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Abstract

We investigate the lise ofdata compreuiaJl to redllce lire battery cOllsllllled by fWlldheld devices when dowilloading dara
from proxy servers over a wireless LAN. To make (I careful fratle-off be/wee/l tile COll1ll11l1/icntiO/I ellergy alld the ol'ed'ead to
per/ann decompressioll. we experilllem with three universal foss/ess compression schemes, /Ising a popular ha"dheld device
ill a wireless UN ellvirollmellt am/we find illierestillg jacts.

The resfdrs SIIOIV that. from ti,e battery-savillg perspective, tile gzip compression software (based all LZ77) to beJar
superior to bzip2 (baselloll BWT) alld compres s (based 011 12W). We rllell presenl all energy //lodel to estimare rhe energy
consllmptiolljor tire compressed dowi/loading. Wilh t1lis model. we [lIrt/ler redllce rile ellergy cost ofgzip by imerleavillg
communicatioll witll cOlI/plllation alld by /Ising a block·by·block selective scheme ba.~ed Oil the compressioll factor ofeadl
block. We also lise a tllresllOltl file siz.e below wllicf, tile file is 1101 to be compressed before trallsferring.

1 Introduction

Wireless-networked handheld devices have lhe potential to become powerful mobile tools to access informalion and
applications from anywhere at any time. However, with the current state of the art, effective use of wireless-networked
handheld devices needs strong supporl from proxy servers, or proxies. Sueh servers are slationary networked computers
which provide the handheld devices a range of backup resources and supporting services, including secondary storage,
computing power, Internet data caching and information filtering [I, 2, 7, 6. 13, 8].

When proxies nre employed in a wireless LAN environment, bauery consumption by communicalion vs. computalion
becomes interesting on the handheld devices. Today's handheld devices are increasingly used for accessing information over
the network, informmion in the form oftexl, graphics, photographs. data images. speech, sound, and so on. Compressing such
information on the proxies, in advance or on demand. has the obvious potential advanlage of reducing the battery consumed
by the wireless network interface on the handheld device. On the other hand, considerable battery energy may be consumed
by the processor for decompression. A similar tradeoff issue exists when the handheld device uploads information, e.g. lively
caplured voice and pictures. It is in this contexl that we investigate. in this paper, the impact of data compression on battery
consumption of wireless-networked handheld devices. We focus, however. on data downloading only, as this constilutes the
predominant uses of the handheld devices in currenl practice.

We aim lo study a variety of aspects of the data compression issue. We pay most of our present attention on universal
lossless compression schemes which can be applied to arbitrary data types with the ability to fully recover the conlents by
decompression.

In lhe rest of the paper, we first describe our experimentation set-up (Section 2) and compare the timing and energy dala
from using lhree different compression schemes (Section 3). For the winning scheme, namely LZ77, we present an energy
consumption analysis and explain how the energy efficiency can be further improved by interleaving the communication and
decompression (Section 4). Based on the energy model, we identify the threshold data size and the threshold compression
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Table 1 Power parameters·
iPAQ WaveLAN Power Saving Currcnl(mA)
idle sleep - 90
busy sleep - 300 440 (310)
idle idle off 310
idle idle on 110
busy idle off 530 670 (570)

b"', idle on 330 - 470 (340)
- reev off 430
- reev on 400
bu.~y reel' off 550 - 690
busy recl' on 470 690

ratio to be energy worthy for the LZ77 scheme. With such thresholds in mind. we develop a LZ77-hased algorithm thal makes
the compression decision dynamically, on n block·by-block base. This set of experiments consider both precompression and
compression on demand. These are followed by a discussion ofrclatcd work (Section 6) and a conclusion (Section 7).

