuing discipline or employing
a different route lookup algorithm in one particular
router. It is also desirable to completely change the
roles of core nodes in different experiments - for exam-
ple, a core node may be a high-performance router in
one experiment setup, and an advanced statefitl fre-
wall in another experiment.

Fast selup of experimental topelogy Most current avail-
able emulation testbeds, except Netbed[26], lack the
capalility of fast setup of experimental network topol-
ogy. It is expected that such setup be automatically
performed within seconds, so that the researchers do
not have to experience long waiting time during the
experiments.

Coordination between core nodes In current testbeds,
it is cumbersome to coordinate between core nodes,
due to the constrains on physical connection of nodes.
Seftware or dedicated physical wire [26] is used for
the coordination hetween core nodes. As a result, dis-
tributed systems, such as distributed firewall or dis-
tributed reverse firewall, are hard to be deployed and
experimented with,

Reproducible errors gnd faults Emror identification and
isolation is another important task ir distributed sys-
tem evaluation. Current emulation testbeds usually
provide error-free environment for testing systetns un-
der normal conditions, and have weak or even no effi-
cient mechanisms for the generation and reproduction
of software errors or faults.

In this paper, we present vBET, a versatile and scalable
emulation testbed based on the virtual machine technology.
vBET is formed by one or more physical commodity servers,
and therefore readily and locally deployable in any research
lab. vBET creates a virtual distributed environment with
hath network infrastructure and end systems. Each entity,
such as a router, a switch, a firewall, or a application-level
proxy, is emulated by a virtual machine running unmodi-
fied system or application software. Furthermore, the en-
tities emulated by vBET are user-configurable and can be
deployed on-demand. The same vBET (physical) server can
be easily confignred and setup as the testbed for different
purposes, sech as Internet routing, distributed frewalls, or

'WLAN technique can alleviate, but can not eliminate re-
wiring load

peer-to-peer networks, We will describe the implementa-
tion and application of vBET. For the implementation, we
present key enabling techniques including virtual OS, virtual
tapalogy, small-footprint file system, as well as a netwaork
topalogy madeling language. For the application of vBET,
we present the creation of different experiinent environments
using vBET, including OSPF routing, distributed firewall,
and Chord peer-to-peer network. Our experiments demon-
strate the versatility, efficiency and scalability of vBET.

The rest of the paper is organized as follows, Section 2
describes the vBET architecture. Section 3 presents a net-
work topology model language, which is powerful to model
arbitrary experimental network topology. Section 4 presents
the enabling techniques in vBET implementation. Section
5 demonstrates the versatility, configurability and scalabil-
ity of vBET by setting up environments for a broad range
of experiments. Section 6 compares our work with related
warks. Finally, Section 7 concludes this paper.

2. OVERVIEW OF VBET

Figure 1 illustrates vBET system in operation. Three differ-
ent experiments are set up in the three vBET servers: vBET
server 1 hosts a simple three-node environment for the eval-
vation of OSPF protacol. vBET server 2 creates a standard
multi-LAN environment, and vBET server 3 contains a dis-
tributed firewall testing environment. Each node inside an
emulated environment is a virteal machine, inter-connected
by emulated link.

vBET has the following salient features:

» Easy and local deployment vBET can be easily and lo-
cally deployed in any research lab equipped with com-
madity servers or high-end desktops. And researchers
will enjoy full control over vBET, as well as convenient
manipulatior and monitoring of their experiments.

= Flemible and conirollable topology deployment vBET
can create a flexible and controllable network topol-
ogy thanks to the availability of different virtual de-
vices, such as virtual router, virtnal switch, and virtual
hub. The experimental network topolagy has no lim-
itation on physical port number available in a router
or switch, and no limitation on the number of network
connections, Furthermore, in the middle of an exper-
iment, network fatlures (such as a partition) can be
injected, so that researchers can test the reaction of
the experimented software to these failures.

» (Custemizalion of eore and end sysiem nodes Although
vBET has provided the base implementation for differ-
ent types of virteal node, every node inside the topol-
ogy can still be further customized and extended to ac-
commodate new leatures or it can be entirely replaced
with a different implementation.

