
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2002

Efficient Evaluation of Continous Range Queries on Movng Efficient Evaluation of Continous Range Queries on Movng

Objects Objects

D.V. Kalashnikov

Sunil Prabhakar
Purdue University, sunil@cs.purdue.edu

Walid G. Aref
Purdue University, aref@cs.purdue.edu

Susanne E. Hambrusch
Purdue University, seh@cs.purdue.edu

Report Number:
02-015

Kalashnikov, D.V.; Prabhakar, Sunil; Aref, Walid G.; and Hambrusch, Susanne E., "Efficient Evaluation of
Continous Range Queries on Movng Objects" (2002). Department of Computer Science Technical
Reports. Paper 1533.
https://docs.lib.purdue.edu/cstech/1533

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

EFFICIENT EVALUATION OF CONTINOUS
RANGE QUERIES ON MOVING OBJECTS

D. V. Kalashnkov
S. Prabhakar

W.G.Aref
S.E. Hambrusch

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #02-015
June 2002

Efficient Evaluation of Continuous Range Queries on Moving
Objects

D. V. Kalashnikov S. Prabhakar W. G. Arcf
Dcparlment of Computer Sciences

Purdue University
West LafayeUe, Indiana 47907

{dvk, sunil, aref, seh)@cs.purdue.edu

S. E. Hambrusch

Abstract. In this paper we evaluate several in-memory algorithms lor efficient lIml scalable processing of
continuous r::mge queries over collections of moving objects. Constanl updates (0 lhe index arc avoided by
query indexing. No constraints ure imposed on lhe speed or palh of moving objects. We present a detailed
analysis of a grid approach which shows the best rcsuhs for bolh skewed and uniform data. A sorting based
optimiilalion is developed for significantly improving lhe cilchc hit ratio. ExperimcnluJ cVillualion
establishes lhat indexing queries using the Grid index yields on.lcr.; uf magnitude belter performrmee Illan
other index stmelurcs such as R"'-lrees.

1 Introduction
The problem of handling dirrerenl lypes of queries on moving objeels has caught wide uUenlion recently due to Ihe
proliferation of GPS and wireless technologies [2][6J[13][22J. Using these technologies, it is possible lo develop
syslems where a local server lracks the loealions of mobile ubjects. Mobile objects can repurt their local ion to this
server through a wireless interface, or the objects can be lracked through ground-based radar or satellites.

As an cxtlmple, consider a syslem where aircraft are lracked by radar and lheir location is reported to the server.
Regions of space in which aircraft cun be detected by enemy radar or anti·aircraft systems me identil1ed on lhe
server. 1lle server continuously monitors the location of friendly aircraft wilh respeel to these regions und issues
alerts as soon as an aircr.:JJl is in a detection area. Allemalively, there might be afeas where only specially designated
aircraft are allowed lo be. Such areas can be monitored conlinuously al the server and detect trespasser.;. More
generally, the location of people and vehicles can be tr.:Jcked with such systems.

In lhis paper we address the importanl problem of evuluuling continuous range queries on mobile objects. In eontrnst
tu regular queries thal are evaluated once, a eonlinuous query remains active over a period of time and has to be
continuously evaluated during this time. Al any time there will be several continuous queries running at the server.
Each of lhese queries needs 10 be re-evaluated as the ubjects move. A major challenge for this problem is rcpeatedly
evalualing all queries wilhin n reasonable amount of lime as the numbers of objects being tracked and continuous
queries increases.

While the focus of our work is on moving objeel environments, the techniques presented here can easily be applied
in a more general selling. For example, to continuously compule an [_join] between a sel ofrelativcly fixed points
and another sel of poinls that may move t1rbitrarily. Such continuous queries over ever-changing dala are also
imporlant for muny applications lhat handle slreaming data from sensors tlnd wireless location-based services in
Location-commerce (L-commerce) [5][15]. Towards this goal of wider i1pplieabiliry of our techniques, we make no
assumplions aboul the speed and nalure of the movement of objects.

CurrenL efforlS at evalualing queries over moving objects have focused on lhc developmenl of disk-based indexes.
The problem of scalable, real-lime execution of continuous queries is nOI well suited for disk-based indexing for lhe

I An [-join between two sets ofpoints is defined as all pairs ofpuints, une from each sel. such lhatthe dislance
between the poinls is less than or equal to E.

following re,lsons: (i) the need to upd'lle the index as objects move; Oi) the need to re-evaluale all queries when any
objecl moves; and (iii) achieving very short execotion timcs for large numbers ofmuving objects and queries. These
factors, combined with the drastically dropping main mcmory costs makes mil in mcmory evaluation highly
allr<lclive. The growing importance of main memory bascd algorithms has been underscored by tlle ASilomar report
[4], which projecls thaI within 10 years main mcmory sizes will be in the range oflcr<lbytes.

