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ABSTRACT 
 
Implementation of advanced controls and diagnostic features in small commercial buildings typically requires real-
time monitoring of the energy flows, such as the power consumption and cooling capacity of rooftop units. 
However, these measurements are expensive and therefore limit the application of these advanced features. In order 
to lower the measurement cost, virtual sensing technology for rooftop unit power consumption and cooling capacity 
are being developed. Power transmitters and thermocouples are installed on the rooftop units to train the virtual 
sensors. The idea is to recycle the power transmitters after training to save cost, and then the virtual sensors estimate 
hourly electrical consumption and cooling capacity using only low cost, non-invasive temperature measurements. In 
this paper, development and validation of the virtual sensors are presented.  The virtual power consumption sensors 
are validated for 2 different rooftop units installed in the field, whereas the cooling capacity sensors are validated 
using 4 laboratory-tested rooftop units. The reliability of the sensors is also investigated by studying the uncertainty 
of the virtual sensor outputs under different operating conditions. A cost comparison between the virtual sensors and 
direct measurement methods is also conducted to evaluate the potential for widespread application of the virtual 
sensing technology. 
 

1. INTRODUCTION 
 
Space cooling requires a lot of energy. In 2011, the U.S. spent 14.5% of its total primary energy use on space 
cooling in commercial buildings (Department of Energy 2011).  Furthermore, about 41.3% of space cooling is 
provided by rooftop units (Energy Information Administration 2003). The energy consumption can be reduced by 
operating advanced building control and diagnostics technology. However, these technologies typically require the 
measurement of power consumption and cooling capacity, which are expensive and difficult to implement in the 
field. To reduce the cost of advanced energy-saving technologies, virtual sensors for power consumption and 
cooling capacity of rooftop units are developed to replace these direct measurements. 
 
Virtual sensing technology uses measurements of other variables and mathematical models that relate the measured 
variables and the outputs. This approach is widely used for variables that are hard or expensive to measure directly. 
A detailed literature review of virtual sensors for HVAC systems was given in Li et al. 2011. Examples include a 
virtual sensor of the supply airflow of the rooftop units (Yu et al. 2011), a virtual sensor for water flow in pumps 
(Song et al. 2012) and a virtual sensor for refrigerant charge inside an air conditioner (Kim and Braun 2011). 
 
In this paper, three virtual sensors are developed for retrofit to existing single-speed rooftop units to predict 
evaporator fan power consumption, compressor and condenser fan power consumption and cooling capacity using 
temperature measurements. To calibrate the sensors in the field, power transmitters and thermocouples are installed 
in the units to provide calibration data. After calibration, the expensive power transmitters can be reused in other 
units to save cost, while the thermocouples remain in the units to provide inputs for the power and cooling capacity 
virtual sensors. It is important to note that it is not necessary to have a direct measurement of cooling capacity in 
order to develop this virtual sensor.  To verify the accuracy of the power consumption virtual sensors, data from 2 
units in the field were used. Since it is difficult to directly measure cooling capacity in the field, the accuracy of the 
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cooling capacity sensor was verified with data from 4 units tested in psychrometric chambers. The calculation of the 
uncertainty of the virtual sensors is developed to study the reliability of the sensors, and the cost between the virtual 
sensing technology and direct measurement method is also compared.  
 

2. EXPERIMENTAL SETUP 
 
Virtual sensors were developed and evaluated for 2 rooftop units operating in the field in Philadelphia from July to 
September and 4 rooftop units tested in psychrometric chambers. The specification of the units in the field is 
tabulated in Table 1. 
 

Table 1: Specification of systems in the field 
 

System 1 2 

Nominal cooling capacity [kW] 14.1 17.2 

Refrigerant R22 R410A 

Compressor Reciprocating Scroll 

Expansion valve Fixed orifice Fixed orifice 

 
Only non-intrusive sensors were installed in the systems in Table 1. T-type Thermocouples (with an uncertainty 
±0.5K) were installed on the surface of the refrigerant tubes and the condenser air inlet and outlet to measure the air 
temperature across the condenser, the refrigerant temperature across the heat exchangers and the condenser return 
bend temperature. Power transmitters (with an uncertainty ±0.1kWh per reading) were installed to measure the 
power consumption of the unit, and current switches were installed at the power supply of the fans and compressor 
to indicate which motors are operating. Data were acquired in 1-minute intervals. A schematic of the sensor 
installation for each unit is given in Figure 1, where T represents thermocouples, S represents current switches and 
W represents power transmitters. 
 