Fasit setup of network ezperiments Due to the capabil-
ity of on-demand instantiation and shutdown of virtual
machines, vBET achieves highly efficient setup of dif-
ferent experiments. For example, in our sample exper-
iment for the evalnation of routing flapping in OSPF,
ouce the virtual topology is specified, it can be set up
in about G seconds and tore down in about 4 seconds.
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Figure 1: An overview of vBET

« Scalability In our vBET implementation, one vBET
server (a Dell PowerEdge 2650 server) can emulate up
to 60 virtual nodes. This feature can potentially be
contributed to current testbeds such as Netbed[26] and
PlanctLab[20].

Beiter resource utilization vBET achieves better uti-
lization than dedicated testhed environment due to the
finer granularity of virtual machines and the sharing
of vBET server resources among them.

vBET is based on the following key techniques:

s Virfual OF Due to the tremendous improvement in
server performance, it is feasible to run multiple virtual
machines inside one commodity server machine. In our
laboratory, one Dell PowerEdge 2550 server with Pen-
tinm 4 CPU and 2G memory running linux-2.4.1% en-
hanced with our CPU proportional sharing capability
and customized small footprint root file system, can
support up to 60 virtual machines running User Mode
Linux (UML) [9], an apen-saurce Linux-based virtual
0S. 60 virtual nodes® with arbitrary topology can sat-
isfy the need of a Jarge number of experiments.

Resource virlualization Resource virtualization is help-
ful for the generalization and allocation of underlying
resources to different virtual machines. Resource vir-
tualization techniques, such as pipein [25], can increase
the scalability and efficiency of emulation testbeds.
Virtual control terminal and virtual network interface
card are two representative examples. Furthermore,
wide-area resource virtualization can facilitate wide-
area emulations by hiding the specifics of the underly-
ing distributed environment.

*Virtual node and virtnal machine arc used exchangeably in
the following sections

2.1

Resource sharing Some existing emulation systems use
one physical machine as the minimum unit of allo-
cation, which may result in low resource utilization.
PlanetLah|20] defines a slice as the allocation unit,
so that multiple slices can share the same physical
machine and thus achieve better resource utilization.
vBET adopts the same philosophy by running multiple
virtual machines in the same physical vBET server.

Resource and performance tsolaiton To emulate real-
world nodes, virtual machines must have resource guar-
antees, so that they can run as real nodes with dedi-
cated resources. In other words, the resource and per-
formance of virtual machines needs to be isolated in
order to achieve fidelity to the physical nodes.

On-demand instantiation and feardown A virtual ma-
chine can be bootstrapped and tore down whenever
necessary. Such an on-demand property is desirable for
fast experiment environment setup and destruction.

Phases of Emulation Using vBET

To perform emulation experiments using vBET, there are
three main phases:

Topelogy specification A researcher will use a simple
but expressive topology modeling language (to be de-
scribed in Section 3) to specify the experiment net-
work topology. The topology model language provides
several primitives, such as alloc/dealloc, attach/detach
and link/unlink.

Reseurce mapping and virtual topology generution Based
on the topology specification, the next step 15 to map
virtual resource requirement to underlying available
physical resources. For example, an OSPFrouter should
be mapped to a virtnal machine which is able to com-
municate with its neighbor OSPF routers as specified



in the OSPF protocol. During this phase, vBET per-
forms both wvirtual node creation and virtual topolegy
deployment. Virtual node must have the specified ca-
pabilities, such as running a particular routing proto-
col or being capable of traffic shaping. On the other
hand, virtual topology deployment needs to manage
the layout af virtual nodes.

Currently, we have prototyped virtual nodes based on
UML but with estended Functionalities, such as rout-
ing, proxying, firewalling and network address trans-
lation, sa that there is a functionally accurate one-to-
one mapping from each node in the topology specifi-
cation to the corresponding virtual machine. Also vir-
tual switch (or Lub) or virtual router (or firewall) can
be employed when necessary to glue different virtual
nades. As a result, this phase creates the necessary
scripts which are reused in actual run phase.

Aciual run In the last phase, vBET starts the ex-
periments by invoking the scripts created in previous
phases. An experiment may run in a 'slow-motion'
mode, due to the constraint of physical vBET server
resources. Another key issue is the 1P address assign-
ment and network segregation for each virtual node.
In vBET system, every virtual node has one unique
reserved IP address, and port redirect technique is em-
ployed to provide remote researchers with consale ac-
cess to each virtual node for runtime monitoring and
management,

3. NETWORK TOPOLOGY MODELING

Modeling network topology helps identify core abstract re-
source types and their primitive operations. The network
topology modeling langunage of vBET is similar to the fa-
cilities provided by ns-2, but easier to understand. Though
it is simple, it is powerful for the modeling of network and
distributed environments, especially for the composition of
complex network topologies based an simple ones.