2 Experimentation Setup

The handheld device used in OUT experiment is a Compaq iPAQ 3650 which has a 206MHz Intel StrongArm SAlllO
processor and 32'MB RAM. The proxy server is a Dell Dimension 4100 which has a IGHz P-III processor. Both machines
run Linux operating systems and communicate through TCP socket calls. The wireless connection is through a Lucent
Orinoco (WaveLAN) Golden PCMCIA card which follows the IEEE 802.lIb standard. Under the IIMb/s nominal peak
rate, the effective data rate of the WaveLAN card is measured as about 5Mb/s. The bit rate (for both send and receive) can be
adjusted downward in a few different ways, by changing the settings of the access point, by increasing the communication
distance, or by increasing structure obstacles between the two antennas. In Section 4.2. to validate our energy model, we
manually change the nominal bit rate from IlMb/s to 2Mb/s. However, for the main part the paper, all the data are collected
under the nominal bit rale of IIMb/s unless otherwise specified.

To measure the electrical current drawn by the handheld device, we connect it to an HP 3458a lOW-impedance (0. In)
digital multi· meter which takes several hundred samples per second and automatically records maximum, minimum and
average electrical current. In order to get a reliable and accurate reading, we disconnect the batteries from both the iPAQ and
the extension pack. using an external 5V DC power supply instead. The start and finish of the meter reading is controlled by
soflware, using the built-in trigger mechanism of the multi-meter. According to our measurement, the overhead associated
with the triggering interrupts is less than 0.5% and the readings are consistent over repeated runs.

We measure the electrical current drawn in different running modes. The reading is shown in Table 1. (All the numbers are
measured with the screen turned off.) The first column shows two functioning modes of the iPAQ: idle when it does nothing
and busy when it performs computation. The WaveLAN column indicates the status of the WaveLAN card, sendillg. receiving,
idle, or sleep. In the sleep mode, the WaveLAN card is not receptive to the incoming signals and it draws significantly lower
current than in the idle mode. Certain instructions, e.g. memory loads and stores, are more expensive than others. The current
reading may fluctuate as a result, and the table shows the range of the current measured for iPAQ busy modes. And in these
modes. the number in the parentheses is the average reading for gzip decompression.

The power savillg mode utilizes the hardware mechanism that periodically switches the WaveLAN card between the sleep
mode lmd the idle mode. It reduces the electrical current drawn significantly when there are no network requests. When
there exist send or receive requests, the effective data rate decreases by about 25% in the power-saving mode, due to the
overhead to switch between the states. Heuristics have been proposed in literature to predict (he optimal timing to wake-up
from the sleep mode [II]. However the success rate of such methods highly depends on event predictability. Also, leaving
the WaveLAN card in the sleep mode for an extended period of time may prevent timely reception of instant messages. In
this paper, therefore, we simply use the hardware power-saving mechanism to take advantage of the sleep mode. The Power
Savil/g column indicates whether the power saving mode is enabled for the WaveLAN card.

When the WaveLAN card is sending or receiving, the CPU spends time on the network interface. Hence the CPU is nol
idle even if it is not performing any computational tasks. In these cases, the iPAQ column is marked as '-'. The electrical
current is tne highest when computation is interleaved with communication.
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3 Comparing Universal Compression Schemes

We consider three widely used universal compression methods I, namely the Burrows-Wheeler Transform (BWT) l3J,
Lcmpel-Zib coding algorithms (LZ77 [14], and LZW [12]). Three widely circulated UNIX tools, based on the respective
compression methods, arc used in our experiments. Throughout the paper, the tenn compression [actor refers to the ratio of
the input size over the output size, and the tenn compression ratio refers to the reciprocal of the compression factor.

The gzip software uses U77 algorithm. The algorithm replaces the second occurrence of a string with a pointer to the
previous string, in the form of a (distallce, lel/gtll) pair. The distances are limited to the size-sliding window (of 32K bytes).
and the lengths are limited to the size of the look-ahead buffer. If a string does not occur anywhere in lhe slide window. it is
emitted as a sequence of literal bytes. The input stream is divided into blocks. A block is terminated when the compression
algorithm determines that it is better to start a new block to achieve a beller compression. The version of gzip we use in this
paper is gzip 1.2.4. The core algorithm of gzip is also used in zlib, a general purpose data compression library. The
version of zlib used in this paper is zlib 1.1.3.

