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Efficient Evaluation of Continuous Range Queries on Moving
Objects

D. V. Kalashnikov  S. Prabhakar W. G. Arcf S. E. Hambrusch
Dcpartment of Computer Scicnces
Purduc University
West Lafayeltle, Indiana 47907
{dvk, sunil, aref, seh}@cs.purdue.edu

Absftract. In this paper we cvaluate several in-memory algorithms lor efficient und scalable processing of
conlinuous range queries over collcctions of moving objects. Constant updales to the index are avoided by
query indexing, No constrainis arc imposed on the speed or path of moving objecls. We present a detailed
analysis of a grid approach which shows the best resulis lor both skewed and uniform data. A sorting based
optlimizition is developed for significantly improving the cache hit ratio. Experimental cvaluation
establishes that indexing queries wsing the Grid index yields orders of magnitude better performance than
other index struclures such as R*-(recs.

1 Introduction

The problem of handling different types of queries on moving vbjecls has caught wide altention recently due 1o the
prolifcration of GPS and wircless tcchnologies [2][6][13]{22]. Using these technologics, it is possible Lo develop
syslems where a local server tracks the localions of mobile objects. Mobile ohjecis can report their location to this
server through a wireless interface, or the objects can be tracked through pround-based radir or satellites.

As an cxample, consider a system where aircrafl are Iracked by radar and their location is rcported to the server.
Regions of space in which aircrafl cun be detected by enemy radar or anti-aircrafl sysiems arc identitied on the
scrver. The server continuously monitors the location of fricndly aircraft with respeel to these regions and issues
alerts as soon as an aircraft is in a detection area. Altemalively, there might be arcas where only specially designated
aircrafl are allowed (o be. Such arcas can be monilored conlinuously at the server and detect trespassers. More
gencrally, the lecation of people and vehicles can be tracked with such systems,

In this paper we address the importanl problem of evalualing continuous range querics on mobile objects. In contrast
1o rcgular queries thal ar¢ cvaluated once, a conlinuous query remains aclive over a period ol time and hus to be
continuously evaluated during this time. Al any time there will be several continuous queries running at the scrver.
Each of these queries nceds to be re-evaluated as the objects move. A major challenge for this problem is repeatedly
cvalualing all queries within a rcasonable amount of lime as the numbers of objects being tracked and centinuous
qucrics increases.

While the focus of our work is on moving objecl environments, the tcchnigues presented here can easily be applicd
in a more general selting. For cxample, 10 continuously compule an E-join' belween a sel of relatively fixed points
and another sel of poinls that may move arbitrarily. Such continuous querics over ever-changing data are also
important for many applications that handle sircaming data from sensors and wireless location-based services in
Location-commerce {(L-commerce) [5][15). Towards this goal ol wider applicability of our techniqucs, we make no
assumplions aboul the speed and nalure of the movement of objects.

Currenl efforts at evalualing queries over moving ubjecls have focused on (he development of disk-bascd indexes.
The problem of scalable, real-lime execution of continuous queries is not well suited for disk-based indcxing for Ihe

' An e-join between two sets of points is defined as all pairs ol points, onc from each set. such (hat the distance
between Lhe points is less than or equal 1o €,




following reasons: (i) the need to update the index as objects move: {i1) the need to re-cvaluale all queries when any
object moves; and (iii) achieving very short execution times for large numbers of moving objects and queries. These
factors, combincd with the drastically dropping main memory costs makes main mcmory evaluation highly
altractive. The growing importance of main memory bascd algorithms has been underscored by the Asilomar report
[4], which projccts that within 10 years main memory sizes will be in the range of (crabylcs.

The location of a mobile objcct can be represented in memory as a 2-dimensional point while ils other atiributes can
be stored on disk. Once local scrver is likely 10 be responsible for handling a limited number of mobile objects {e.g.
1.000,000). As we sce later in this paper, all necessary data and auxiliary structures for even large problem sizes can
be easily kept in the main memory of an average modem PC.

