Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

2003

A Report on Impact of Data Compression on Energy Consumption
of Wireless- -Networked Handheld Devices

Rong Xu

Zhiyuan Li
Purdue University, li@cs.purdue.edu

Cheng Wang

Peifeng Ni

Report Number:
03-003

Xu, Rong; Li, Zhiyuan; Wang, Cheng; and Ni, Peifeng, "A Report on Impact of Data Compression on Energy
Consumption of Wireless- -Networked Handheld Devices" (2003). Department of Computer Science
Technical Reports. Paper 1552.

https://docs.lib.purdue.edu/cstech/1552

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A REPORT ON IMPACT OF DATA COMPRESSION
ON ENERGY CONSUMPTION OF WIRELESS-
METWORKED HANDHELD DEVICES

Rong Xu
Zhiyuan Li
Cheng Wang
Peifeng Ni

Computer Science Department
Purdue University
West Lafayette, IN 47907

CSD TR #03-003
January 2003



A Report on Impact of Data Compression on Energy Consumption of
Wireless-Networked Handheld Devices *

Rong Xu ZhiyuanLi Cheng Wang Peifeng Ni
Department of Compulter Sciences, Purdue University
West Lafayette, IN 47907
{xur,li,wangc,npf} @cs.purdue.edu

Abstract

We investigate the use of data comnpression to reduce the battery conswned by handheld devices when downloading data
[from proxy servers over a wireless LAN. To mnake a careful trade-off between the communication energy and the overhead to
perform decompression, we experitment with three universal lossless compression schemes, using a popular handheld device
in a wireless LAN enviromment and we find interesting facts.

The results show thar, from the battery-saving perspective, the gzip compression software (based on LZ77) to be far
superiorfo bzip2 (based on BWT) and compress (based on LZW). We then present an energy model to estimate the energy
constumption for the compressed downloading. With this model, we further reduce the energy cost of gzip by interleaving
communication with compuration and by using a block-by-block selective scheme based on the compression factor of each
block. We also use a threshold file size below which the file is not to be conmpressed before transferring.

1 Imtroduction

Wireless-networked handheld devices have the potential to become powerful mobile taols to access information and
applications from anywhere at any time. However, with the current state of the art, effective use of wireless-networked
handheld devices needs strong support from proxy servers, or proxies. Such servers are slationary networked computers
which provide the handheld devices a range of backup resources and supporting services, including secondary storage,
compuling power, Intermet data caching and information filtering [ [, 2, 7, 6, 13, 8].

When proxies are employed in a wireless LAN environment, battery consumplion by communicalion vs. computation
becomes interesting on the handheld devices. Today's handheld devices are increasingly used for accessing information over
the network, information in the form of text, graphics, photographs, data images, speech, sound, and so on. Compressing such
information on the proxies, in advance or on demand, has the obvious potential advantage of reducing the battery consumed
by the wireless network interface on the handheld device. On the other hand, considerable battery energy may be consumed
by the processor for decompression. A similar tradeoff issue exists when the handheld device uploads information, e.g. lively
caplured voice and pictures. It is in this context that we invesligate, in this paper, the impact of data compression on battery
consumption of wireless-networked handheld devices. We focus, however, on data downloading only, as this constitutes the
predominant uses of the handheld devices in current practice.

We aim (o sludy a variety of aspects of the data compression issue. We pay most of our present attention on universal
lossless compression schemes which can be applied to arbitrary dala types with the ability to fully recover the conlents by
decompression.

In the rest of the paper, we first describe our experimentation set-up (Section 2) and compare the timing and energy data
from using three different compression schemes (Section 3). For the winning scheme, namely LZ77, we present an energy
consumption analysis and explain how the energy efficiency can be further improved by interleaving the communication and
decompression (Section 4). Based on the energy model, we identify the threshold data size and the threshold compression
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Table 1. Power parameters

iPAQ  WaveLAN Power Saving Current{mA)
idle slecp - 90
busy sleep - 300440 (310)
idle idle off 310
idle idle on 110
busy idle oll 530 - 670 (570)
busy idle on 330 - 470 (340)
— recy off 430
— recv on 400
busy recy off 550 - 690
busy recy on 470 - 650

ratio to be energy worthy for the LZ77 scheme. With such thresholds in mind, we develop a LZ77-based algorithm that makes
the compression decision dynamically, on a block-by-block base. This set of experiments consider both precompression and
compression on demand. These are followed by a discussion of related work (Section 6) and a conclusion {Section 7).