The compress soflware uses the LZW algorithm with a growing dictionary. Unlike LZ77. it does not use a search buffer.
a look-ahead buffer, or a sliding window. Instead, it maintains a dictionary of previously encountered string. It starts with a
small dictionary of 29 ::: 512 entries (with the first 256 of them filled up). While this dictionary is being used, 9-bit pointers
are wrillen into the output. When the dictionary fills up, its size is doubled to 1024 entries. and lO-bit pointers are used. This
process continues until the pointer size reaches 16 bits. The compression continues without making changes to the dictionary
until the compression factor falls below a predefined threshold. At that time. the dictionary is deleted and a new 512-entry
dictionary is started. The version of compress we use in this paper is ncompressA. 2 . 4.

The bzip2 software compresses files using the Burrows-Wheeler block sorting compression algorithm. It first applies a
reversible transformalion to a block of data. The transformation groups characters together so thai the probabilily of finding
a character close to another instance of the same character is increased. The compression rate is generally considerably better
than that achieved by more convenlional Lempel-Ziv-based compressors [5]. However. it is also more computation intensive,
by some constant factors, than Lempel-Zivalgorithms. The version ofbzip2 we use in this paper is bzip2 1.0.1.

3.1 Workload

We have experimented with a large numbcroffiles ofdifferenI types, focusing on types typical for use on handheld devices.
such as web pages, documents, binary machine codes (recall the limited storage and the need to download applications), and
media files. For this paper. in order to have space to show results for individual files (with different compression factors),
we select a representative subset of files, which are listed in Table 2. Column I lists the file names. Column 2 shows the
file sizes. The rest of the columns show lhe compression factors by the individual compression schemes. We divide the files
into two categories, the small sized (under SDK bytes) and the relatively large sized. Table 3 gives a brief description of the
individual files.

All of the lhree compression tools provide options to choose the desired compression level. A higher level tends 10 result
in a higher compression factor and a slower compression speed. On the other hand, for the same compression scheme. our
experiments show that a high compression factor does not increase the decompressioll speed and energy much. Hence. we
use the highest compression level for each tool throughout the experiments, i.e. level 9 for both gzip and bzip2 and "-b
16" for compress (meaning a maximum of 16 bits for common substring codes).

From Table 2. we see that all of the three schemes can compress the program source or text files well (the compression
factors are from 2 to 25). For binary machine codes. the compression factors range from 1.6 to 3.5. Certainly, no schemes can
compress the already encoded data or random data well. Consistent to previous reports. bzip2 usually achieves the highest
compression factor, while compress gels the lowest in most cases.

3.2 Comparing Results

In this section. we examine experimental results to see when data compression can reduce tOlal energy consumption on
the handheld device and what compression tool reduces the most. We first assume that all downloaded files are compressed
a priori and stored on the proxy server.

Assuming fix-sized packets. given the fixed data rate. the energy cosl to transfer a data file over the wireless network is
linearly proportional to the data size. For compression to benefit. the saving in the communication energy (due to reduced

I A dala compression method is called universal if it has no prior assumption on the statistics oflhe inpnt.
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Table 2 Test files and compression factors
I N"~ I Size I Grip I Compress I Brip2 II Neme I Sile I Grip I Compress I Blip2 I

nes96,lml 2961063 18.23 6.51 U.59 peg"'il 360188 2-57 1.73 ,."
M31C.:unI 8391571 14.64 9.91 18.58 l'<.'TBACKUP.EXE 1162512 2-46 1.79 2.50
M3ICsm:,U.lml "00" 12.90 6.63 11.52 iepol-progr.,m 3~50558 2.30 .." 2.41
lnpetlog _36 1I.U 5.92 18.37 Sl:l"ep.w::Iv 1158380 ". 2,26 3.25
leegs!",c-2-0,hlml,mr 1162816 '" 3,08 6.[3 pp."e 920316 1.11 0." 1.23
in nUenrce 9553920 3." 2.54 4.88 '" l.gl::lphie 6656364 1.09 0,97 1-38
proxy.p. 2175331 3.80 3.00 6.87 i=ge01.jp 1833027 ..'" 0." 1.36
j2d·book.p5 5234774 3" 2,75 4.70 le"eenife.mp3 4328513 1.02 0.83 1.02
ie"a.p, 1698978 3.55 2.61 4,46 lorn.Q15.m2v 2816594 1.01 0.85 1.02
1000elo&.f 330072 3.50 2.18 3.72 i=ge01.gif 5075287 '.00 0,82 '.00
JavaCCI'".user-c1"" 126241 3.00 2.00 3.17 inpnl.rnndom 419.1309 ..00 0.81 '.00
lang,pee.2.0.pdf 4419906 2.79 1.98 300