In order for the solution to be eflective it is necessary to cfficicntly compute the matching between large numbers of
objects and querics. While muitidimensional indexes tailored for main memory, as proposed in [13], would perform
belter (than disk-oriented structures, the use of an index on the moving objects suflers from the need lor constant
updating as the objects move — resulting in degraded performance. To avoid this need for constant updating of the
index structure and to improve the processing of continuous queries, we proposc a very dillerent approach: Qrery
{ndexing. In conlrast (o the tradilional approach of building an index on the moving objects, we propose to build an
index on the queries, This approach is cspecially suited for evaluating conlinuous queries over moving objccts, since
the guerics remain active for long perieds of time, and objccls are constantly moving.

In this puper wc invesligale several in-memory index struciures for efficient and scalable processing of continuous
guerics. We cvaluaie not only indexes designed (o be used in main memery exclusively but also disk-based indexcs
udupicd and oplimized lor main memory. Our results show thay, contrary to convenlional wisdom, using a simplc
grid-like structure gives the best performance. cven when the data is highly skewed. We also propose an effeclive
lechnique for improving the caching performance. The proposed selutions arc extremely elficient, e.g. 100,000
(25,000) continuous queries over 100,000 (1,000,000) objects can be evalualed in as little as 0.288 (0,762) seconds!
The use of query indexing is eritical for achicving such efficienl processing. Wc also present an analytical
cvaluation for the optimal grid size. The analysis matches well with the cxperimental resulls, A lechnique for
improving Lhe cache-hit rate is developed thul achicves a speed up of 100%.

The remainder of Lhis paper is organized as follows. In Section 2 we present related work. Section 3 describes the
problem of conlinueus query processing, Query Indexing, and the index structures considered. We also present an
effective technique for improving the cache hit rate. Section 4 presenis the experimental results and Scction 5
concludes the paper.

2 Related work

The growing imporiance of moving object environments is reflected in the recent body of work addressing issues
such as indcxing, uncertainty management, broadeasting, and models for spatio-temporal data. Oplimization of disk-
based index stnuclures has been explored recently for B -trees [21] and multidimensional indexes [13]. Both studies
investigale (he redesign of the nodes in erder lo improve cache performance. Neither study addresses the problem of
execuling continuous queries or lhe constanl movement of objects {changcs to data). The goal of our technigue is to
efficiently and conlinuously re-gencralc the mapping between moving objccts and queries, Qur (echnique makes no
assumptions aboul the futurc positions of objects. It is also not nceessary for objecls lo move according to well-
behaved patlerns as in [22]. The problem of scalable, efficient compulation of continuous range querics over moving
objects is ideally suiled for main mcmory evaluation. To the best of cur knowledge no existing work addresses the
main memory execution of multiple concurrent queries on moving objccis as proposed in the following scclions.

Indexing techniques for moving objects have been proposed in the literature, e.g., [3], {16] index the hislories, or
trajectories, of the posilions of moving objects, while [22] indexcs the current and anticipaied future posilions of the
moving objects. In [14), trajeclorics arc mapped to points in a highcr-dimensional space which arc then indexed. In
[22], objects are indexed in their native environment with the index struclure being parameicrized with velocity
vectors so thal the index can be viewed al future limes. This is achieved by assuming that an object will remain at
the samc speed and in the same direclion unlil an updalc is received from Lhe object.

Uncenainty in the positions of the objects is dealt with by controlling the update frequency [17][28], where objccts
reporl their positions and velocily vectors when their acteal positions deviate from what they have previously
reportcd by some threshold, Tayeb el. al. [26] usc quadtrees to index the trajeclorics of one-dimensional moving



points. Kollios [14] el. al. mup moving objects and their velocities into points and store the points in a kD-Iree.
Ploscr ct. al [18][19] index the past trajectories of moving objects that are prescnicd as connected line scgments. The

problem of answering a range query for a collection of moving objects is addressed in [2] through the usc of