 
Figure 1: Schematic of sensor installation for virtual sensor calibration in the field 

 
The laboratory data for the rooftop units came from previous studies (Breuker 1997; Shen 2006 and Kim 2013). 
Their specification is listed in Table 2. 
 

Table 2: Specification of systems tested in the psychrometric chamber 
 

System 

I (Breuker 
1997) 

II (Shen 
2006) 

III (Shen 
2006) 

IV (Kim 2013) 

Nominal cooling capacity [kW] 10.6 10.6 17.6 14.1 

Refrigerant R22 R410A R407C R410A 
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Compressor Reciprocating Scroll Scroll Reciprocating 

Expansion valve Fixed orifice 
Fixed 
orifice 

Fixed 
orifice Electronic expansion valve 

Valve opening control algorithm 

Not 
applicable 

Not 
applicable 

Not 
applicable 

Maintain an 8.7K compressor 
suction superheat 

 
Unlike the units in Table 1, intrusive sensors were installed in the units in Table 2. T-type thermocouples were used 
to measure the refrigerant temperature along the refrigerant circuits. Grids of the thermocouples were also used to 

measure the air temperature across the condenser. Pressure transducers (with an uncertainty ±9.0kPa) were used to 

measure the pressure in the refrigerant circuit. Power transmitters (with an uncertainty ±0.5%) were installed to 

measure the power consumption of the fans and compressor separately. Coriolis mass flowmeters (with an 

uncertainty ±0.45g/s) were used to measure the refrigerant mass flow rate in the system. Other details of the 

experimental setup can be found in the literature (Breuker 1997; Shen 2006 and Kim 2013). 

 

3. RELIABILITY OF THE VITUAL SENSORS 

 
All sensors need to describe the reliability of their measurements in terms of uncertainty, and the requirement 
remains unchanged for virtual sensors. Song et al. (2012) and Yu et al (2011) described how the virtual sensor input 
uncertainty propagates to its outputs (the uncertainty from inputs), and Song et al. (2013) further described the 
uncertainty propagated to the sensor output from the calibration data (the uncertainty from calibration data) and the 
deviation between measurement and prediction (the uncertainty from deviation). In this section, two more 
uncertainty components, the uncertainty from outputs and the uncertainty from covariance, are introduced to 
quantify the repeatability of the virtual sensor prediction.  
 
To determine the sources of the uncertainty of virtual sensor outputs, the true value of the output variable y is 
described as a function of a virtual sensor and an error variable ɛ as Eqn. (1) 

   
y

true
= f (

�
x,

�
C

true
)+ ε  (1) 

 
Assuming that the error variable ɛ as Eqn. (1) follows a normal distribution with a zero mean value, the virtual 
sensor equation estimates the output variable by Eqn. (2). 

   
y

est
= f (

�
x ,

�
C

est
)  (2) 

 
The regression coefficients in Eqn. (2) are usually estimated by minimizing a cost function with a set of calibration 
data. The process can be described as another function in Eqn. (3), where the calibration data consist of n data 
points. 

   

�
C

est
= g( y

cal ,1
,..., y

cal ,n
,
�
x

cal ,1
,...,

�
x

cal ,n
) (3) 

 

3.1 Uncertainty from inputs 
Uncertainty of the inputs to the virtual sensor propagates to its outputs. It was described in Song et al (2013) as 
Eqn.(4) . 
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3.2 Uncertainty from calibration data 
Song et al (2013) described how the uncertainty of the calibration data propagates to the uncertainty of the virtual 
sensor outputs through the calibration process in Eqn. (3), and the uncertainty propagation can be written as Eqn. 
(5). 
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3.3 Uncertainty from output deviation 
The uncertainty from deviation of predicted and measured outputs is also described in Song et al (2013). With the 
definition of a 95% confidence interval, the uncertainty component is defined as Eqn. (6). 