maiD 1438 1.82 1.47 1.67 l:Iil 26240 ,m 1.59 2.11
=ill 1611 1.91 1.48 1,75 ~mdig.eP5 31290 3,22 1.95 3.17
Polyhe~ronElemcm.ela" 2211 1.79 1.42 .." inlro.pIl "... 1.77 1.23 1.80
nohnp "00 1.97 1.47 1.81 fscnb 57312 '0'> 1.55 2.14
m.~iI2 4285 2,16 1.66 '00 inlro.ps "on 2.-37 1.87 2.54
yahooindex.hunl 16709 3." 2.22 3." JavaFll....ebs, """ 2.93 1.82 2.97
Slele.class 21890 2.23 .." 2.15 ",,1. s 79012 '58 ,.., 2.83

D<:scriptioo

a progJ:Im bieary
a pro bieary
a progJ:Im binary (from SPEC 2000)
adaL1 filc in .w-'v form11
e dal:l file io .'u form:1l
;, TIFFiJru' c(from SPEC 2000)
ajpegim:lgc
a IOp3 music
empeg.2movie

~ program binm)'
en encap,nleled po'l5Cripllile
~ f Iilc
" pmgram bin:>ry
a POS15cri 'I dOl;un1Cnl
"Java cless iiI.
a pomcripl filc

"GIF lilc
modemdal:l(fromSPEC 2000)

peg",il

NTBI\CKU~EXE

inpetprogr:un
SL'UlUp.Wav

pp."e
inpUl.b"" hic
imagoOl.jpg
l0'0'eonirc,m 3
lem.015.m2v

L~il

umc.Jig.ep,
intro,pdf
f,crib
intro,ps
Ja"eFiles.cla.ls
pel.p,

i"",gc01.gif
input.modom

Table 3. Test files type information
II Neme:1k5<.1iplioe

a xml ",ebp"ge
axml",cbee
a xml ",ebp"ge
a ...ebpage log (from SPEC 2000)
a l.lr lile ef Java language spociliee~on in hun! fOnn:ll
a progr.,rn soorce (from SPEC 2000)
a po:s15eripl dllClllIlCnl
a POSl5CriPI documenl
a pomcripl dCCllm:Ol
a pm "m binary
a Jav::! class lile
Ja'~l spccilicalion in pdf form;,l

a ICll nuil
a lell JIL1il
a jaY:! class lile
a sbell scripl
a ICll nuit
a hun! web" e
e Jova elms iiI.

loc;l1cdcf
Je,.,.CCP:user.cle,"
langs :'C-2.0.pIlf

n",iO
main
l'olyhodronl:lemcntole",
oohep
n",il2

yahooin~ex.hlml

Slele.clas,

Nmnc

ne.96.xm1
M31C.~ml

M3ICs=ILxml
inpeUeg
langspoc.2.0.html.lar

inpuuonrce
proxy.p<
j2d·l>ook, s
jeva.p.

data size) needs 10 be greater than the energy cost spent on decompression on the iPAQ. Thus, the scheme which compresses
the deepest does not necessarily saves the most energy.

The three schemes which we used are known to decompress much faster than to compress. However, bzip2 perfonns
more computation than the other two schemes, since it requires a reverse transformation. As we shall see, the difference is
significant enough to put bzip2 in energy disadvantage. Figure 1 compares the time spent to download and decompress
data files using the three different compression schemes, The top two bar graphs are for relatively large-sized files, which are
sorted in the decreasing order of the compression factor. The third bar graph is for the small sized data files, which are sorted
in the increasing order of the file size.