2 Experimentation Setup

The handheld device used in our experiment is a Compagq iPAQ 3650 which has a 206MHz Intel StrongArm SA1110
processor and 32MB RAM. The proxy server is a Dell Dimension 4100 which has a 1GHz P-I1I processor. Both machines
run Linux operating systems and communicate through TCP socket calls. The wireless connection is through a Lucent
Orinoco (WaveLAN) Golden PCMCIA card which follows the IEEE 802.11b standard. Under the [1Mb/s nominal peak
rate, the effective data rate of the WaveLAN card is measured as about 5Mb/s. The bit rate (for both send and receive) can be
adjusted downward in a few different ways, by changing the scttings of the access point, by increasing the communication
distance, or by increasing structure obstacles between the two antennas. In Seclion 4.2, o validate our energy model, we
manually change the nominal bit rate from 1 IMb/s to 2Mb/s. However, for the main part the paper, all the data are collected
under the nominal bit rate of | IMb/s unless otherwise specified.

To measure the electrical current drawn by the handheld device, we connect it to an HP 3458a low-impedance (0.112)
digital multi-meter which takes several hundred samples per second and awtomatically records maximum, minimum and
average electrical current. In order to gel a reliable and accurate reading, we disconnect the batteries from both the iPAQ and
the extension pack, using an external 5V DC power supply instead. The start and finish of the meter reading is controlled by
software, using the built-in trigger mechanism of the multi-meter. According (o our measurement, the overhead associated
with the triggering interrupts is less than 0.5% and the readings are consistent over repeated runs.

We measure the electrical current drawn in different running modes. The reading is shown in Table 1. (All the numbers are
measured with the screen turned off.) The first column shows two functioning mades of the iPAQ: idfe when it does nothing
and busy when it performs computation. The WaveLAN column indicates the status of the WaveL AN card, sending, receiving,
idle, or sleep. In the sleep mode, the WaveLAN card is not receptive (o the incoming signals and it draws significanily lower
current than in the idle mode. Cerlain instructions, e.g. memory loads and stores, are more expensive than others. The current
reading may fluctuate as a result, and the 1able shows the range of the current measured for iPAQ busy modes. And in these
modes, the number in the parentheses is the average reading for gz ip decompression.

The power saving mode ulilizes the hardware mechanism that periodically switches the WaveL AN card between the sleep
mode and the idle mode. It reduces the electrical current drawn significantly when there are no network requests. When
there exist send or receive requests, the effective data rate decreases by about 25% in the power-saving mode, due lo the
overhead to switch between the states. Heuristics have been proposed in literature to predict the optimal timing to wake-up
from the sleep mode [11]. However the success rate of such methods highly depends on event predictability. Also, leaving
the WavelLAN card in the sleep mode for an extended period of time may prevent limely reception of instant messages. In
this paper, therefore, we simply use the hardware power-saving mechanism to take advantage of the sleep mode. The Power
Saving column indicates whether the power saving mode is enabled for the WaveLAN card.

When the WaveLAN card is sending or receiving, the CPU spends time on the network interface. Hence the CPU s not
idle even if it is not performing any computational tasks. In these cases, the iPAQ column is marked as '—'. The electrical
current is the bighest when compulation is interleaved with communication.




3 Comparing Universal Compression Schemes

We consider three widely used universal compression methods !, namely the Burrows-Wheeler Transform (BWT) {3],
Lempel-Zib coding algorithms (LZ77 [14], and LZW [12]). Three widely circulated UNIX tools, based on the respective
compression methods, arc used in our experiments. Throughout the paper, the term compression factor refers to the ratio of
the input size over (he outpul size, and the term compression ratio relers to the reciprocal of the compression factor.

