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(a) Case A (b) Case B

Figure A.2.: Case A: Plot of Lq with varying NP and F = 0.5. Case B: Plot of Lq with

varying NP and F = h · 1√
NP

. Here h = 0.5

F = 0 and hence the gap between the two roots q = 0 and q = 2−2F2(NP) is maximum.

This is not practical as there is no mutation. A value of h = 1 implies that the roots coincide

at q = 0. We need to choose a value of h such that these extreme cases are not encountered.

Shown in figure A.2b Case B is where h = 0.5. While solving a particular problem (fixed

population), F may be varied within the valid region under Lq = 1. Comparing with figure

A.2a, we can see that adapting the value of F as F = h · (1/
√

NP) forces all the curves to

have valid regions of q values with a corresponding Lq under 1.
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Appendix C - Benchmark Sets

Benchmark Set 1

Table A.1: List of functions used in the benchmark set 1 with the corresponding global

optima. Also, the bounds (or extant of the search space) in each direction is shown)

No. Name Function f* Bounds

f1 Ackley’s Function −20exp(−0.2
√

1
n ∑

n
i=1 x2

i )− exp(1
n ∑

n
i=1 cos(2πxi))+20 0 [−2,2]

f2 Sphere Function ∑
n
i=1 x2

i 0 [−2,2]

f3 Rosenbrock’s Function ∑
n−1
i=1

[
100

(
xi+1− x2

i
)2

+(xi−1)2
]

0 [−2,2]

f4 Goldstein-Price Function

(
1+(x1 + x2 +1)2 (19−14x1 +3x2

1−14x2 +6x1x2 +3x2
2
))(

30+(2x1−3x2)
2 (18−32x1 +12x2

1 +48x2−36x1x2 +27x2
2
))

3 [−3,3]

f5 Levi Function sin2(πx1)+∑
n−1
i=1 (xi−1)2(1+10sin2(πxi+1))+(xn−1)2 0 [−5,5]

f6 Three-hump Camel Function 2x2
1−1.05x4

1 +
x6

1
6 + x1x2 + x2

2 0 [−5,5]

f7 Easom Function −cos(x1)cos(x2)exp
(
−
(
(x1−π)2 +(x2−π)2

))
−1 [−10,10]

f8 Beale’s Function (1.5− x1 + x1x2)
2 +
(
2.25− x1 + x1x2

2
)2

+
(
2.625− x1 + x1x3

2
)2 0 [−4.5,4.5]

f9 Booth’s Function (x1 +2x2−7)2 +(2x1 + x2−5)2 0 [−10,10]

f10 Matya’s Function 0.26
(
∑

n
i=1 x2

i
)
−0.48∏

n
i=1(xi) 0 [−10,10]

f11 Griewank’s Function 1+ 1
4000 ∑

n
i=1 x2

i −∏
n
i=1 cos

(
xi√

i

)
0 [−5,5]

f12 Rastrigin’s Function An+∑
n
i=1
(
x2

i −Acos(2πxi)
)

0 [−5.12,5.12]

f13 Schwefel’s Function ∑
n
i=1−xi · sin(

√
|xi|) −837.9658 [−500,500]

f14 Moved-axis parallel ellipsoid ∑
n
i=1 5i · x2

i 0 [−4,4]

f15 Michalewicz’s Function - ∑
n
i=1 sin(xi) ·

(
sin
(

i·xi
π

))20
−1.8983 [−15,15]

Benchmark Set 2
Appendix D - Optimal Airfoils of GA and DE
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Figure A.3.: Airfoils belonging to the different population cases that are results of the GA

algorithm distinguished by their Cp distribution.
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Figure A.4.: Airfoils belonging to the different population cases that are results of the DE

algorithm distinguished by their Cp distribution.
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Figure A.5.: Airfoils belonging to the different population cases that are results of the

DE-SOM algorithm distinguished by their Cp distribution.
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Table A.2: List of functions used in the benchmark set 2 (CEC 2005) with the correspond-

ing global optima. Also, the bounds (or extant of the search space) in each direction is

shown). In all problems, z = x− o, with o being the shifted optimum. For shifted rotated

functions, z = (x−o)×M, with M being a linear transformation matrix specified in [114].

A and B matrices are also specified in [114]. Note that functions f15 to f25 are composi-

tion functions that involve complex combinations of five or more functions and cannot be

succinctly defined here.