indexing schemes using external range trees. [27] and [29] consider the management of collections ol moving poinls
in the plane by describing the current and expected posilions of each point in the future. They address how often to
update the locations of the points to balance the costs of updates against imprccision in the poinl positions. Issues
refating 1o location dependent databasc querying are addressed in [24]. Breadeast of data becomes an important
technique for scalable communication in the mobile environment. Efficient broadcast techniques are proposed in
[1](8][10]{12]. Spatio-temporal database models 1o supporl moving abjects, spalio-lcmporal types and supporting
operations have been developed in [6][7]. An excellent revicw of multidimensional index struclures including grid-
like and Quad-Tree based struclurcs can be found in [26].

3 Continuous Query Evaluation

3.t Updating Object Locations

The issue of obtaining the updated locations of objccts is independent of the lechnique used for evalualing the
querics. Since the focus of this research is on the cfficient evaluation of qucrics, we assume that updated location
informalion is availablc at the server, without considering how exactly it was made available. Below we briefly
discuss lhe common assumptions made in order (o reduce communication.

The most common assumplion is that each object moves on a straight line path with a constant speed, and updates
the server with ils direction of movement and speed when Lhey change, A similar assumption is thal objects arc
moving wilh constant speed on a known road. A mutual [caturc of these assumptions is (hat for each moving objcel
the server can determine its location based upon a formula. In our experiments ncw locations of objecls arc
generated al the beginning of cuch cycle. While some index structures for moving objccts rely upon restricted
madels of movement (e.g. [25]), Query Indexing allows objccts to move arbitrarily. Thercfore, the objects can move
anywhcre in the domain, but the overall object distribution chosen for the experiment is maintained (uniform,
skewed, etc.).

3.2  Query Indexing

The problem of continuous query cvalualion is: Given a set of queries and a seit of moving objects, continuonsly
determnine the sei of objects that are comtained within cach guery.

Clearly, with a large number ol querics and moving objects, il is infeasible 1o re-evaluale each query whenever any
object moves. A more praclical upproach is to re-evaluale all queries periodically taking into account the latest
positions of all objecis. In order for the results to be useful, a short re-cvaluatien period is desired. The goal of the
query evaluation techniques is therefore to re-cvaluate all queries in as shorl a time as possible.

The naive approach to this problem is to compare cach object against each query in cvery period. A more cifeclive
solulion seems to be the traditional approach of building an index (such as an R-Ircc) on the objecls to speed up the
qucrics. Although [or regular gueries this would resull in improvements in performance over the naive approach, it
suffers a major drawback for the moving objects environment: ilie index necds 1o be continuously updated as object
positions chiange. Maimtaining such an index on mobilc dala proves o be guitc a challenging task [22].

We propose a novel solution 1o this problem: Query fndexing. Instead of building an index on the moving objects
(which would require frcquent updating), create an index on the more stable querics [20]. Any spatial index struclure
can be used to build the query index,

The evaluation of conlinuous queries in ¢ach cycle procceds as folfows. For object P. let P.gset denote the set of all
qucries in which P is conlained. For query Q, Ict Q.pses denole the scl of objcels contained in Q. The goal is to
compule the set @ pset for each query (2 based upon the current localions of the objccts by Ihe end ol each cycle.
Becausc of the lack of speed limitations (). pser and P.gser can be completely different from one cycle 10 the nexl.
Consequently, incremenial solutions urc infeasible. In cach cycle, we first use the query index to compule P.gser for
each object P. Next, for each query @ in P.gser, we add P to Q. pser.




Some importanl consequences of indexing the queries instead of the dula should be noted. Firslly, (he index needs
no modification unless there is a change to the set of queries — a relatively less frequent cvent in comparison Lo
changes lo object locations since we arc dealing with continuous gucrics. Secondly, the localion of an object can
changc greatly from one cycle to the next without having any impuct on the performance. In othcr words, there is no
restriclion on the nature of movement of the objects. This is not truc for object indexing techniques such as [25)
which rcly upon certain assumptions about the movement ol objccts.