   

∆y
est ,dev

= t
0.95,n− p−1

Σ
i
( f (

�
x

cal ,i
,
�
C

est
)− y

cal ,i
)2

n− p −1
 (6) 

 

3.4 Uncertainty from covariance 
While the uncertainty in Eqn. (6) estimates the uncertainty component based on the deviation between the predicted 
and measured output, it does not include the uncertainty due to the deviation between the true regression coefficients 
in Eqn. (1) and the estimated regression coefficients in Eqn. (2). Multiple books (Montgomery 2005; Graybill and 
Iyer 1994) described how the deviations of the coefficients are calculated by the covariance of the calibration data 
for linear functions. For non-linear functions such as Eqn. (1), Gallant (1975) estimated the covariance by the 
Jacobian of the function. The resultant equation of the uncertainty from covariance is Eqn. (7). 

1

,1 , ,1

,cov ,

,

) ] ] )( ([ [ ) (T Tcal cal cal
est es

cal

est est

t de

p est est pest e

v

st

f f f ff f
y y

C C C CC C

−∂ ∂ ∂ ∂∂ ∂
∆ ∆

∂ ∂ ∂ ∂∂
=

∂

� � � �

� �⋯ ⋯  (7) 

 

3.5 Uncertainty from outputs 
Since Eqn. (2) is built from measured calibration data, it can only estimate the measured output variable. However, 
the aim of the virtual sensor is to predict the true value of its output, and the uncertainty between the virtual sensor 
output and the true value of the output variable should be quantified. The uncertainty from outputs is equal to the 
uncertainty of the sensors measuring the output variables in the calibration data. If the uncertainty of the sensors is 
constant, the uncertainty from outputs is provided by Eqn. (8). 

,est output caly y∆ ∆=  (8) 

 
Otherwise, the uncertainty from outputs is estimated by Eqn. (9). 

,

,

,

1 cal i

est output

cal i

y
y

n y

∆
∆ Σ=  (9) 

 

3.5 Overall uncertainty of the virtual sensor output 
The overall uncertainty of the virtual sensor output is provided by the sum of squares of all its components as shown 
in Eqn. (10). 

2 2 2 2 2

, , , , ,est est input est cal est dev est cov est outputy y y y y y=∆ ∆ + ∆ + ∆ + ∆ + ∆  (10) 

 

4. COOLING CAPACITY VIRTUAL SENSOR 
 
Virtual sensors are usually calibrated by measurement data of the variables which they predict. However, cooling 
capacity measurement in the field is expensive, and it is infeasible to calibrate a cooling capacity sensor with 
measured capacity. A practical cooling capacity virtual sensor should not need measured cooling capacity for 
calibration. In this paper, this goal was achieved by calibrating virtual sensors of refrigerant mass flow rate and 
condenser airflow rate from the measurement data and predicting the cooling capacity using an energy balance on 
the rooftop unit. 
 
The virtual sensor of the compressor mass flow rate is built based on the compressor mass flow rate model from 
Jähnig et al. (2002). By neglecting the compressor suction pressure drop, the model can be written as Eqn. (11). 
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When the measured condenser outlet subcooling is higher than its uncertainty, the compressor mass flow rate can 
also be estimated by an energy balance on the condenser as shown in Eqn. (12).  

   

ɺm
r ,comp,est ,2

=
ρ

a,cond ,in
(T

a ,cond ,in
)c

p,a,cond ,in
C

5
(T
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(T
r ,cond ,in

,P
r ,cond ,in

)− h
r ,cond ,out

(T
r ,cond ,out

,P
r ,cond ,out

)
 (12) 

 
In Eqn. (12), the condenser airflow is unknown and is represented by a constant C5, the condenser fan power is 
assumed to be negligible compared to the condenser heat transfer rate, the condenser air inlet density is calculated 
using the ideal gas law with atmospheric pressure at 101.325kPa and a constant specific capacity of air at 
1.006kJ/kg-K is assumed. 
 