3.1 Resource Type
Currently, the vBET netwark topalogy modeling language
supports four different resource types.

» Network A network represents a medium for commu-
nication among network devices. A network can be
logical or physical medium depending on the granular-
ity of topological composition.

s Network Device The term network device is used to
refer to the communicating entities, such as bridge,
suntch, router, firewall, NAT boz or even end host,
which can generate, forward or accept the real packets
and communicates over networks.

» Network Interface Card Network inlerface card or
NICis the entity which enables the actual packet send-
ing or receiving and is flexible enough to be dynarni-
cally attached to or detached from network device.

» Cable Cable refers to the physical or emulated com-
munication link which enables the real transmission
from one network device to another device.

3.2 Primitive Operations
Based on the abstract resource types we have defined, the
language further defines three pairs of primitive aperations.

s alloc/dealloc: A simple resgurce, such as a deviee,
NIC or cable can be allocated and deallocated for an
experilnent environment.

» attach/detach: One NIC can be attached to or de-
tached from a network device. For brevity,

attach(device, NIC, , NIC:, ..., NIC,)
can be equivalently used as
attach({altach{aitach{device, NIC\), NICa)}, ..., NICn)

NIC(device, =) will return the the n'* NIC available
in the device.

s link/unlink Cable can be nsed to link two NICs at-
tached to two network devices. A link can be broken
by the unfink operation. The link (unlink) operation is
achieved by performing the action of plug (or unplug)
on both ends of eable.

3.3 Examples

Figure 2: Simple Ethernet topology

To illustrate network topelogy modeling, we show the follow-
ing simple example. Figure 2 shows a simple network with
tliree hosts connected by a switch, The detailed modeling
script is shown in Figure 3:

swilch] = [atrach{alloc{swirch}, aloc{NIC),alloc{IC), allos(®IC) |

hostl = auzch{allac{hast). allociNIC)) hos2 = awach{alloc(hest}, alloc{NIC))
hosi3 = anach{alloc(hosi). allac{NIC}) cable3 = allog{catlc}

cablel = alloe(cablc) cable = alloc{cahle)

plugleablel, NIC{swiichl) plug(cable?, WIC{swilchl)} plug{eable3, NIC{swiichl))
plug(cablel, NIC(hesil))  plugleable2, NIC(hosi2)} plug{cable3. NIC{los13y)

Figure 3: Network topology modeling script: a sim-
ple example

If individual port numnbers are self-evident from the context,
a simple Ethernet can be simply maodeled as shown in Figure
4:

[Eth:met = link(alloc{awitch), allac(host), alloc{host), alloc{hosl)) ]

Figure 4: A script for Ethernet topology modeling

4. VBETDESIGN AND IMPLEMENTATION
This section presents vBET’s design goals of fleribility, seal-
ability, and customizability, as well as its implementation
details, including basic building blocks such as virtual O, ;
virtual netwerking, small footprint file aystem and resource
isolation. i



4.1 Design Goals
Besides the versatility for a wide range of network and dis-
tributed systems, vBET has the following design goals.

e Topelogy fleribilily The network topology can be tai-
lared for one particular distributed system; and mul-
tinle network topologics can be created for onc ex-
periment environment. Such a flexibility is desirable
for on-demand creation of arbitrary network topolo-
gies, especially the anes composed by simple network
tapologies, such as ring, star, or switch-cnabled LAN,
There should be no physical limitation on the num-
ber of physical network connections for each network
device.

s Node customizability Every node in the created net-
work topology can be further customized to experi-
ment with different network services and software (such
as different service disciplines and routing algorithms).
Cwrent emulation systems have limited or even no
support for the customization of core network nodes
such as rounters and firewalls.

s Scalability Instead of scaling the number of physical
nodes in the testbed, vBET focuses on the scalahil-
ity with respect to the number of virtual machines
inside one pliysical vBET server. Current virtual ma-
chines techniques, such as VM Ware[3] and the original
UML[9], are not lightweight enough to enable many
physical nodes in a complicated network topalogy. Our
techniques to achieve scalability can potentially be con-
tributed to the existing emulation or real-world testbeds.