Next we discuss the feasibility of in-memory query indexing by evaluating different eypes of indexcs for queries.
Clearly, il we urc unable 1o select an appropriaic index, the lime needed to complete one eycle can be large (e.g. !
min}) and the approach would be unacceptable. Below we briefly discuss indexing techniques for building a query
index in main memeory. In Section 4 we evaluatc the performance of (husc altcrnative indexes.

3.3 Indexing Techniques

We consider the following five well-known index structurcs: R*-Tree, R-Tree, CR-Trce, Quad-Tree, and Grid. The
R-tree and R*-(ree index structures are designed to be disk-based structures. This is principally achicved by
chaosing the node sizc lo be a multiple of disk page sizc. The CR-Tree, on the other hand, is a varianl of R-trees
oplimized for main memory. Al of these indexcs were implemented for mitin memory use. In order to nake a fair
comparison, we did not choose large node sizes for these trees, Instead, we cxperimentally determined the best
choice of node size for main-memory evaluation. All three indexes (R*-Trce, R-Tree, and CR-Trce) showed best
performance when the number of entries per nodc was chosen to be five. This valuc was used for all expcriments.

Details of thc CR-Tree are described in [13]. The main idea is to make R-Tree cache-conscious by compressing
MBRs. This is achieved by using so-called Quantized Relative Minimum Bounding Rectangles {QRMBR). Olher
well-known minor oplimizations have also been proposcd in the paper, We implemented the CR-Tree bascd upon
the main idea of QRMBRs without the other optimizations.

Because many varialions cxist, we describe the Grid indcex as it is used here for query indexing. The Grid indcx is a
two-dimensional array of “cells”. Each cell represents a region of space generated by parlitioning the domain using a
uniform grid. Figure 3-1 shows an example of a Grid. Throughout the paper, wc assume that the domain is
normalized to the unil square.

In this example, the domain is divided
into a 10x10 grid of 100 cells, each of
size 0.1 X 0.1. Sincc we have a uniform
grid, given the coordinates of an object,
it is casy to calculate the cell thal it falls
under. The cell coerdinates for a poind
z{x,y) arc ¢asily computed as:
cell » = (int} x / hX;
cell y = (int} y / h¥;

where x and y are coordinales of the
point we are interested in, hX and hy
are the horizontal and vertical size of
each cell {c.g., in our example L
hX=h¥=0.1). Applying thc formula

above we can determine the cell that a

point belengs to in O(1) time. Each celi
conlains two lists that are identified as fufl and parr (see Figure 3-1). The /il list of a cell contains pointers 1o all the
querics thal fully cover the cell. The part list of each cell conlains pointers (o all the querics (hat only partiaily cover
the cell.

| o~ m N A W W = oQ

Figure 3-F Example of Grid

The choice of data structures for the fidl and pars lists is eritical for performance, We implemented these Tists as
dynimic arrays rather than lists. A dynamic array is a standard dula structure for arrays whosc size can be adjusted
dynamically. Using dynamic arrays instcad of lists improves the performance by roughly 40%.




An analytical solution for the appropriate choice of grid size is presented in Section 3.4. As will be seen in the
experimental seclion, this simple one-level grid index outperforms all other structures for uniform as well as skewed
data. However, for the case ol highly skewed duta (c.g. roughly hall the queries fall within onc cell), the fuff and
part grow oo large. Such situations are easily handled by switching 10 a two-tier grid. If any of the lists grows
beyond a threshold value, the grid index converts (o a directory grid and a few secondary prids. The directory prid is
used to determine which secondary grid o usc. Euch direclory grid cell points to u sccondary grid. The secondary
grid is used in the same way as the one-level prid. While this idca of generating an extra layer can be applied as
many times as is nccessilated by the dara distribution, it is unlikely in practice, Consider for cxample, that the
domain of inferest represents a 1000-kilomeler by 1000-kilomcler region. With a 1000 x 1000 grid, « ccll of the two-
tier prid corresponds a square of side 1 meter — it is very unlikely that there will be very muny objcels or queries in
such a small region in practice.