The gzip software uses LZ77 algorithm. The algorithm replaces the second occurrence of a string with a pointer to the
previous string, in the form of a (distance, lengtt) pair. The distances are fimited to the size-sliding window (of 32K bytes),
and the lengths are limited (o the size of the look-ahead buffer. If a string does not occur anywhere in the slide window, it is
emitted as a sequence of literal bytes. The input stream is divided into blocks. A block is terminated when the compression
algorithm determines that it is better to start a new block o achieve a better compression. The version of gz ip we use in this
paperisgzip 1.2.4. The core algorithm of gzip is also used in z1ib, a general purpose data compression library. The
version of z1ib used in this paperis z1ib 1.1.3.

The compress software uses the LZW algorithm with a growing dictionary. Unlike LZ77, it does not use a search buffer,
a look-ahead buffer, or a sliding window. Instead, it maintains a dictionary of previcusly encountered string. It starts with a
smali dictionary of 2% = 512 entries (with the first 256 of them filled up). While this dictionary is being used, 9-bit pointers
are wrillen into the outpul. When the dictionary fills up, its size is doubled 10 1024 entries, and 10-bit pointers are used. This
process conlinues until the pointer size reaches 16 bits. The compression continues without making changes to the dictionary
until the compression factor falls below a predefined threshold. At that time, the dictionary is deleted and a new 512-entry
dictionary is started. The version of compress we use in this paper is ncompress_4.2. 4.

The bzip2 software compresses files using the Burrows-Wheeler block sorting compression algorithm. It first applies a
reversible transformation to a block of data. The transformation groups characters together so that the probability of finding
a character close to another instance of the same character is increased. The compression rate is generally considerably better
than that achieved by more conventicnal Lempel-Ziv-based compressors [5]. However, it is also more computation intensive,
by some constant factors, than Lempel-Ziv algorithms. The version of bzip2 we use in this paperis bzip2 1.0.1.

3.1 Workload

We have experimented with a large number of files of different types, focusing on types typical for use on handheld devices,
such as web pages, documents, binary machine codes (recall the limited slorage and the need 1o download applications), and
media files. For this paper, in order to have space to show results for individual files (with different compression factors),
we select a representative subset of files, which are listed in Table 2. Column [ lists the file names. Column 2 shows the
file sizes. The rest of the columns show the compression factors by the individual compression schemes. We divide the files
into two calegories, the small sized (under 80K bytes} and the relatively large sized. Table 3 gives a brief description of the
individual files.

All of the three compression tools provide options to choose the desired compression level. A higher level tends 1o result
in a higher compression factor and a slower compression speed. On the other hand, for the same compression scheme, our
experiments show that a high compression factor does not increase the decompression speed and energy much. Hence, we
use the highest compression level for each tool throughout the experiments, i.e. level 9 for both gzip and bzip2 and *'-b
16" for compress (meaning a maximum of 16 bits for common substring codes).

From Table 2, we see that all of the three schemes can compress the program source or text files well (the compression
factors are from 2 10 25). For binary machine codes, the compression factors range from 1.6 to 3.5. Certainly, no schemes can
compress the already encoded data or random data well. Consistent lo previous reports, bz ip2 usually achieves the highest
compression factor, while compress gets the lowest in most cases.

3.2 Comparing Results

In this section, we examine experimental resulls to see when dala compression can reduce total energy consumption on
the handheld device and what compression tool reduces the most. We first assume that all downloaded Rles are compressed
a priori and stored on the proxy server.

Assuming fix-sized packels, given the fixed dala rate, the energy cost to transfer a data file over the wireless network is
linearly proportional to the data size. For compression to benefit, the saving in the communication energy (due to reduced

LA dasa compression method is called universal if it has ne prior assumption on the statistics of the input.