The height of each vertical bar is relative to the time spent when downloading without compression. Each bar here is
divided into two paris, the lower one is the time spent on downloading and the upper one spent on decompression. One
observes that. for each particular scheme, the trend is a reduction in the overall time with the increased compression factor.

When the network card is idle. it can potentially save energy by entering the power-saving mode. The electrical current
decreases from 570mA to 340mA if we switch WaveLAN card from idle to sleep mode when iPAQ is busy (refer to Table
1). We will further discuss this issue in Section 4.2. Our experiments show that such saving materializes for bzip2 (as it
takes long time to decompress) but not much for the other two schemes. Thus. we show the energy results with power-saving
enabled for bz ip2 but not for the other two schemes.

Figure 2 compares the energy consumed. The bars arc organized in the same way as in Figure 1. Figures 2 clearly shows
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Figure 1. Time comparison for different compression schemes. (left bar: gzipi middle bar: com
press; right bar: bzip2)

that if the raw file is large and compression faclor is high. all compression schemes can save energy. However. if the input file
is small, compression fares worse due 10 the stan-up cost. If the compression factor is low, it is nol beneficial either, because
the communication cost is not reduced enough while the decompression cost remains.

The results also show thai. for large data files. neither the scheme willI the highest compression factor nor the one with
the lowest factor gets the best energy result on the iPAQ. It is the decompression efficiency that matters the most. In this
paper, we do not give a detailed analysis of the lhree different algorithms. Neverlheless, the experiments in our IEEE 802.11 b
Wireless LAN environment show that, except for a few very small data files, gz ip balances the communication cost vs. the
decompression cosl the best. It is also clear. by comparing the communication lime with the decompress lime, that gzip
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Figure 2. Energy comparison 10r different compression schemes. (left bar: gzip; middle bar: com
press; right bar: bzip2)

will remain the strongest algorithm even with interleaving. In me next section, we will show the impact of interleaving for
gzip only and leave OUl the similar datu for the other two schemes.

4 Enhancements Based on Energy Modeling

From the previous section. gzip stands as the clearly superior choice from both the perspectives of time and energy on
the handheld device. Nonetheless. we see that when the compression factor is not high enough, even gzip consumes more
energy than when there is no compression. Furthermore, compression gets far worse results for small dala due to the start-up
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cost of decompression. In this section, we analyze the energy consumption and propose methods to improve the energy
performance for compressed data communication.

4.1 Interleaving Decompression and Receiving

,ime

':1"" "":,"f=:-k::,+::----j~+._
idle r«" deeolJlll'O"ion

Figure 3. Energy consumption when download and decompress

Handheld devices usually have simple hardware architectures which have a single processor. The processor is needed both
for computation and for networkcommunicalion (e.g writing to and reading from the network interface, defragmentationand
assembly of packets). Figure 3 illustrates the energy consumption breakdown when we download before decompressing
the data. The energy consumed by downloading consists of two pans, the energy to receive and copy data. and the energy
consumed in the CPU idle intervals between packages arriving. The idle-time energy consumption can be substantial. In our
experimental environment, even when we receive the packets al the full speed (602 KB/s), the idle time is about 40% of the
total receiving time. Thus. about 30% of the Iota Idownloading energy is consumed when idling.

We can improve the performance and energy efficiency by filling these idle periods with decompression work. The
interleaving takes place as follows. We decompress the i th block of the data when downloading the (i + llh block. The
decompression starts as soon as the first block is received. The overall effect is decompressing and downloading at the same
lime.

Figure 4 shows two scenarios ofimerleaving. In (a), lhedecompressionofi tl• block is faster than downloading the (i+ l)th

block, which creates a CPU·idle period. Tn (b), the decompression is slower than downloading, and the system is processing
at the full speed and there is no idle lime.

r.,,, p(i,l) do<o'np nxv p(i,1)
p(,-I)

idle TOevp(i,l}

(a) idle time grealer than decompression lime

roc"p(i.]) '=.,
p(i-ll

roc"p(i,2)

(b) idle lime less than decompression lime

Figure 4. Energy consumption when interleaving downloading and decompressingj P (i) is the i th

block and p (i, j) is the jth packet of i th block.