The location ofa mobile objcct can be represented in memory i1S 1I 2-dimensional point while its othcr allributes can
be stored on disk. One local scrver is likely to be responsible for handling a limited number of mobile objects (e.g.
1.000,000). As we sec latcr in this paper, all necessary datil and uuxiliary strucrnres for even lurge problcm sizes can
be easily kepI in lhc main memory oLm average modem Pc.

In order for the solution to be etl'ectlve it is necessary to efficiently eompUle the matching between large numbers of
objecls ami queries. While multidimensional indexes l11ilored for main memory, as proposed in [13], would perfonn
beller lhan disk-oriented struclures, the usc of an index on the moving objects suITers from the need for constllnt
updating as the objects move - resulting in degr<1ded performance, To avoid this need for constant updating of lhe
index structure and to improve the processing of continuous queries, we propose u very di l'Jerent <lpproach: Query
Indexing. In contrast to the tradilionill approach of building an index on lhe moving objects, we propose 10 build an
index on the queries. This approilch is especially suited tor evaluating continuous queries over moving objects, since
the queries remuin active for long periods oftimc, and objects are constantly moving.

In this pllper we investigate several in-memory index structures tor efficienl and SClllllble processing of continuous
queries. We evaluate not only indexes designed 10 be used in main memory exclusively but also disk-based indexes
adapted and oplimized lor main memory. Our results show that, contrary to convenlional wisdom, using a simple
grid-like slrueture gives the besl perfonnance. even when the data is highly skewed. We also propose an effeclive
lechnique tor improving the caching perfomwnce. The proposed solutions i1re extremely efncient, e.g. 100,000
(25,000) continuous queries over 100,000 (],OOO,OOO) objects can be evalualed in as little as 0.2RR (0,762) seconds!
The usc of query indexing is criticill for achieving such efficient processing. We also present an analyliclll
evaluation for llle optimal grid size. The lImdysis matches well with thc cxperimental resulls. A techniquc for
improving lhe cache-hit rate is developcd lhal lIchieves a speed up of 100%.

The remainder of lhis pllper is organized as lollows, ln Section 2 we present related work. Section 3 describes the
problem of continuous query processing, Query Indexillg, and lhe index strucrnres considered. We also present an
effective technique for improving the cache hit rate. Section 4 presents the experimental resulls and Section 5
concludes the p:lper.

2 Related work
The growing importance of moving objec! environmenls is retleeted in the recent body of work addressing issues
such as indexing, uncertainty management, broadc<lsting, and models for spatio-tempor<11 dala. Optimization of disk
based index struclures has been explored recently for R'"-lrees [21] and mullidimensional indexes [13]. Both studies
invesligale lhe redesign of the nodes in order to improve cache perlormance. Neither study addresses the problem of
executing continuous queries or lhe conslant movement of objects (changes to data). The goal of our lechnique is to
efficiently and continuously re-generale Ihe mapping between moving objects and queries, Our lechnique makes no
assumptions about the future positions of objects. It is also nOl necessury for objects to move according to well·
behaved pallems as in [22]. The problem of scalable, efficient compulation of continuous range queries over moving
objects is ideally suiled for main memory evaluation. To the besl of our knowledge no existing work addresses the
main memory execution of multiple concurrent queries on moving objects as proposed in the following seclions.

Indexing techniques for moving objects have been proposed in the literature, e.g., [3], [16) index lhe hislories, or
lrajectories, of the posilions of moving objecls, while [22] indexes lhc current and antici pated future posilions of the
moving objects. In [14], tntiectories arc mapped to points in iI higher-dimensional space which arc then indexed. In
[22], objects arc indexed in their native environment with the index structure being pammclerized with velocily
vectors so thaI the index can be viewed at fulure limes. This is achieved by assuming that an object will remain at
lhe same speed and in the same direction unlil ,In update is received from the object

Uncertainty in lhe positions of the objecls is deall with by controlling the upd<lte frequency [17][2R], where objects
reporl their positions and velocity vcclors when their actual positions deviate from what they have previously
reported by some threshold. Tayeb el. al. [26] usc quadtrees to index the trajeclories of one-dimensional moving

2

poinls. Kollios [14] el. al. mllp moving objects and their velocities into poinls and store the points in a kD-tree.
Pfuser el. al [18][19] index the past u<JjeclOries of moving objects that are presenled as connected line segments. The
problem of answering a range query lor a colleclion of moving objecls is addressed in [2] through lhe use of
indexing schemes using exlcrn.. l range trees. [27] and [29] conSIder the managcmenl of collections of moving points
in Ihe plane by describing thc currenl and expected positions of ellch point in thc future. They address how often to
upd..te the loc..lions of the poims to b..lllnce lhe cosls of updlltes against imprecision in the point posilions. Issues
relating 10 loealion dependent d.. tllbase querying are addressed in [24]. Brolldcast of data becomes an imporl..nt
lechnique for scalable communiealiun in the mobile environment. EHicient broadcust techniques are proposed in
[1][8][IO]{I2]. Spatlo-temporal d,ltubase models to supporl moving objects, sp..tio-temporal types and supporting
operJtions have been developed in [6][7]. An excellent review of multidimensionul index struclures including grid
like und Quad-Tree based slruclures can be found in [26].