Table 2. Test files and compression factors

Noame Size Gzip [ Compress | ‘Bzip2 [ Name Size [ Gzip § Compress | Bzip2 |
nesYa.xml 2961063 13.23 6.51 24.59 pegwil 360788 257 [.73 248
MI1C.xml 3391571 14.64 .91 18.58 NTBACKUP.EXE 1162512 246 t,79 2.50
M31Csmull.xml 340668 12,90 6.63 17.52 inpul.progrim 3450558 2,30 1.66 241
input.log 4409036 | 1024 | 5.92 16.}7 p.way 1158380 | 2.24 2,26 125
Jmgspec-2.0.huml. tar 1762516 4.63 308 6.3 pPp-Au 920216 1.11 0.99 1.23
inpuLsonrce 0553920 | 3.90 2.54 488 inpul.graphic 6656361 1.09 0.97 1.38
PIOXY.PS 2175531 | 3.80 | 3.06 687 image01 jpg 1833027 | 1.03 | 0.84 136
2d-book.ps 5234774 | 366 2,75 4,70 loveoflife. mp3 4328513 | 102 | 083 1.02
vaLps 1698978 3.55 2.61 .46 lens 015.m2v 2816594 1.01 0.85 1.02
localedal 330072 .50 218 3.72 image0l.pil 5075287 1.00 052 1.00
JavaCCurserclass 126247 3.06 2.00 3.17 inpul.racdom 4194309 | 1.00 0.31 1.00
Tangapec-2.0.pdl 15906 | 299 | 108 3.00

mail3 1438 1.82 1.47 1.67 Lail 26240 2,07 1.59 211
maill 1611 191 148 1,75 lime_fig.cps 31290 322 1.95 317
PolyhcdronElement.class 2271 1.79 1.42 1.64 intra.pdl 56840 1.77 1,23 1.80
nchup 2500 1.97 1.47 1.81 [scnb 57372 2 1.55 204
mail2 4285 2,16 1.66 2046 inlro.ps GH77 237 1.37 2,54
yahooindex.htm! 16709 3.64 1232 3.66 JavaFiles.class 72004 293 182 20
Slate.class 23800 2.23 1.54 2.15 nal_ps 79072 258 .99 243

Table 3. Test files type information

| Name | Desemiplion || Name | Desenption ]
nesft.xml a xml webpage pegwil a program binary
M3 xml a xml wchpage NTBACKUPEXE | aprogram bioary
M3IVCsmall.xml a xml webpage Inputprogram a program binary {from SPEC 2000)
inpuL.log a webpage log {from SPEC 2000) slamup.wav adlalg file in wav formm
langspec-2.0.html.tar a Lar hile of Java lappuage speciticauon in himl format Fp.au a dala file in .au formal
inpul.source a program source {from SPEC 2000) input.graphic i TIFF imagc(lrom SFEC 2000)
proxy.ps a poslscript decument image0l.ipp 1 |pep Imape
12d-book.os 3 poslscript document Tovealife, mp3 a Inp3 music
Java.ps 1 postscript decument tens. 3 5. m2y a mpeg-2 mavie
Tocilcdef a program binary image0l. gl a GIF file
JovaCCParser.class a Java class hle 1npul.random random data {from SPEC 2000)
Tangspec-2.0.pd0 Javat specilicalion in pdrl Tormal
mail} a texl mail Lail a pragram binary
maill it fexl mml time _fig.eps an encapsulated posiscrpl Ale
PolyhedronElemenLcloss | a Java class lile introv, pdl apdl file
nochup a shell script {scrib a program binary
mail2 a texl mail intro.ps a posiscript document
yithooindex.blm] a himf webpage JavaFiles.class a fava clgs file
Slate.class a Java clnss hls pal.ps a posiseripl Nile

data size) needs to be greater than the energy cost spent on decompression on the iPAQ. Thus, the scheme which compresses
the deepest does not necessarily saves the most energy.

The three schemes which we used are known (o decompress much faster than to compress. However, bzip2 performs
more computation than the other two schemes, since it requires a reverse transformation. As we shall see, the difference is
significant enough 10 put bzip?2 in energy disadvantage. Figure 1 compares the time spent to download and decompress
data files using (he three different compression schemes, The top two bar graphs are for relatively large-sized files, which are
soried in the decreasing order of the compression factor. The third bar graph is for the small sized data files, which are sorted
in the increasing order of the file size.