The compressor mass flow rate virtual sensor in Eqn. (11) can also be used to estimate the compressor power 
consumption by Eqn. (13), which is the energy balance equation of the compressor. 
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 (13) 

 
The first term of Eqn. (13) on the right-handed side describes the enthalpy rise of the refrigerant flow and the 
remaining terms characterize the heat transfer rate between the ambient and the compressor. The equation is only 
applicable to conditions where the compressor suction superheat is higher than its measurement uncertainty.  
Otherwise, the uncertainty of the compressor suction enthalpy in Eqn. (13) and density in Eqn. (11) will be too high 
to estimate the compressor power consumption accurately. Since the compressors of rooftop units are usually 
installed at the condenser outlet, the condenser air outlet temperature is used to estimate the heat transfer rate 
between the compressor and the ambient.  
 
With the measured compressor power consumption and the refrigerant property calculation package from Bell 
(2010), the regression coefficients in Eqns. (11), (12) and (13) can be estimated by minimizing the objective 
function in Eqn. (14) with the limited BFGS algorithm (Byrd 1995), where all regression coefficients are bounded to 
be positive to maintain their physical meaning. 
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r comp est i r comp est i comp est comp
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r comp est i comp
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m m W W

m W

− −
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ɺɺ
 (14) 

 
After estimating the regression coefficients, the cooling capacity can be estimated by Eqn. (15). 

   
ɺQ
evap,est

= ρ
a,cond ,in

(T
a ,cond ,in

)c
p,a,cond ,in

C
5
(T

a,cond ,out
−T

a,cond ,in
)− ɺW

comp
− ɺW

cond
 (15) 

 
Its uncertainty calculation only involves the uncertainty from inputs and the uncertainty from calibration data as the 
virtual cooling capacity sensor does not involve measured cooling capacity in its calibration data and other 
uncertainty components cannot be defined according to Eqns. (6), (7), (8) and (9). 
 
The output of the cooling capacity virtual sensor is compared to the measured refrigerant-side cooling capacity of 
systems in Table 2 and the results are plotted in Figure 2, Figure 3, Figure 4 and Figure 5. 
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Figure 2: Comparison between the estimated and 

measured cooling capacity of system I 

  
Figure 3: Comparison between the estimated and 

measured cooling capacity of system II 

 
Figure 4: Comparison between the estimated and 

measured cooling capacity of system III 

 
Figure 5: Comparison between the estimated and 

measured cooling capacity of system IV 

 
These figures show that the estimation of cooling capacity is biased. This is unavoidable as the virtual sensor is not 
calibrated with measured cooling capacity and the minimization of the objective function may not eliminate the bias. 
However, the virtual sensor can still estimate the cooling capacity within 6% of the measured values for system I, II 
and IV, showing that the sensor is accurate. The 12.68% deviation in system IV is a result of inconsistent condenser 
airflow among its calibration data. The virtual sensor is developed assuming that the condenser airflow does not 
change, but the condenser airflow rates calculated from the experimental data of system III scatter around the mean 
value with a maximum deviation of 13.68%. The large scattering of the condenser airflow rates is too significant for 
Eqn. (12) to be valid and induces a large error in Figure 4.  
 
The uncertainty of the estimation in the figures is smaller than 5% of the estimation values, showing that the 
estimation results are not highly sensitive to the uncertainty of the calibration data and the inputs to the sensors. 
 

5. EVAPORATOR FAN POWER CONSUMPTION VIRTUAL SENSOR 
 
Assuming that evaporator fans of single-speed rooftop units operate at steady state with constant power 
consumption, the average power consumption of the evaporator fan in the calibration data gives an unbiased 
estimate of the evaporator fan power consumption, and the average can be used as its virtual sensor as Eqn. (16). 

   

ɺW
evap,est
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n
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i
ɺW
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 (16) 
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Evaporator fans of rooftop units often operate when the compressor and condenser fan are off. Measuring the power 
consumption of the rooftop units during this time provides data to calibrate evaporator fan power consumption 
virtual sensors without the need for additional power transmitters. To test the accuracy and reliability of the 
evaporator fan power consumption virtual sensor, they were calibrated using data from the units listed in Table 1 for 
23 days in August 2013 and the estimation results of the virtual sensors were tabulated in Table 3. 
 