Let s be the size of the data, the energy for receiving the data is

E:= m * s+cs + tj *p, (1)

where m is the energy to receive a unit of data, Cs is lhe nelwork communication start-up cost, Pi is the power during system
idle time. while ti is the total idle lime between packels arriving.

If we perform compression when sending and decompression when receiving, the energy consumed is

E:= m *Sc +cs + (ti' + tid *Pi + td *Pd (2)

where Se is the compressed file size; td is the total time of decompression the whole data; Pd is the average power when
decompressing. Further, til is the idle lime when receiving the packet for the first compressed block, while ti' is the idle
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time when receiving the remaining packets. We separale these two because we can not make use of the tn
decompression.

With interleaving, the energy equation becomes

if ti' > td
m * 8e +Cs + td*Pd+ (ti' - td+ til) *Pi

if t i, S td

m * Se +Cs + td *Pd + til *Pi

to perform

(3)

Interleaving communication and decompression can be achieved in various ways. For example, we can implement the
decompression in the TCP stack, so (he interleaving can be managed explicitly by the kernel. In this work, we adopt a user
level method. We implement the decompression as a user process which decompresses the downloaded data block by block.
Since the receiving process is in the kernel interrupt handler, the receiving of iO, block will interrupt the decompression of
previous blocks.

During the whole compressed downloading, the CPU idle time ti = ti' +til depends on the system load and the receiving
rale. If there exist other active processes, the CPU's idle lime decreases. So does the benefit of interleaving. In our experiment,
there exist no other aClive processes. In this case, we found that ti usually is a fixed fraction of the whole downloading time.
We me<lsured ti to be aboUl40% of data-receiving time al O.6:MB/s download rate. So, ti = 0.'1 * 5/0.6. The following
equ<ltions determine ti' and til.

if8~0.128 ti' =0.4*(8<:-0.128*s<:/s)/0.6
til = 0.4 * (0.128 * se/s)/0.6

if 8 < 0.128 ti' = 0
til = 0.4 * 8 e /0.6

(4)

where sand Se are in Meg<lbytes. Here we <lssume that the size of the compression buffer is O.128:MB.
To implemem interleaving, we use the compression/decompression library zlib. There exist subtle differences between

gz ip and z lib even without interleaving. To give a f<lir assessment of the effect of interleaving, Figure 5 compares the time
for gzip (the left bar), zlib without interleaving (the middle bar), and zlib with interleaving (the right bar). Figure 6
compares the energy, correspondingly. From these figures, we see that interleaving brings down the decompression overhead
(both time-wise and energy-wise) rather substantially.

To validate the energy model for interleaving, we calculate the energy consumption based on Equation 3. Parameters such
as Pi, PrJ and trJ are obtained lhrough direct measurement, while ti" til are computed (in Equalion 4). m*s<:+cs is calculated
by subtracting the idle energy ti *Pi from the value of the measured lotal downloading energy (refer to Equalion I).

Figure 7 shows the error rate defined as (calculated value - measured value}fmeasured value. For large files, the error
L lerror rlllel .

rates are less than 6.5% and the average error rale defined as the nli~b"r oJ data points IS 2.5%. For small files, the average
error rale is 9.1 %. This is mainly attributed 10 the inaccuracy for the five smallest files. Due to the extremely small energy
value, even <l small interference on the handheld device C<ln affect the result substantially. If these five files are excluded, the
avemge error rate for small files is 4.5%.

4.2 Estimating Energy Consumption

In last section. we have shown thai interleaving decompression with receiving can reduce time and energy for most of the
data files. Still. when the compression factor is low, even with interle<lving, the energy saved in data communication does not
compensate the energy used in decompression. The net energy loss ranges between 2%-14%, compared to no compression.
Hence. we seek to derive a formula to estimale the energy consumption for a given file size and a given compression factor,
such lhat we can m<lke the compression decision adaptively.