4.2 Virtual Machine

To implement virtual machines, there are mainly three lev-
els: host 05, guest 05 and virlual machine monitor. Host
OS provides the ultimate physical I/O and memory access
for guest OS and schedules the guest OS processes as regu-
lar processes based on its scheduling policies, such as round-
robin or fair queuing [24]. Virtual machire tnonitor provides
Fundamental underlying resource virtualization and may be
responsible for the accounting of resource consumption 2.
Guest 05 provides a confined environment for all processes
running inside it. The isolation includes the sdministration
isolation, fault/attack isolation and resource isclation [16].

vBET supports Linux as the host OS and leverages UML,
an open-source virtual OS praject. Unlike other virtnal ma-
chine technigues such as VMWare[3], a UML runs directly
in the unmodified wser space of the host OS; And processes
within a UML will be executed in the virtual server exactly
the same way as they would be executed in a native Linux
machine, which can have performance benefit without the
overhead for instruction-level recognition and interpretation
such as Java VM [12]. In UML, a special thread is created
to intercept the systein calls made by zll process inside the
UML and redirect them into the host OS kernel. Additional
process context environment may be created to store or re-
store upon the entry or exit point of system call, which can
reduce the context switch overhead, and thus increase the
scalability and availability of VM.

YHost OS5 can also assume the responsibility of resource ac-
counting if one unique 1D can identify a virtual machine.

We have extended UML virteal machine, especially from
host OS5 perspective to enable proportional resource sharing,
and implemented small footprint root file system lor UML,
which significantly increases the scalability of UML.

4.3 YVirtual Networking

Virtual networking enables the communicationr among vir-
tual nodes, and is essential to topology Bexibility. We clas
sify different virtual nodes according to their roles as follows:

¢ Virtual hub/switeh Like a regular physical hub {switch),

virtual hub {switch) ecnables simple packet [orwarding
to construct one simple LAN environment. Virtual
bub will forward every packet received to every avail-
able port, which may result in degraded performance
due to the multiple copies of packets. Virtual switch
adds intelligence to packet forwarding, so that ouly
designated receivers will receive the packet. In the
vBET prototype, one temporary UNIX domain sacket
is created as the concentration point for one particular
virtual hub {or switch), and it can receive incoming
connection reguest and create one additional virtual
port for incoming connection, which basically elimi-
nate the physical port number limitation. Advanced
packet queuing and forwarding polices can be applied
ta virtual hub (or switch) to tnodel any link character-
istics, such as link bandwidth, latency, loss rates and
congestion.

s Virtual router/flrewall A router or firewall operates
as one part of the network infrastructure and enables
communication between network devices which are not
connected to a common netwark. Router mainly fo-
cuses on the fast packet forwarding and frewall per-
forms the packet filtering and content inspection. We
have designed a multi-purpose minimal ezf2 file sys-
tem, which is extensible for different functionality mod-
ules {Section 4.4). Different functionality module can
be included during the resource mapping and wnrfual
topolegy genernifon phase, or more specifically virtual
node generalion.

s Virtual link/NIC Virtunal link is constructed or de-
constructed during the connection establishment or
teardown with one particular virtual switch {or hub).
‘We shift modeling responstbility of link characteristics
to virtual hub/switch for easy prototyping. Virtuat
NIC is made available as TUN/TAP device or virtu-
alized as another UNIX domain socket who make the
conuection request to the virtual switch {or hub). As
mentioned before, there are no practical limitation on
the nunber of available virtual NICs for each netwark
device.

4.4 Root File System

Upon fAnishing the boot sequence, the Linux Vi kernel zt-
tempts to locate and mount a root file system. In order to
increase the scalability of VMs, the root file system need to
have small memory footprint, and should be tailored for a
specific purpose by excluding unnecessary services. In our
prototype, we impose the space size (32 MBytes) for hold-
ing root file system (with type ext2), which is reasonably



smnall but contains sufficient basic functionalities. Alsa the
base root file system should be extensible to include optional
packages, which are associated with a general domain or ap-

plication.
Furmal] rorduie

Minbmua] Lizm 5.