Table 3: Estimation results of evaporator fan power consumption virtual sensor 

System 
Estimated 
power [kW] 

Relative uncertainty of 
the power transmitter 

Relative uncertainty 
of the virtual sensor 

Coefficient 
of variation 

Number of 
data points 

1 0.78 2.31% 4.34% 1.83% 58 

2 0.95 1.76% 3.85% 1.71% 63 

 
The coefficient of variation in Table 3 is a ratio of the mean square error of the virtual sensor to its mean estimated 
power consumption, and their small magnitudes (less than 2%) show that the virtual sensors are accurate. Although 
the uncertainty of the virtual sensor output is higher than that of the uncertainty of the power transmitter, the 
uncertainty of the virtual sensors is smaller than 5%. 
 

6. COMPRESSOR AND CONDENSER FAN POWER CONSUMPTION VIRTUAL 

SENSOR 
 
Similar to the evaporator fans, the condenser fans of single-speed rooftop units do not change power consumption 
significantly with environmental conditions. However, they operate together with the compressor and the setup in 
Figure 1 cannot measure the condenser fan power consumption separately from the compressor power consumption. 
To accommodate the situation, a virtual sensor is built to estimate the combined power consumption of the 
condenser fan and compressor. 
 
To build the virtual sensor, a compressor power consumption model is needed. Since the compressor suction 
superheat is not always smaller than its measurement uncertainty during compressor operation, the virtual sensor 
cannot use the model in Eqn. (13), and another model is needed. By including the effect of compressor discharge 
pressure within the compressor isentropic efficiency model of Jähnig et al. (2002), the isentropic efficiency can be 
estimated by Eqn. (17). 

6 7 8 , , 9 10 , ,( ) ( )r comp in r comp outC exp C C exp PC P Cη += +  (17) 

 
Since the condenser fan does not need to overcome flow resistance in air ducts, its fan power is smaller than the 
evaporator fan power consumption and small compared to the compressor power consumption. Thus, the combined 
power consumption can be adequately estimated using the compressor power consumption model form from Jähnig 
et al. (2002) as shown in Eqn. (18). 
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The regression coefficients in Eqn. (17) can be estimated by minimizing the objective function Eqn. (19), where C1 
and C2 are estimated during the calibration of the cooling capacity virtual sensor. 
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(19) 

 
To calibrate the virtual sensor for units where refrigerant pressure is not measured, such as the units in Table 1, 
virtual pressure sensors (Li et al. 2011) are used to estimate the compressor suction pressure by the saturation 
pressure at the evaporator inlet temperature and the compressor discharge pressure by the saturation pressure at the 
condenser return bend temperature.  
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The accuracy and reliability of the virtual compressor and condenser fan power sensors were tested based on 30-
minute steady state data for the units in Table 1, and the results are plotted in Figure 6 and Figure 7. 

 
Figure 6: Comparison between the estimated and 

measured power consumption of the compressor and 
condenser fan of system 1 

 
Figure 7: Comparison between the estimated and 

measured power consumption of the compressor and 
condenser fan of system 2 

 
The results in Figure 6 and Figure 7 cover two different periods. The calibration data were acquired in August 2013 
for 23 days to calibrate the virtual sensors, and validation data were acquired in September 2013 for 7 days and were 
not used for virtual sensor calibration. Both figures show that the combined power consumption can be estimated 
within about 7% of the measured values for both the calibration and validation period. The coefficients of variation 
of virtual sensors of system 1 and 2 are 2.40% and 2.41% respectively. This shows that the virtual sensors are 
accurate. The relative uncertainty of the virtual sensors of system 1 and 2 are 6.12% and 5.95%, respectively. 
 
With virtual sensors for fan and compressor power consumption, hourly energy consumption for the rooftop units 
were estimated by integrating the virtual sensor reading every minute, including the readings during unsteady 
operation. The results are plotted in Figure 8 and Figure 9. 

 
Figure 8: Comparison between the estimated and 
measured hourly energy consumption of system 1 

 
Figure 9: Comparison between the estimated and 
measured hourly energy consumption of system 2 

 
The estimation deviates from the measured value by 0.16kWh in Figure 8 and 0.20kWh in Figure 9, showing that 
the integration of virtual sensor readings can estimate the hourly energy consumption of the rooftop units in 
unsteady operation accurately. Due to integration, the average uncertainty of the estimated hourly energy 
consumption is 0.02kWh. 
 