The astute rcader will observe that the Grid index and the quad-tree are closely related - both arc space partitioning
and splil a region if it is overfull. There is howcver, a subtle difference: the Grid index as described is a heighl-
bulanced structure. In contrast a guad-trec is not nceessarily height-balanced. The advantage for the Grid is therefore
that it avoids conditional (“il") branches in its scarch alporithm,

Another advantage of the Grid is that it lypically has lar more cells per level. A quad-tree (herefore tends to be very
deep, cspecially for skewed data. We expect that a quad-tree like structure that hus morc cells per level would
perform beliler than a quad-tree. In order to test this hypolhesis, we also consider what we call a 32-Tree. The 32-tree
is identical to a quad-tree, except Lhat it divides a ccll using a 32x32 grid, unlike quad-tree’s 2x2 grid. As with the
Grid index, pointers to children are used instcad of keeping an array of pointers (o children. In order to further
improve performance, we implemenied the following optimization; In addition (o lcaf nodcs, internal nodes can also
have an associated fuff list, Only leaf nodes have a part list. A fidl list conlains all querics that lully cover the
bounding rectangle {BR) of the node, but do not fully cover the BR of its parenl. Adding a rcctangle (or region} to a
node proceed as follows. 1T the reclangle fully covers the BR, il is added to the fill{ list and the algorithm stops for
that nodc. If this is a leaf node and there is space in the part lisl, the rectangle is added to pan list. Olhenwise the set
of all relevant children is delermined and the procedurc is applied to each of them.

Storing /ull lists in pon-leal nodes has two advantages. One advantage is saving of space; without such lists, when a
guery fully covers a node’s BR il would be duplicated in all the nede's children. A second advaniage is (hat it has
the potential to speed up point querics. If a poinl query is-falls within thc BR of a node then it is relevant to all
queries in the fu/f list of this node ~ no further checks are needed. Leal node split is based on the part list size only.
While there are many more optimizalions possible some of which can be found in [26], we did not explore these
further. The purpose of studying the 32-Tree is to establish the generalily and flexibility of the grid-based approach.

3.4 Choice of Cell Size

We now present an analysis of approeprialc choice for Lhe tile size for the Grid index in the context of main-mcmory
query indexing. Consider the case where i square with side ¢ queries uniformly distributed on [0,1]x[0,1] arc added
to index, see Figure 3-2. Let ¢ denote the side of each ccll. Then g can be represented as 7 ¢ + x, where .\'E[O,c)

and / is an inleger. We now analyze the average number of cclls parlly covered by a query. Without loss of
generalily let us consider the case where the top-lel comer of query Q is somewhere within cell (0,0) and g=>c.

It can be verified (hat if the corner is inside SetD then Q is present in 47 part lists, lor Setl this number is 4_ i+2, and
lor Sel? il is 4_, : F4. Assuming uniform dl‘;ll’lhulan the probu.bll:ly that the corner us inside Seid is {c-x)/c", inside
Setl is 2xfc-x)/c”, und insidc Scl2 is x4 .

Therelore, on the uverage cach query will end up in avg={difc-x)’+(4i+2)2x{c- JH(di+4)x2}/c parl lisls. This
formula simplifics to avg=dcfx+i cj/c"= 4g/c.

(.orrcspondmg]y, m queries will end up in dgm/c part lists. Given the fact that lotal number of cells can be computed
as 2/¢”, cach cell will have part list of sizc 4gmic on the averape.




For our implemenlation, the ditference in time needed to process a

cell when ils part list is cmpty vs. when its parl list has size onc is - o ‘ : T -
very small. By choosing ¢ such thal 4gme=1, thal is c=1/4qm, on the BeD S|

average, Lhe size of a cell's part list will be onc. The casc where g<c & i

can be analyzed similarly. The (inal formula (or choosing ¢ is: TR P : )

| , if 1 ; and . _ 1 _ o, Olhcrwise. P
c Aqm q:’A\[H; € /[; 7 e

For our example in Figure 4-7. wc have »=23,000; g=0.01. !