3 Continuous Query Evaluation

3.1 Updating Object Locations

The issue of obtaining the updllted locations of objects is independent of lhe technique used for evaluating the
queries. Since the focus of this research is on lhe efficient evalualion of queries, we assume lhat updated loeiltion
information is available at the server, without considering how exacl1y il was made available. Beluw we briefly
discuss lhe common assumptions made in order to reduce communication.

The mosl common assumplion is lhat each object moves on a straight line path with a conSlanl speed, and updlltes
the server with its direClion of movement and speed when they change, A similur ussumplion is thal objects arc
moving with eonstanl speed on ,I known road. A mUlual feulure of these assumptions is Ihat for each moving object
lhe server can determine its location based upon a formula. In our experiments new locations of objects arc
gener.lted at the beginning of each cycle. While some index structures for moving objects rely upon restricted
models of movement (e.g. [25)), Qlle/)' Indexing allows objects to move arbitrarily. Therefore, the objects can muve
anywhere in the domain, but the ovemll objecl dislribution chosen for lhe experiment is maintained (uniform,
skewed, etc.).

3.2 Qucry Indcxing
The problem of continuous query evaluation is: GiVC'1/ a set ofqueries alld {/ set of //loving objects. clmrill/lOllsl)'
delen"i"e rhe set ofobjecl.l· Ihal are comained withi" each que/y.
Clearly, wilh a large number of queries and moving objecls, it is infeasible to re-ev..luute each query whenever any
object moves. A more pmctieal approach is to re-evllluale ull queries periodically laking into account the lalest
positions of all objects. In order for lhe results to be useful, a shurt re-evaluation period is desired. TIle goal of the
query evaluation techniques IS therefore to re-evaluate all queries in as short a time as possible.

The naive approach to this problem is to compare euch objectllgainsl each query in every period. A more effective
solution seems to be lhe trJditionaI approach of building an index (sueh ..s an R-tree) on the objecls 10 speed up the
queries. Although for regular queries this would resull in improvements in performance over the n..rve approach, it
suffers a major drawback for the moving objecls cnvironment: the index needs to be continuously updaled as object
positions change. Maintaining such an index on mobile data proves to be quite a challenging task [22}.

We propose a novel solution to this problem: QllelY Indexing. lnste..d of building an index on the moving objects
(which would require frequent updating), ereale an index on lhe more stable queries [20]. Any sp..tial index slruelure
can be used to build lhe query index.

The evaluation of continuous queries in each cycle proceeds as follows. Fur object p. leI P.q~-el denote the set of 1111
queries in which P is contained. For query Q. let Q.psel denole the set of objects contained in Q. The goal is to
compute Ihe set Q.psel for each query Q based upon the current localions of the objects by the end of each cycle.
Because of the lack of .speed limitutiuns Q.p.~et and P.qsef cun be completely dilTerenl from one cycle to the nexl.
ConsequenHy, incremenlal solutions lire infeasible. In each cycle, we lirs! use the query index to compule P.qsef for
each object P. Next, for each query Q in P.qset, we add P 10 Q.psel.

3

Some impomml consequences of indexing lhc queries instend of the dala should be noted. firslly, the index needs
no modification unless there is a chunge 10 the set of queries - u rclutivcly less frequent event in compnrison to
changcs 10 objcct locations since wc arc dculing with continuous queries. Secondly, the loealion of an object can
chnnge greatly from one cycle to the next without hnvlng any impacl on the perfonnance. In other words, there is no
restrielion on the nature of movement of the objects, This is not true for object indexing tcchniques such as [25]
which rely upon certain assumptions about the movemenl of objects.

Next we discuss the feasibility of in-memory query indexing by evaloating ditTcrent rypes of indcxes for queries.
Clearly, ifwc arc unable to select an appropriate index, the time needed to complete one cyele e~m be large (e.g. I
min) and lhe uppronch would be unacceptable. Below we brieny discuss indexing techniques for building a query
index in main memory. In Section 4 we evaluatc the perfonnance oflhese altcrnative indexes.