To derive such a formula, We first need to know the coefficients m and c.•. As mentioned in last subsection. ti is linearly
proponionalto 8 . Hence. the downloading energy E can be expressed as <l linear funelion of s. Based on linear fitting of a
large number ofdata points, we get the following equation to eslimate the energy for downloading;

E = 3.519 *s +0.012

with an <lverage error of 7.2%. The resull of the fitting is plotted in Figure 8 (b). Based on this fitling, we can derive m and
Cs from Equations 1 and 4. In our experiments, we get m = 2.486 and c.• = 0.012.
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We also use linear filting 10 estimate the decompression time based on the file size and the compression factor.

td == 0.161 * s + 0.161 * Be + 0.004

where sand Se are in Megabytes. The result of fitling is plaued in Figure 8 (0.). The average error ratc is 3%, and the
maximum error Tate is 13%. The coefficient of determination of the estimation is 96.7%.

After plugging all the parameters obtained above into Equation 3, we have lhe following formulas to estimate energy
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consumption in the case of interleaving,

if F> 3.14 - 0.265/5 & S > 0.128, E =
0.4589 *s + 2.945 * Se + 0.132/F + 0.0234

if F.:5 3.14 - 0.265{8 & S > 0.128, E =
0.2093 * 5 + 3.729 *Se + 0.0172

if s :::; 0.128 > E =
0.<1589 * s + 3.9784 * ."Ie + 0.0234

10
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where F is the compression factor.
The curve in Figure 9 labeled as I1Mb/s shows the error rate of energy estimation for zlib with interleaving under

the 11Mb/s nominal bit rate. For large files, the prediction is rather accurate, with the average error-rate of2.4%. For small
files, the error-rate is relatively high. For the three smallest files. the error-rates range from -40% to 10%. BUl as file size
increases, the precision increases. For the res! of the small files, the average error rate is 5.3%.

As we memioned earlier, one can turn Ihe WaveLAN card into sleep mode when doing the decompression if no interleaving
is applied. We use Equation 2 to calculate the total energy,letlingpd equal to 1.70 (refer to Table I). We can easily calculate
that, in order for sleep mode to outperform interleaving,lhe compression factor must exceed 4.6 even if we do not count the
energy overhead to $witch between modes. This explains why the sleep mode does not have much impact on energy saving
for gzip in the last section.

To further test the robustness of our inLerleaving energy model, we change the experimental setting in various ways. In
one setting, we force the S02.llb network device (0 work at a lower transmission rate of 2Mb/s. We measure the effective
receiving rate 10 be 180K bytes per second and the CPU idle time 10 be 81.5% of Ihe total downloading time. Based on
this infonnation, we derive that, in order to completely fill the idle time wilh decompression work, one needs a compression
factor at leasl of 27, which is not very likely in practice. For of compression faelOrs lowers than 27, the energy estimation
equation should be

2.0125 * S + 12.4291 * Sc + 0.0275

for the file size greater than O.128MB. The curve in Figure 9 labeled as 2Mb/s shows the error rate of energy estimalion
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under 2Mb's nominal bit rate, which indicates that the estimation agrees with the real measurement very well.

4.3 Selective Compression

In Ihis subsection, we develop a scheme to use the energy estimation model discussed in last section to further improve
the compressed-data downloading efficiency. Il is easy (0 derive that, in order to save energy by compressing Lhe data before
downloading, the following conditions must be met:

if s > 0.128
if s;:::; 0.128

l.l3/F < 1- 0.00157/,
l.30/F < 1- 0.00372/, (6)

Based on the formula derived above, we do not compress the file irthc original size is less ilian 3900 bytes (O.00372MB).
Note that if the original file is much larger than 3900 bytes, only the compression-factor threshold malters.

The compression factors for different blocks (which is de!ermined by the zlib algorithm) within a file do not usually vary
much. But certain types of files, for example, lar files, Power Point presentations, and PDF documents, may contain different
types of data objects such as texts and graphics. The compression factors for different blocks may be rather different. To deal
with such cases, we further modify the zlib implementation with a block-by-block adaptive scheme as in Figure 10. Note
that here" send" means writing to the precompressed file.