=y | Nezm

Figure 5: Optional flle system packages and the min-
imal Linux system

Figure 5 illustrates the set of six optional packages. The
Firewall modulc contains code that implements an Inter-
net firewall subsystem, and it provides stateless or stateful
packet filtering. The NAT module handles packet header
translation and even packet payload mangling (such as for
the FTI" data connection) needed for network address trans-
lation. NAT can be intograted with a firewall or be used
separately. The routing module contains code for routing
pratocols, including RIP, OSPF, and BGP taken from ze-
bra [15) package. The Prozy module provides functionality
of SOCKS proxy services. and Traffic sheper module can
be employed to experiment with transmission rate moni-
toring and policing. Performance measurement module in-
cludes some perforinance measurement routines, such as itcp
[2]. All of the madules depend on the underlying Minimal
Linuzr system, which contains basic system*-wide configu-
ration, daily routines and is thus required for operation of
each vir¢ual node.

4.5 Resource Isolation

To achieve performance isolation of each virtual node, re-
source sharing and isolation need to be guaranteed by un-
derlying host OS or virtual machine monitor. Resource iso-
lation can prevent matfunctioning virtual node from monop-
olizing the CPU or eating up all of available network band-
width. Resource isolation is necessary for creating high-
fdelity emulation environment. Via extensions to host OS
(Linux), vBET implementation supports CPU, network band-
width, and memory isolotion.

o CPU capacily isolation is achieved by implementing
a coarse-grain CI*U praportional sharing scheduler in
the Linux host OS. The scheduler enforces the CPU
share allocated to each virtual node. The CPU shar-
ing of a virtual server is decided during the virtual nede
generation. Usually every virtual node gains the lair
share of CPU cycle if not explicitly specified. Within
one virtnal node, all processes bear the same user id,

4Here, systern means one particular virtual rode

and host OS CPU scheduler performs resource con-
sumption accounting and enforces resource nsage lim-
itation for virtual nades based on their user id.

Network bandwidth tselation includes the iniernal iraf-
fic isolation and eziernal iraffic isolation. Intermal
traffic is restricted inside the virtual network topology,
and will not consume real-world network bandwidth.
Externa! traffic generates real network traffic between
vBET servers. For internal traffic, we equip each up-
stream virtual node with (raffic sheping cepability by
including traffic shaper module. For external traffic,
a traffic shaper running inside the host OS enforces
the fair share of outbound bandwidth among virtnal
nodes. Since every virtueal node has its own IP address,
the traffic shaper can casily identify and thus charge
the node responsible for each putgoing packet.

s AMemory isolation is critical for the performance of vir-
tual nodes. vBET simply leverages the memory usage
limit feature of UML: the maximum amount of mem-
ory available to a virtual node can be specified when
the virtual node is started.

5. CASE STUDY

‘We have created several interesting experiment environiments
to demonstrate the salient features of vBET: The Ffrst ex-
periment tests routing flapping in OSPF, which shows an
infrastructure-critical ronting pratocol can be deployed and
customized in the core modes. The second expenment is
in another interesting application domain: distributed fire-
wall. One Aexible network topology is created to enable the
coordination of a set of distributed firewalls to protect one
central server. The third experiment emulates application-
level peer-to-peer lookup service, and subjects the service
to different failure madels {such as network partition} under
different network topologies.

5.1 Routing Flapping in OSPF

This experiment examines an interesting scenario involving
the OSPF protocal, which demonstrates that baneful persis-
tent route Aaps may exist. The logical network setup for this
experiment i5 shown in Figure 6. The corresponding topol-
ogy modeling script is shown in Figure 7. To highlight the
efficiency of vBET, we note that the whole system is boat-
strapped within 6 seconds, and can be torn down within 4
seconds.
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Figure 8: Network topology for testing routing flap-
ping in OSPF



In Figure 6, there are three ranters - fy, R2 and Hj, each
of which is running ospfd from Zebra [15] routing software.
Each of routers B; and R3 intentionally has ane interface
configured to hiave the same IP address 192.168.0.1/24, and
router f; advertises route entry for 192.168.0.1/32 with
metric 20 {(default value) and router Ry advertises for satmne
destination with smaller metric 10. Since router Ha incurs
lower cost to reach destination 192.168.0.1/24, router Ra
should choose Rz for destination 192.168.0.1/24 when the
network is stabilized. Detailed OSPF configuration and IP
address assignment for each router are shown in Figure 6.