The height of each vertical bar is relative to the time spent when downloading without compression. Each bar here is
divided into two parts, the lower one is the lime spent on downloading and the upper one spent on decompression. One
observes that, for each parlicular scheme, the trend is a reduction in the overall time with the increased compression factor.

When the network card is idle, it can potentially save energy by entering the power-saving mode. The electrical current
decreases from 570mA to 340maA if we switch WaveLAN card from idle 10 sleep mode when iPAQ is busy (refer to Table
1). We will further discuss this issue in Section 4.2. Our experiments show that such saving malerializes for bzip?2 (as it
lakes long lime 1o decompress) but not much for the other two schemes. Thus, we show the energy resuits wilh power-saving
enabled for bzip2 bul not for the other two schemes.

Figure 2 compares the energy consumed. The bars are organized in the same way as in Figure 1. Figures 2 clearly shows
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Figure 1. Time comparison for different compression schemes. (left bar: gzip; middle bar: com-
press; right bar: bzip2)

that if the raw file is large and compression factor is high, al} compression schemes can save energy. However, if the input file
is small, compression fares worse due to the start-up cost. If the compression factor is low, it is not beneficial either, because
the communication cost is not reduced enough while the decompression cost remains.

The resulls also show that, for large data files, neither the scheme with the highest compression factor nor the one with
the lowest factor gets (he best energy result on the iPAQ. It is the decompression efficiency that matters the most. In this
paper, we do not give a detailed analysis of the three different algorithms. Nevertheless, the experiments in our JEEE 802.11b
Wircless LAN environment show that, except for a few very small daia files, gz ip balances the communication cost vs. the
decompression cost the best. Il is also clear, by comparing the communicalion lime with the decompress lime, that gzip
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Figure 2. Energy comparison for different compression schemes. {left bar: gzip; middle bar: com-
press; right bar: bzip2)

will remain the strongest algorithm even with interleaving. In the next section, we will show the impact of interleaving for
gz ip only and feave out the similar data for the other Lwo schemes.

4 Enhancements Based on Energy Modeling

From the previous section, gzip stands as the clearly superior cheice from both the perspeciives of time and energy on
the handheld device. Nonetheless, we see that when the compression factor is not high enough, even gz ip consumes more
energy than when there is no compression. Furthermore, compression gets far worse results for small dala due to the start-up



cost of decompression. In this section, we analyze the energy consumption and propose methods to improve the energy
performance for compressed data communication.

4.1 Interleaving Decompression and Receiving

energy

Figure 3. Energy consumption when download and decompress

Handheld devices usually have simple hardware architectures which have a single processor. The processor is needed both
for compulation and for network communication {e.g writing lo and reading from the network interface, defragmentation and
assembly of packets). Figure 3 illustrates (he energy consumption breakdown when we download before decompressing
the data. The energy consumed by downloading consists of two parts, the energy to receive and copy data, and the energy
consumed in the CPU idle intervals between packages arriving. The idle-time energy consumption can be substantial. In our
experimenial environment, even when we receive the packets at the full speed (602 KB/s), the idle time is about 40% of the
tolal receiving time. Thus, about 30% of the total downloading energy is consumed when idling.

We can improve the performance and energy efficiency by filling these idle periods with decompression work. The
interleaving takes place as follows. We decompress the i'® block of the data when downloading the (i + 1)!# block. The
decompression starts as soon as the first block is received. The overall effect is decompressing and downloading at the same
time.

Figure 4 shows two scenarios of interleaving, In (a), the decompressionof i* black is faster than downloading the (i+1)*
black, which creates a CPU-idle period. In (b), the decompression is slower than downloading, and the system is processing
at the full speed and there is no idle time.

eeov p(i, 1} decomp meev pli2) idle  Teovpli3)
pl-1}

(a) idle time greater than decompression lime

reev i 1) decomp reev pli,2)
i~}

(b) idle time less than decompression lime

Figure 4. Energy consumption when interleaving downloading and decompressing; p (i) is the it
blockand p (i, j) is the jt* packet of it* block.