No. Name Function f* Bounds

f1 Shifted Sphere Function ∑
n
i=1 z2

i −450 −450 [−100,100]

f2 Shifted Schwefel’s Function ∑
n
i=1 ∑

i
j=1(z j)

2−450 −450 [−100,100]

f3 Shifted Rotated High Conditioned El-

liptic Function

∑
n
i=1(106)

i−1
n−1 −450 −450 [−100,100]

f4 Shifted Schwefel’s Problem 1.2 with

noise

(∑n
i=1(∑

i
j=1)

2) ∗ (1 +

0.4|N(0,1)|)−450

−450 [−100,100]

f5 Schwefel’s Problem 2.6 with Global

Optimum on Bounds

max(|Aix−Bi|)−310 −310 [−500,500]

f6 Shifted Rosenbrock’s Function ∑
D−1
i=1 (100(z2

i −zi+1)
2+(zi−1)2)+

390

+390 [−100,100]

f7 Shifted Rotated Griewank’s Function

without Bounds

∑
n
i=1

z2
i

4000 −∏ i = 1ncos( zi√
i
) + 1 +

180

−180 [0,600]

f8 Shifted Rotated Ackley’s Function

with Global Optimum on Bounds

−20exp(−0.2
√

1
n ∑

n
i=1 z2

i )−

exp(1
n ∑

n
i=1 cos(2πzi)) + 20 + e −

140

−140 [−32,32]

f9 Shifted Rastrigin’s Function ∑
n
i=1(z

2
i −10cos(2πzi)+10)−330 −330 [−5,5]

f10 Shifted Rotated Rastrigin’s Function ∑
n
i=1(z

2
i −10cos(2πzi)+10)−330 −330 [−5,5]

f11 Shifted Rotated Weistrasss Function ∑
n
i=1(∑

kmax
k=1 [akcos(2πbk(zi +

0.5))])

−n∑
kmax
k=1 [akcos(2πbk ·0.5)]+90,

a = 0.5,b = 3,kmax = 20

+90 [−0.5,0.5]

f12 Schwefel’s Function 2.13 ∑
n
i=1(Ai−Bi(x))2−460 −460 [−π,π]

f13 Expanded f8 plus f2 f 8( f 2(x1,x2)) + f 8( f 2(x2,x3)) +

. . .

+ f 8( f 2(zn−1,zn)) +

f 8( f 2(zD,z1))−130

−130 [−3,1]

f14 Shifted Rotated Expanded f6 F(z1,z2) + F(z2,z3) + . . . +

F(zn−1,zn) + F(zn,z1),F(x,y) =

0.5+ sin2(
√

x2+z2−0.5)
(1+0.001(x2+y2))2

−300 [−100,100]

f15 - f25 See [114] - - -
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A.3 Appendices for Chapter 6

Appendix A - Indirect Method for Optimal Control

Trajectory optimization problems are generally expressed in the form of minimizing

an integral (Eq.A.16) subjected to dynamics constraints (Eq.A.16), initial value of states

(Eq.A.17), and a terminal cost constraint (Eq.A.18, L is the path cost, x is an n-dimensional

state vector, u is an m-dimensional control vector and φ is a p-dimensional terminal con-

straint vector. [191]

J = Φ(t f ,x(t f ))+
∫ t f

t0
L(t,x(t),u(t))dt (A.16)

ẋ = f (t,x(t),u(t)) (A.17)

x(t0) = x0 (A.18)

φ(t f ,x(t f )) = 0 (A.19)

The objective in this trajectory optimization problem is to minimize time of flight, t f .

Indirect methods involve satisfying the necessary conditions of optimality using Euler-

Lagrange equations given by Eq.A.20 - A.21. λ in the following equations is an n-dimensional

co-state vector and H is the Hamiltonian.

λ̇ =−dH
dx

(A.20)

dH
du∗

= 0 (A.21)

where

H = L + λ Tẋ

The Hamiltonian for the given problem and the time derivatives of co-states were then

found using Eq.A.20 and are described by Eq.A.22 - A.27.

λ̇x = 0 (A.22)

λ̇y = 0 (A.23)

λ̇z = 0 (A.24)
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λ̇v =−λxcosγcosψ−λycosγsinψ−λzsinγ+
λψ

√
1−u2 (L+T sinα)

mv2cosγ
−λγ

(
gcosγ

v2 − u(L+T sinα)

mv2

)
(A.25)

λ̇ψ = vcosγ(λxsinψ−λycosψ) (A.26)

λ̇γ = λxvcos(ψ)sinγ +λyvsinγsinψ−λzvcosγ−λγ

(
gsinγ

v
− gucosγ(D+mgsinγ)

T vsinα

)
−λψ

(
sinγ
√

1−u2(L+T sinα)

mvcosγ2 − g
√

1−u2(D+mgsinγ)

T vsinα

)
(A.27)