] = atach{alloc{routcr). alloc[NIC), alloc{NIC))
r2 = siiach(alloc{routcr), alloc{NIC). alloc(NIC))
r3 = attach{alloc{router), alloc{NIC), 2lloc(NICY)

Tink{NIC(rl,2), NIC(r2, 1))
link{NIC(r2,2), NIC(r3, 1))

Figure 7: Network topology modeling script for the
testing of routing flapping in OSPF

At the beginning, router R; and H» are bootstrapped, then
R is started. When routing tables are stabilized in all
three routers, from the screenshot in Figure 8, we can sec
the router Ra (i.e., ospf2 in Figure 8) adapts the route ta
192.168.0.1/24 via router Rj (i.e., ospf3 in Figure 8), which
is correct since Ra contains sinaller metric for destination
192.168.0.1/24.
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Figure 8: Screenshot of OSPF experiment when all
routers are working

When we intentionally disable interface 192.168.0.1/24 in
router 2z, Ry notifics R that the corresponding link state
age has reached MazAge, and thus is considered not usable
anymore. As a result, a more expensive route {with metric
20) to 192.168.0.1/24 via router R; {ospfl in Figure 9) is
adopted by router Rs.

Then, we re-enable interface 192.168.0.1/24 at router Rj
te examine the routing flapping effect in OSPF. Figure 10
shiows that router fis has found the new route via router Hj
is better than current route via router K, for destination
192.168.0.1/24. As a result, better route for the destination
is updated in router Ha.

After several rounds of enabling and disabling, persistent
route Aapping effect is clearly exhibited. Route Rapping is
a baneful phenomenon and needs to be eliminated lor more
stable and robust networks. Also it infers that more ad-
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Figure 9: Screenshot of OSPF experiment when the
better route to 182.168.0.1/24 is down
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Figure 10: Screenshot of OSPF experiment when
better route to 192.168.0.1/24 is up again

vanced OSPF route flap damping features should be intro-
duced and the OSPF protocol performance can be improved
hy learning from the routing Aapping history and be lazy and
conservative in adopting new or better route entries. Tp the
hest of our knowledge, this is the first time OSPF route flap-
ping effect can be so vividly demonstrated by an emulation
testbed. Qur trace logs from this experiment are available
at http:/fwww.cs.purdue.edn/homes/jiangx /vBET.

5.2 Distributed Firewall

This experiment enables the creation of a topology shown in
Figure 11, in which several Internet connections are available
to provide web services. A set of edge firewalls examining
the incoming requests for the service need to be coordinated
to ensure that the total request load for the service does
not exceed the server capability. The whole system 1s boot-
strapped within 13 seconds, and can be torn down within 7
seconds.

The virtual network topology is modeled by the script in
Figure 12.

We create and compare two simple scenarios to demonstrate
the effectiveness of distributed firewall. In the first scenario,
cvery firewall forwards requests to the central server without
any limitation, similar to a DDa5 attack on central server.
In the second scenario, every firewall restricts the traffic to-
ward the central server in order to prevent the DDa$ attack
pro-actively, Figure 13 captures the screenshat of an actual
FLT.
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Figure 11: Distributed firewall testing environment
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Figure 12: Network topology modeling script for the
distributed Arewall environment

We measure the traffic rate observed by the server in both
scenarios, In the first scenario, the server can receive traffic
up to 84.66Mbps. In the second scenario, traffic destined
to the server is limited to 640kbps at each frewall with ¢
command and as a result, the server only receives fraffic at
a rate of 2.8Mbps. The individual traffic rates via the five
firewalls are shown in Table 1.

Though conceptually simple and straight{orward, such ex-
periment is difficult, if not impossible, to setup and exyperi-
ment with in real world without a dedicated testhed. Plan-
etLab is not helpful for this purpose since the nodes are
deployed as end systems. Netbed is able to experiment with
small scale distributed firewall, but has limitation on the
netwark topology and on the number of network connec-
tions available to routers in the topology. In addition, it is
difficult to isolate the traffic of this experiment from traffic
generated by other experiments.