Figure II shows the result of applying the block-by-block adaptive scheme. We only show the experimental results for
files which may be affected by the scheme. For those not listed, the results remain the same as in the previous figures. The
figures show that, by using the block-by-block adaptive scheme, we can further reduce the energy cost for the files wi!h low

12
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for each block
if (block size < thresbold size) {

send Ihe raw data;

J
else {

compress lJIe block:
if (Equation (6) lesl IS l1egli~e) [

send the r.lW data;

J
,",

send the compressed data;

Figure 10. A block-by-block adaptive scheme

compression factors. We point out that, with lhis block-by-block adaptive scheme. the compression tool no longer incurs
higher energy cost (than no compression) for any file used in our experiments,

5 Compression on demand

In previous sections, we assume thal proxy server keeps a copy of the precompressed file. This is not always true. The
server may only sLore the file in its original format. As a result, the decision on whether (0 compress needs to take the

13



-,,;::::====~--::::--=-=--------,,. ---,

..

(a) Time

"
"t-------
"t------f:c-II-I-+c-I-II-*l

(b) Energy

Figure 11. Effect of the block-by-block adaptive scheme (left bar: gzip; middle bar: zlib \0110

interleaving; right bar: zlib wi interleaving)

compression speed into accounl.
For most compression schemes, including three schemes we use in this paper. compression requires more computation

resource than decompression. If the rate of compression is slower than the rate of transmitting on the proxy server, the CPU
of handheld device may have more idle periods. This in turn potentially provides more opportunities for the interleaving
to save the idle energy. However, in our experiments, as shown in the later ligures, for those oOl-so-expensive compression
schemes, the compression almost completely overlaps with data transmitting on the proxy server.

It is widely known that Bzip2 compresses slower than gzip and compress, so it can be eliminated from the con·
sideration. Here we compare gzip and compress. We also study the energy saving by interleaving compression with
communication.

Figure 12 compares the time for relatively large files which are compressed by gzip, compress and zlib. (The im·
plementation of zlib here adapts block by block. overlaps compression with communication, and interleaving downloading
and decompression.) Note that we now may have three components for each bar. The upper one is the compress lime. The
middle one is the decompress time and the lower bar is the downloading time. Again, all quantities shown are relative to the
time to download the original data file. Correspondingly, Figure 13 compares the energy for the large-sized files.

From the above figures, we see thaL gzip still fares better than compress in nearly all cases, although it takes longer
time to compress for several files. The interleaving in the revised zlib completely masks the compression time and hence no
energy cost is wasted on waiting for the compressed data to arrive. This is mainly because the desktop machine can interleave
communication and compression much belter.
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6 Relaled Work

Extensive work has been reported in the literature on proxy services, which mostly focus on transeoding of multimedia
tiles to reduce the bandwidth requirement. A number of references are cited in the introduction cfthis paper.

Previous comparisons between universal coding schemes. theoretically [5] or empiricnlly [3], primarily focus on compres
sion factors and compression speed. An interesting recent technical report examines the effect of gzip on uploading files
from mobile computers [9]. The experiments were conducted on a wired LAN 10 study the uploading speed. Previous work
comparing still-imllgecoding schemes is quite extensive, focusing primarily on the compression factors, compression speeds
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and the reproduction quality [4, lO]. With OUf best efforts. we have nOl found previous work that compares !.he effect of data
compression on energy consumption on handheld devices in a wireless network environment.

7 Conclusion

We have shown that, when carefully chosen and carefully applied. data compression schemes can effectively reduce the
energy cost on handheld devices in a wireless LAN environment. When carelessly chosen and applied, however. a data
compression scheme can cause a significant energy loss instead of saving. We propose an energy model to estimate the
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energy consumption for compressed downloading. Based on the model, we develop methods that can make (he decision
automatically based on the data file size and the compression factor. The model-based enhancements improve the energy
efficiency and incur virtually no energy cost for all dala files.

The tradeoff is shown to depend on the neLwork bandwidth and the ratio of communication energy over computation
energy. With the advent of faster speed wireless LAN devices and the growing popularity of community-wide wireless LAN
services, a wider range of experimental environments will become available to enrich the experimental results. Further studies
are required for specialized compression schemes for video, music data and for uploading of multimedia data as well.
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