The control laws were found using Eq.A.21 and are described by Eq.A.28 - A.29.

u1 =−
λγ√

λ 2
γ +(λψsecγ)2

(A.28)

u2 =
λγ√

λ 2
γ +(λψsecγ)2

(A.29)

It is to be noted that two control law options were found. Using Pontryagin’s minimum

principle, the control law that minimizes the Hamiltonian was then chosen at each data

point. [191]
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Appendix B - Engine Analysis block

Figure A.6.: Simulink model of the turbojet Engine used for propulsion system analysis
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Figure A.7.: Outputs generated by the Simulink model of the turbojet Engine with the aim

of maintaining a constant total thrust along the trajectory. Note that the total time of the

trajectory is divide into 1000 time steps.
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Appendix C - Parallel Runway Airport Map
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Figure A.8.: Final approach to Runway 17L, Austin Bergstrom International airport
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Figure A.9.: Final approach to Runway 17R, Austin Bergstrom International airport
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Aircraft conceptual design in a multi-level, multi-fidelity, multidisciplinary opti-
mization process. In 28th International Congress of the Aeronautical Sciences, pages
1–11, 2012.

[4] Marian Nemec, David W Zingg, and Thomas H Pulliam. Multipoint and multi-
objective aerodynamic shape optimization. AIAA journal, 42(6):1057–1065, 2004.

[5] RP Henderson, JRRA Martins, and RE Perez. Aircraft conceptual design for optimal
environmental performance. Aeronautical Journal, 116(1175):1, 2012.

[6] TD Robinson, KE Willcox, MS Eldred, and R Haimes. Multifidelity optimization
for variablecomplexity design. In Proceedings of the 11th AIAA/ISSMO Multidisci-
plinary Analysis and Optimization Conference, Portsmouth, VA, 2006.

[7] Sricharan Kishore Ayyalasomayajula. A formulation to analyze system-of-systems
problems: A case study of airport metroplex operations. 2011.

[8] Paul Kostekm and Pierre DeChazelles. Framework for the application of systems
engineering in the commercial aircraft domain. 2000.

[9] Robert A Wolf. Multiobjective collaborative optimization of systems of systems.
Technical report, DTIC Document, 2005.

[10] Muharrem Mane, William A Crossley, and Antonius Nusawardhana. System-of-
systems inspired aircraft sizing and airline resource allocation via decomposition.
Journal of Aircraft, 44(4):1222–1235, 2007.

[11] Christine Taylor and Olivier L de Weck. Integrated transportation network design
optimization. AIAA Paper, 1912, 2006.

[12] A Nusawardhana and William Crossley. Allocating variable resources over a finite
time horizon to combine aircraft sizing and airline planning. 2005.

[13] Harrison M Kim and I Jessica Hidalgo. System of systems optimization by pseudo-
hierarchical multistage model. In Proceedings 11th AIAA/ISSMO multidisciplinary
analysis and optimization conference, 2006.



204

[14] Navindran Davendralingam and William Crossley. Robust optimization of aircraft
design and airline network design incorporating economic trends. 2011.

[15] Navindran Davendralingam and Daniel DeLaurentis. A robust optimization frame-
work to architecting system of systems. Procedia Computer Science, 16:255–264,
2013.

[16] Ferat Sahin, Prasanna Sridhar, Ben Horan, Vikraman Raghavan, and Mo Jamshidi.
System of systems approach to threat detection and integration of heterogeneous
independently operable systems. In Systems, Man and Cybernetics, 2007. ISIC.
IEEE International Conference on, pages 1376–1381. IEEE, 2007.

[17] James Allison, Michael Kokkolaras, Marc Zawislak, and Panos Y Papalambros. On
the use of analytical target cascading and collaborative optimization for complex
system design. In 6th World Congress on Structural and Multidisciplinary Opti-
mization, 2005.

[18] John E Dennis Jr, Sharon F Arroyo, Evin J Cramer, and Paul D Frank. Problem
formulations for systems of systems. In Systems, Man and Cybernetics, 2005 IEEE
International Conference on, volume 1, pages 64–71. IEEE, 2005.

[19] Gautam Marwaha and Michael Kokkolaras. System-of-systems approach to air
transportation design using nested optimization and direct search. Structural and
Multidisciplinary Optimization, pages 1–17.

[20] Jaroslaw Sobieszczanski-Sobieski. Integrated system-of-systems synthesis (isss).
AIAA Journal, 2006.

[21] Hyung Min Kim, D Geoff Rideout, Panos Y Papalambros, and Jeffrey L Stein. Ana-
lytical target cascading in automotive vehicle design. Journal of Mechanical Design,
125(3):481–489, 2003.
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