5.3 P2P Network
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Figure 13: Screenshot of distributed firewsll exper-
iment

Firewall | Amount of traffic
FW1 578.BklLps
FW2 579.9kbps
FW3 579.4kbps
FwWA4 579.9kbps
FW5 580.0kbps

Table 1: Inbound data (request) rate regulated by
each firewall

Finally, we ereate Chord, a peer-to-peer overlay lookup ser-
vice in vBET. The peer-to-peer network is deployed over
nodes in a network topology depicted in Figure 14. The en-
tire network is bootstrapped within 2 minutes, and can be
torn down within 1 minute.

Vimul Chand Ring

Ermlale] Norweat, Topubopy

Figure 14: A Chord P2P overlay network with 55
peers

In figure 14, there are 55 Chord peers, which are instanti-
ated around the Chord ring (see screenshot in Figure 15),
One Chord node assumes the responsibility as bootstrapping
nade. The 55 chord nodes resides in two LAN networks,
which is connected by a virtual router. Such topology is
useful to demonstrate and validate the reaction of Chord
to different failure madels, especially the network partition
failure.

More complicated topologies can be created to experiment
different aspects of Chord netwark, such as CF5 storage util-
ity [8], the peer-to-peer storage service based on Chord. Qur
purpose here is to show vBET’s flexibility of creating exper-
imental network topology and its customizability for every
node inside the topology. One of our on-going projects is to
design and apply trust models and reputation management
systems to overlay networks, and test them using vBET.

6. RELATED WORK

There have been some previous efforts in investigating the
usc of cmulation in the coutext of their specific research
{13, 18, 14]. Recently, several general-purpose emulation
testheds have been proposed and deployed [20, 26, 23, 4].
vBET shares the same goal of providing high-fidelity em-
ulation or real environment for the experimentation with
distributed systems and network protocols.
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Figure 15: Screenshot of Chord P2P network experiment

PlanetLab [20] is in the process of deploying hundreds of
nodes across the Internet to create Point of Presence (or
PoP), so that wide-arca distributed systems can be deplayed
and evaluated using real Internet traffic. Though extremely
valuable because of real deployment, the experiment envi-
ronment is difficult for an individual researcher to gain full
control. And core routers are not allowed to run customized
saftware. As a result, it may not be feasible to experiment
with infrastructure-critical systems and protocols, such as
distributed routing and distributed Grewall. vBET comple-
ments PlanetLab: the former can be installed in a Pol? of
the latter, so that experiments with infrastructure-critical
systems can be carried out locally.

Netbed {26} allows users to configure a subset of network
resources for isolated distribnted systems and networking
experiments. It provides an integrated environment that
allows users to set up target operating systems and net-
work configurations. Again, vBET can be integrated with
Netbed, especially by contributing the scalability (with re-
spect to the number of virtual nodes within one physicat
machine) and flexibility {of topology setup) features to the
latter.

ModelNet [25] targets scalable and flexible emulation envi-
ronment, which can perform full hop-by-hop network emu-
lation. The basic mechanism for sealability is the pipe tech-
nique from dummynei [22]. As a result, it is diffcult for
ModelNet to support traceroute-like applications. One im-
portant property of ModelNet is that it balances scalability
and efficiency by employing both emulation and simulation
techniques. vBET, on the other hand, provides complete
contrel and customization over core nodes. 1t can run third-
party softwares in core nodes, including routing protacol,
advanced stateful packet fltering or other network services.

Umlsim[4] is another recent effort parallel to aurs which
exploits the virtual machine technalogy to create simula-
tion/emulation platforms. Instead of focusing on a specific
application or pratacal {such as TCP}, vBET aims at pro-
viding & general-purpose testbed for different applications
and protocols.

7. CONCLUSION

Emulation testbeds are expected to be eastly and widely de-
ployable. Tn an emulation testbed, arbitrary network topol-
ogy can be created lor different experimental systems and
protocols. Furthermore, it is desirable to support core node
customization, including fault injection into core nodes, co-
ardination between core nodes, as well as update or modifi-
cation of critical components in core nodes, such as routing
protocol. In this paper, we present the design and imple-
mentation of vBET, as our initial efforts towards meeting
these goals. The salient features of vBET include easy de-
ployment, scalability, customizability, and efficiency. Qur
experiments with different network and distributed systems
demonstrate the versatility of vBET. Furthermore, vYBET
compleinents existing emutlation or real-world testbeds and
can be readily integrated into the existing systeins.
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