Let s be the size of the data, the energy for receiving the data is
E=ms+ste;+t+p {1

where m is the energy to receive a unit of data, ¢, is the network communication start-up cost, p; is the power during system
idle time, while ¢; is the total idle Lime between packets arriving.
If we perform compression when sending and decompression when receiving, the energy consumed is

E=mxs.tes+ (tp + ;1) *p; + tq *pa 2)

where s; is the compressed file size; £y is the total time of decompression Lhe whole data; pg is the average power when
decompressing. Further, ¢;; is the idle time when receiving the packet for the first compressed block, while ¢ is the idle



time when receiving the remaining packets. We separate these two because we can not make use of the ¢;; to perform
decompression.
With interleaving, the energy equation becomes

ifty >4
mese+Cs+Hbagxpg+ (bir —ba+ia) *pi
if tp <la
m*8c+C+lg*xpg+ Ly *p;

(3

Interleaving communication and decompression can be achieved in various ways. For example, we can implement the
decompression in the TCP stack, so the interleaving can be managed explicitly by the kernel. In this work, we adopt a user-
level method. We implement the decompression as a user process which decompresses the downloaded data bleck by block.
Since the receiving process is in the kernel interrupt handler, the receiving of it# block will interrupt the decompression of
previous blocks.

During the whole compressed downloading, the CPU idle lime ¢; = ¢ + t;; depends on the system load and the receiving
rate. If there exist other active processes, the CPU's idle time decreases. So does the benefit of interleaving. In our experiment,
there exist no other active processes. In this case, we found that £; usually is a fixed fraction of the whole downloading time.
We measured {; 10 be about 40% of data-receiving time at 0.6MB/s download rate. So, t; = 0.4 * s/0.6. The following
equations determine t;- and {;;.

ifs>0128 tp =04%(s,—0.128%5./5)/0.6

in= 04*(0128*35/3)/06 (4)
ife< (0128 1y =0

ti = 0.4%5./0.6

where s and s are in Megabytes. Here we assume that the size of the compression buffer is 0.128MB.

To implement interleaving, we use the compression/decompression library z1ib. There exist subtle differences between
gzip and z 1ib even without interfeaving. To give a fair assessment of the effect of interleaving, Figure 5 compares the time
for gzip (the left bar), z1ib without interleaving (the middle bar), and z1ib with interleaving (the right bar). Figure 6
compares the energy, correspondingly. From these figures, we see that interleaving brings down the decompression overhead
(both time-wise and energy-wise) rather substantially.

To validate the energy model for interleaving, we calculate the energy consumption based on Equation 3. Parameters such
as p, pq and £y are obtained (through direct measurement, while ¢r, ¢;; are computed (in Equation 4). m* 8, -+ c, is calculated
by subtracting the idle energy i; * p; from the value of the measured 1otal downleading energy (refer o Equation 1).

Figure 7 shows the error rate defined as (calculaied value — measured value) fmeasured value. For large files, the error

Z |error rate| . o
rales arc less than 6.5% and the average error rale defined as —rrr—m—mr—rrs is 2.5%. For small files, the average

error rale is 9.1%. This is mainly attributed (o the inaccuracy for the five smallest files. Due to the extremely small energy
value, even a small interference on the handheld device can affect the result substantially. If these five files are excluded, the
averape error rate for small files is 4.5%.

4.2 Estimating Energy Consumption

In last section, we have shown that interleaving decompression with receiving can reduce time and energy for most of the
data files. Still, when the compression factor is low, even with interleaving, the energy saved in data communication does not
compensate the energy used in decompression. The net energy loss ranges between 2%- 14%, compared to no compression.
Hence, we seek to derive a formula to estimate the energy consumplion for a given file size and a given compression factor,
such that we can make the compression decision adaptively.