Sincc/ =0.00l<g: the first formula should be used, 1.e. T'
2/m -
c=i/4qm=0.001. This means that grid should be of size 1000x 000 o1

and farger grids will not produce betler performance. We study the ? o
impact of tile size in the experimental scection and show that the .

results match the analytical predictlion.

3.5 Improving the Cache Hit Rate Figure 3-2. Choosing grid size.

The performance of main-memory algorithms is greatly allccted by
cache hit rates. In this scction we describe an oplimization that can drastically improve cuche hit rales (and
consequently the overall performance) for the query indexing approach.

In each c¢ycle the processing involves searching the index structure for each objects current location in order to
determine the querics thal cover the object’s current location.

For each object, ils ccll is computed, and the fufi
and part lists of this cell are accessed. The
alporithm simply processes objects in sequential
order in the array. Consider the cxample shown in
Figure 3-3. The order in which thc objccts appear
in the array is shown on the Icf of the figure in the
“Unsoried Point Array”. Note thal wc usc the terms
object and poinl interchangeubly. In this example,
the lists pointed to by Cell (0,00 will bc accessed
for processing object P» und then laler for
processing object P,. Since several other points are
processed after P> and belore P, it is very likely
that the lists for Cell{0,0) will nol be in the cache Yy

when Py is processed — resulting in a cache miss. Figure 3-3 Example of sorted and un-sorted Object
Arrays
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I we expecl Lhat objecls will mainlain their

locality, then we cun improve cache-hit rates by altering the order of processing the objects. If we re-order objects in
the array such thal objecls thal are close together in our 2D domain are also close wopether in the object array, as in
the array on Lhe right labcled “Soried Point Array™ shown in Figure 3-3. With this ordering, object 2> will be
analyzed {irst and thercfore Cell(0, 0) and its lists will be processed. Then, object 2, will be analyzed and Cell(0, 0)
and iIs lists will be processed again. In this situation everything relevant 1o Cell(Q, 0) is likely o remain in the CPU
cache afler the first processing and will be reused from (he cache during the second processing. The specd up effect
is also achieved because objects that are close wgether arc more likely 1o be covered by the samc queries than
objects thal arc far apart, thus queries are more likely to be retricved from the cache rather than from main memory.

Sorting the ebjccts (o cnsure that objects thal are closc lo cach other are also close in the armay order can easily be
achieved. One possible approach is to group objecls by cells — i.e. all objects that fall under eacl: cell are placed
adjacently in the array and thus processed together. The objects grouped by ccll can then be placed in the array using
a row-mator or ¢column-major ordering for the cells. Although this will be cffective, the benefit of the sorting is lost
if Lthe object moves out of its current cell and enlers an adjacent cell that is not close by in the ordering used for the
cclls (e.g. ohject moves Lo adjacent cell in next row and row major erdering is uscd). We propose an alternalive
approach: Order the points using any of the well-known space filling curves such as Z-erder or Hilbert curve. We
choose 10 use a serling based on the Z-order. Z-sorting signilicantly improves the performance of the main memory
algorithm, as will be sech in the experiment scction.




It is important 1o understand that the use of this technigue docs nol require that objects have 1o preserve their
lacality. The only efTect of sorting the objects according to their carlicr positions is to alter the order in which
objects arc processed in each cycle. The objects are still [ree lo move arbitrarily, OF course, the effectiveness of this
technigue relies upon objects maintaining their locality over a period of lime, IT il turns out that objects do not
maintain their locality then we are, on the average, no worsc than the siluation in which we do nol sort. Thus, for the
casc where objects preserve localily sorling the objects based upon their location at semc {ime can be beneficial. 1l
should also be noted that he exact posilion uscd for cach object is not imporant. Thus the sorting can be carried out
infrequently (say once a day),

4 Experiments

In this section we present the performance results for the index structures, Each index structure was implemented
and tesled — not simulated. The results report the actual times for the execution of the various algorithms. First we
describe the paramelers of the experiments, lollowed by the resulis and discussion.