7. COST COMPARISON BETWEEN MEASUREMENT AND VIRTUAL SENSING 
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To evaluate the potential for virtual sensing technology to decrease implementation costs, estimates of the costs for 
direct measurement and virtual sensing of power consumption and cooling capacity were compared. The scenarios 
for the cost comparisons are described in Table 4 and Table 5.  It is assumed that 3x3 grids of thermocouples are 
needed to provide reasonable accuracy for air inlet and outlet temperatures.   
 

Table 4: Scenarios of measurement and virtual sensing technology 

Direct measurement Virtual sensing technology 

1 power transmitter for each unit to measure the total power 
consumption 

18 thermocouples (3x3 grids) to measure the air temperature 
difference across the evaporator per unit  

2 relative humidity sensors for humidity across the 
evaporator per unit 

1 airflow measurement stations with multiple hot-wire 
anemometers for evaporator airflow per unit 

4 hour of technician work per unit 

1 power transmitter for each unit during the calibration 
process only 

18 thermocouples (3x3 grids) to measure the air 
temperature difference across the condenser and 5 
thermocouples for refrigerant temperatures per unit 

2 current switches to show the operating status of 
evaporator and compressor per unit 

18 hours of technician work per unit 

 
Table 5: Assumptions of cost for items in the business scenarios 

Power transmitter $500/ sensor Hot-wire anemometers $1600/ station 

T-type thermocouples $50/ sensor Current switch $50/ sensor 

Relative humidity sensor $240/ sensor Technician salary $70/ hour 

 
It is assumed that the power transmitters used for calibrating the virtual sensors would be shared by multiple units to 
save cost. Assuming a calibration period for 23 days for each sensor, each power transmitter could be shared by 15 
units per year. Technicians need to spend more time installing the virtual sensors than the direct measurement 
because the installation of the thermocouples on the refrigerant circuit is difficult due to the geometry and location 
of the heat exchangers in the unit.   In addition, the technician must return to the site and remove the power 
transmitter after calibration.  The cost savings for the virtual sensor relative to direct measurement depends on the 
time required for a technician to set up the virtual sensors in the field.   If it takes 20 hours of technician time per 
unit, then the cost savings would be $1100 per unit for the scenarios of Table 4 and Table 5.  The break-even point 
(zero savings) occurs for a technician time of 35 hours per unit.   
 

8. CONCLUSIONS 

 
To conclude, accurate power consumption and cooling capacity virtual sensors were developed that could be applied 
as retrofits to existing rooftop units in field. The virtual sensors can be calibrated using field measurements of power 
consumption and temperature only. After calibration, the power transmitters can be removed from the units to save 
cost.  Then, the virtual sensors rely on temperature and on/off status to estimate the power consumption and cooling 
capacity. To evaluate the reliability of the virtual sensor outputs, uncertainties were calculated that include the 
effects of the uncertainties in the inputs, calibration data, output prediction and measurement deviation, covariance 
and output measurement. The virtual sensors were created based on an energy balance and compressor models, and 
their accuracy and prediction reliability were examined using data collected from 2 units operating in the field and 4 
units tested in psychrometric chambers. Although there was a small bias in the cooling capacity estimation, the 
virtual sensors could estimate hourly energy consumption and cooling capacity of the rooftop units accurately and 
reliably. The cost of the virtual sensing technology was also compared to direct measurement and the cost savings 
appear to be significant for application to retrofits.  

 

NOMENCLATURE 

 
C regression coefficients (varies) n number of calibration data points (--) 
cp specific heat capacity (kJ/kJ-K) P pressure (kPa) 
ɛ error variable (varies) Q heat transfer rate (kW) 
η isentropic efficiency (--) ρ density (kg/m3) 
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f function for virtual 
sensors 

(varies) T temperature (K) 

g function for regression 
coefficient estimation 

(varies) t t-statistics (--) 

h enthalpy (kJ/kg) W power consumption (kW) 
J objective function (--) x input variable (varies) 
k specific heat ratio at 

compressor suction 
(--) y output variable (varies) 

m mass flow rate (kg/s)    

 
Subscript 

a air in inlet 
cal calibration input input 
comp compressor out outlet 
cond condenser output output 
dev deviation r refrigerant 
est estimation true true 
evap evaporator   
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