To derive such a forrmula, We first need 1o know the coefficients m and c,. As mentioned in last subsection, ¢; is linearly
proportional o s . Hence, the downloading energy E can be expressed as a linear function of s. Based on linear fitting of a
large number of data points, we get the following equation to estimate the energy for downloading;

E=3519+s40.012

with an average error of 7.2%. The resul of the fitting is plotted in Figure 8 (b}. Based on this fitting, we can derive m and
¢, from Equations ! and 4. In our experiments, we get . = 2.486 and ¢, = 0.012.



Figure 5. Effect of interieaving on time comparison. (left bar: gzip; middle bar: z1ib w/¢ inter-
leaving; right bar: z1ib w/ interleaving)

We also use linear fitting to estimate the decompression time based on the file size and the compression factor,
tg = 0.161 * s 4 0.161 * 5. + 0.004

where s and 5. are in Megabytes. The result of fitting is plouted in Figure 8 (a). The average ervor rate is 3%, and the
maximum error rate is 13%. The coefficient of determination of the estimation is 96.7%.
After plugging all the parameters oblained above into Equation 3, we have the following formulas to estimate energy
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Figure 7. Error rate of energy estimation for interleaving (files have the same order as of the previous
figures.)

where ¥ is the compression factor.

The curve in Figure 9 labeled as 11Mb/s shows the error rale of energy eslimation for z1ib with interleaving under
the [1Mb/s nominal bit rate. For large files, the prediction is rather accurate, with the average error-rate of 2.4%. For small
files, the error-rate is relatively high. For the three smallest files, the error-rates range from —40% (o 10%. But as file size
increases, the precision increases. For the rest of the small files, the average error rate is 3.3%.

As we mentioned earlier, one can turn the WaveL AN card into sleep mode when doing the decompression if no interleaving
is applied. We use Equation 2 to calculate the total energy, letting pg equal to 1.70 (refer to Table 1). We can easily calculate
that, in order for sleep mode to outperform interleaving, the compression factor must exceed 4.6 even if we do not count the
energy overhead to swilch between modes. This explains why the sleep mode does not bave much impact on energy saving
for gz ip in the last section.

To further test the robustness of our inlerleaving energy model, we change the experimental selling in various ways. In
one selling, we force the 802.11b network device 1o work at a lower ransmission rate of 2Mb/s. We measure the effective
receiving raie to be 180K bytes per second and the CPU idle time to be 81.3% of the total downleading time. Based on
this information, we derive that, in order to completely fill the idle time with decompression work, one needs a compression
factor at least of 27, which is not very likely in practice. For of compression faciors lowers than 27, the energy estimation
equation should be

2.0125 * 5 + 12.4291 * s, + 0.0275

for the file size greater than 0.128MB. The curve in Figure 9 labeled as 2Mb/ s shows the error rate of energy estimation
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under 2Mb/s nominal bit rate, which indicates that the estimation agrees with the real measurement very well.
4.3 Selective Compression

In this subsection, we develop a scheme to use the energy estimation model discussed in last section to further improve
the compressed-data downloading efficiency. It is easy to derive that, in order to save energy by compressing the data before
downloading, the following conditions must be met:

if 5>0.128 : 1.13/F <1 - 0.00157/s 6)
if 5<0.128 : 1.30/F <« 1-—0.00372/s

Based on the formula derived above, we do not compress the file if the original size is less than 3900 bytes (0.00372MB).
Note that if the original file is much larger than 3900 bytes, only the compression-factor threshold matters.

The compression factors for different blocks (which is determined by the 2/2b algorithm) within a file do not usually vary
much. But certain types of files, for example, lar files, Power Point presentations, and PDF documents, may contain different
types of data objects such as texts and graphics. The compression factors for different blocks may be rather different, To deal
with such cases, we further modify the z11ib implementation with a block-by-block adaptive scheme as in Figure 10. Note
that here " send" means writing to the precompressed file.