In all our experiments we used a 1 GHz Pentivm [I1 machine with 2GB of memory. The machine has 32K of level |
cache (16K for instructions and 16K for dalu) and 256K level 2 cache. Moving objccts were represented as points
distributed on the unit square [0,1]x[0,1]. The number of objects ranges from 100,000 (o 1,000,000 Runge-queries
were represented as squares with sides 0.01. Experiments with other sizes of queries yielded similar results and are
thus omitled. For distributions of objects and querics in the domain we considered the lollowing cases:
1} Uniform: Objccts and queries are uniformly distributed.
2} Skewed: The objects and queries are distributed umong {ive clusters, Within cach cluster objects and dula arc
distributed normally with a standard deviation of 0.05 for objects and 0.1 lor querics.
3) Hyper-skewed: lall of the objects {(queries} urc distribuled uniformly on [0,1]x[0,1], the other half on
[0,0.001]x[0,0.00]1). Qucries in [0,0.001}x[0,0.00!] arc squares with sides 0.00001 1o aveid excessive
selectivity,

We consider the skewed casc lo be most represenlalive. The hyper-skewed case represents a pathological situation
designed to study the performance of the schemes under cxtreme skew. In the majority of our experiments the Grid
was chosen lo consist of 1000x1000 cells. The testing proceeds as [ollows: First, quertes and objects arc generated
and put into arrays. Then the index is initialized and the gucrics are added to it. Then in cach cycle, we Grst update
the locations followed by an cvaluation of the query resulls.

4,1 Comparing efficiency of indexes
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Figure 4-1 shows Lhe resnlis for various combinalions of number of objects and queries with uniform distribulion.
The y-axis gives the processing time for onc cycle in seconds for cach experiment. Figure 4-2 shows similar results
for the skewed casc.

Each cycle consists of (wo sleps: moving objects (i.e., dcetermining current ebject locations) and
evalnation/processing. From Figure 4-2 for the case of 100,000 objects and 100,000 queries we can sce Lhal the
cvaluation step for Grid lakes 0.628 seconds. Altering object localions lakes 0.15 scconds for 100K objects and 1.5
scconds for IM objects on the average. Thus the length ol cach cycle is just 0.778 seconds on Ihe average.




The Grid index gives the best performance in all these cases. [ H rewed

Whilc the superior performunce of Grid for the untform casc yperskewe

is cxpeceted, the case for skewed data is surprising. For all 70 - ]

cxperiments the Grid index consisted of only a single level. 0 1 - 5

Figurc 4-3 shows the resulls for (he hyper-skewed casc. For E * R E—E

the hyper-skewed case, a second level grid is required tor the E ° J A

cell containing a large number of querics. It is interesting Lo £ »

see thal the Grid index once again oulperforms the other G 2

schemes. There is a significant differcnce in performance ol 10]

Grid and the other approaches for all three distributions. For o . '

example, with 1,000,000 objccls and 25,000 queries, Grid 100K 10K 10#0:'::”“ oo '“:"’" 25K
ects ucrios

cvaluates all queries in 1.724 scconds as compared o 33.2 ;
scconds for the R-Tree, und 8.5 seconds for the Quad Trec. Figure 4-3

This extremely fas( cvaluation implies that with the Grid
index, the cycle time is very smalt — in other words, we can re-compule the set of objccts contained in cach query

cvery 3.2 seconds or fasler (1.7 seconds lor the cvalualion step + 1.5 seconds [or updaling the locations of objects).
This establishes the feasibility of in-memory query indexing for managing conlinuous queries.