Figure 11 shows the result of applying the block-by-block adaptive scheme. We only show the experimental resulis for
files which may be affected by the scheme. For those not listed, the results remain the same as in the previous figures. The
figures show that, by using the bleck-by-block adaptive scheme, we can further reduce the energy cost for the files with low
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For cach block
if (block size < 1hreshold size ) {
send the mw data;
1
else {
compress the block;
if (Equation {6) Lest is neguve) [
scnd the mw data;
]
clse
send the compressed data;

1

Figure 10. A block-by-block adaptive scheme

compression factors. We point out that, with this block-by-block adapiive scheme, the compression tool no longer incurs
higher energy cost (than no compression} for any file used in cur experiments,

5 Compression on demand

In previous seclions, we assume that proxy server keeps a copy of (he precompressed file. This is not always true. The

server may only slore the file in its original format. As a result, the decision on whether 10 compress needs lo take the
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Figure 11. Effect of the block-by-block adaptive scheme (left bar: gzip; middle bar: z1ib w/o
interleaving;right bar: z1ib w/ interleaving)

compression speed into account.

For most compression schemes, including three schemes we use in this paper, compression requires more computation
resource than decompression. If the rate of compression is slower than the rate of Lransmitting on the proxy server, the CPU
of handheld device may have more idle periods. This in turn potentially provides more opportunities for the interleaving
1o save the idle enerpy. However, in our experiments, as shown in the later figures, for those not-so-expensive compression
schemes, the compression almost completely overlaps with data transmitting on the proxy server.

It is widely known that Bzip2 compresses slower than gzip and compress, so it can be eliminated from the con-
sideration. Here we compare gzip and compress. We also study the energy saving by interleaving compression with
communication.

Fipure 12 compares the time for relatively large files which are compressed by gzip, compress and z1ib. (The im-
plementation of z1ib here adapts black by block, overlaps compression with communication, and interleaving downloading
and decompression.} Nete that we now may have three components for each bar. The upper one is the compress time. The
middle one is the decompress time and the lower bar is the downloading time. Again, all quantities shown are relative to the
time to download the original data fite. Correspondingly, Figure 13 compares the energy for the large-sized files.

From the above figures, we see (hal gz ip still fares better than compress in nearly all cases, although it takes longer
time to compress for several files. The interleaving in the revised z1ib completely masks the compression lime and hence no
energy cost is wasled on waiting for the compressed data (o arrive. This is mainly because the deskiop machine can interleave
communication and compression much better.
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Figure 12. Time comparison when compressing on demand (left bar: gzip; middle bar: compress;
right bar: z1ib with interleaving)

6 Related Work

Extensive work has been reported in the literature on proxy services, which mostly focus on transcoding of multimedia
files to reduce the bandwidth requirement. A number of references are cited in the introduction of this paper.

Previous comparisons between universal coding schemes, theoreticatly [5] or empirically [3], primarily focus on compres-
sion factors and compression speed. An interesting recent technical report examines the effect of gzip on uploading files
from mebile computers [9]. The experiments were conducted on a wired LAN 1o study the uploading speed. Previous work
comparing still-image coding schemes is quite extensive, focusing primarily on the compression factors, compression speeds
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Figure 13. Energy comparison when compressing on demand {left bat: gzip; middle bar: compress;
right bar: z1ib w/ interleaving)

and the reproduction quality [4, [0]. With our best efforts, we have not found previous work that compares the effect of data
compression on energy consumplion on handheld devices in a wireless network environment.

7 Conclusion

We have shown that, when carefully chosen and carefully applied, data compression schemes can effectively reduce the
energy cost on handheld devices in a wireless LAN environment. When carelessly chosen and applied, however, a data
compression scheme can cause a significant energy loss instead of saving. We propose an energy model to estimate the
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energy consumplion for compressed downloading. Based on the model, we develop methods that can make the decision
automatically based on the data file size and the compression factor. The model-based enhancements improve the energy
efficiency and incur virtually no energy cost for all dma files.

The tradeoff is shown to depend on the nelwerk bandwidth and the ratio of communication energy over computation
energy. With the advent of faster speed wireless LAN devices and the growing popularity of community-wide wireless LAN
services, 2 wider range of experimental environments will become available to enrich the experimental results. Further studies
are required for specialized compression schemes for video, music data and for upleading of multimedia data as well.
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