4.2 32-Treeindex
1t can be scen Lhat the quad-tree performs better than R-Tree like data siructures for skewed cascs, bul waorse for the
majority of the uniform &nd hyper-skewed cases.
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The problem witlh a quad-trce for hyper-skewed casc is u « ) d
that it has a large height. This suggests that if it werc yper-skewe
able to zeom faster il would be a belter index than R*- 20 -
Tree. We lest this hypothesis by evalvating the 32-Tree wil maig .
which is similar to thc quad-tree excepl that it has more 16 || gR* Tree N :
. . — b i
divisions at each node. % 14| Lazo =
Az |—- +
The performance of the 32-Tree along with that for the E 101
Grid and R*-Tree lor uniform, skewed, and hyper- S z )
. - - o b
skewed data is shown in Figurcs 4-4, 4-5, and 4-6 S 4
respectively. As can be seen [rom the graphs our 2
hypolhesis is te; the performance of the 32-Tree lies 0 .
belween Lhat ol the R*-Tree and the Grid. 100KAOK  T0OKS100K TMHOK 1M725K
HObjects f HQueries
Figure 4-6




4.3 Choice of Grid Size

In this experiment we study the impact of the number of cclls in the grid. The analysis in Scction 3.4 predicied thal a
choice ol a 1000x1000 grid is optimal. Figure 4-7. presents the proccssing time needed with prid sizes 100x100,
1000x 1000, and 2000x2000 cells. As can bc scen, increasing the number of cells has the effcet of reducing the
avcrage number of querics for a cell thereby reducing the processing time. There is a substantial increasc in
performance as we move from [00x100 cells to 1000X1000 cclls. The increase is minor when we move from
1000x1000 to 2000x2600 cells for our case of 1M objects and 25K queries. This bchavior corroborates the
analytical resulls.

Impact of grid slze
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Figure 4-7. Impact of grid size on processing lime. Figure 4-8. Effectiveness ol Z-Sorling.

4.4  Z-Sort Optimization

Figure 4-8 illustrates the effect of the Z-Sort tcchnique on evalualion time for ideally Z-sorted data. Z-sorting
reorders the data such that objects that are close logether tend 1o be processed close together. When processing each
object in the array from the beginning lo the ¢nd, objects (hat close (o cach other will 1end 1o rcusc information
stored in the cache rather then rewrieving it from main-memory. From the results, we see that sorling objects
improves the performance by roughly 50%.

4.5 Time {0 add/rcmove queries to/from Grid

We now study the cfficiency of modifying the Grid index. The Tina 10 sdiremore qusrhes 1 gria. Senlnge: £ of palots 750K, £
results in Figurc 4-9 show how long il takes lo add and remove UL 3. ey vz 0101 R 001, i L 0001 1000 .
queries lo/from an cxisting index thal alrcudy conlains some
queries. Although modifications to queries arc expected to be rare, ht I
we see lhat adding or removing queries is done very cfficiently with
the Grid. For example, the 100% bar shows thal 100% of 25K
queries can be added or deleted in only 2.408 seconds. The decision
whether to add or delele a query at a particular step is made with )
probability of 0.5 for cach gucry. Therefore we sec (hal cven T - I__]

T tuara)
v

-

significant changes 1o the query sct can be efTectively handled by ar ~
the Grid approach, S w s o s

5 Summary
In this paper we presented a Qucry-Index approach [or in-memory evaluation of continuous range qucrics on
moving objects, We establishcd that the proposed approach is in fact a very efficicnt solution even il there arc no
limits on object speed or nalure of movement — a common reslriction made is similar rescarch. We presented results
for scven difTerent in-memory spalial indexes. The Grid approach showed the best result even for the skewced case.
A technique of sorting the objects Lo improve the cache hit-ratio was presented, The performance of the Grid index
was roughly doubled with this optimization. An analysis for sclecling optimal grid sizc and experimental validation
was presented. We also showed hat even though (he sct of continuous querics is to remain almest unchanged,
nevertheless Grid ean very elficicntly add or remove large numbers of queries. Ovcrall, indexing the querics using
the Grid index gives orders of magnitude betler performance than other index structures such as R*-trecs.

Fipure 4-9 Adding and deleting queries.
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