3.3 Indexing Techniques

Wc consider the following fivc well-known index structures: R*.Tree, R-Tree, CR-Tree, Qund-Tree, ami Grid. The
R-tree and R"'-tree index structures are designed to be disk-based structures. This is principally achicvcd by
choosing the node size 10 be a multiple of disk puge size. TIle CR-Tree, on the olher hand, is a variunl of R-trees
optimized for main memory. All of these indexcs wcre implemented for main memory use. In order to make n fair
comparison, we did not choose large node sizes for these trees. Instead, we experimentally determincd lhe best
choice of nude size for main-memory evaluation. AlIlhree indexes (R*-Tree, R-Tree, and CR-Tree) showed best
perfonnancc when the number of entries per node was chosen to be five. This value was used for illl experiments.

Details of the CR-Trce are described in [13]. Thc main Idea is 10 make R-Tree cache-conscious by compressing
MBRs. This is achieved by using so-called QuantiLed Relative Minimum Bounding Rectangles (QRMBR). Olher
well-known minor oplimizations have also been proposed in lhe paper. We implemented the CR-Tree based upon
the main idea ofQRMBRs wilhoutthe other optimizutions.

Becnuse many varialions exist, we describe the Grid index as it is used here for query indexing. The Grid index is a
lwo-dimensional array of "cells". Each cell represents a region of space generated by partitioning the domain using a
uniform grid. Figure 3-1 shows an cxample of a Grid. Throughout the paper, we assume that the dornuin is
normalized (0 the unit square.

JQ'!_---"Uj
"
rQl I

,

Figure 3-1 Example of Grid

___~ ~__ i
r',--c',:'-,'c' 5 6 1 8 9,

,

In this example, the domain is divided
into a IOxl0 grid of 100 cells, each or
size 0.1 x 0.1. Since we have a unifonn
grid, given the coordinates of un object,
it is easy 10 caleulate the cell thaI it f.1J1S
under. The cell coordinates for u point
z (x, y) arc cu~ily computed as:
cell x = (int) x I hX;
cell_y = (int) y I hY;
where x nnd y nre coordinates of lhc
point wc are interested in, hx and h Y
are thc horizontal and vertical size of
each cell (e.g., in our example
hX=hY=O.I). Applying the formula
above we can determine the cell that a
point belongs to in 0(1) time. Elich cell
contains two lists (hnt are idenlified as full nnd par' (see Figure 3-1). The fitlliist of a cell contains pO/lller.I' to all the
queries thaI fully cover the cell. The parI list of each cell conlain~ poimers to all the queries lhat only pnrtially eovcr
lhe cell.

The choice of daln structures for the full and par/lists is criticul for performnnce. We implemented these lists as
dynamic arrays rather than lisls. A dynamic array IS a stnndard dala structure for arrays whose size can he adjustcd
dynamically. Using dynamic arr.:JYs instead of lists improves thc performance by roughly 40%.

4

An analytical solulion for Ihe :lppropriate choice of griu sizc is presented in Section 3.4. As will be seen in the
e:<.perimenlal scclion, this simple one-level griu index outperforms all olher structures for uniform :IS well :IS skewed
data. However, for Ihe case or highly skeweu data (e.g. roughly h:llf the queries fall within onc cell), theJI/f1 and
pari grow 100 hlrge. Such sllu:ltions are easily h....nu!cu by switching 10 a two-lier grid. If uny of the lists grows
beyonu a threshold vDlue, Ihe grid index converts 10 a directory grid and a few seconuary grids. TIle directory grid is
useu to detcrmine which secondary grid to usc. Each direelory grid cell points to II secondary grid. The secondary
grid is used in lhe same way as the one-level grid, While this ideu of generating ::In extra layer can be upplicd :IS

many times as is necessitated by the d:lt::l distribulion, it is unlikely in practice, Consider for example, that the
domain of interesl represenls a IOOO-kilomeler by IOOO-kilometer region. With a 1000 .1(1000 grid, 1I cell of lhe two
tier grid corresponds a square of side I meIer - it is very unlikely Ihat there will be very many objeels or queries in
such a small region in practice.

The astute rcader will observe lhatthe Grid index and Ihc qU::ld-tree are closely related - both ::Ire space partitioning
lind splil u region if it is overrull. There is however, a subtle difference: the Grid index us described is a heigh 1
balanced structure. In conlrast a quad-lree is not nccessarily height-balanced. The aUvuntage for the Grid is therefore
thnt it avoids conditional ("ir') branches in its search algorithm,

Another advantage of [he Grid is that it Iypicnlly has far more cells per level. A qU:ld-[ree lherefore tends to bc very
deep, especially for skewed data. We expecI that a quud-Iree like struelure that has more cells per level would
perform beller thun a quad.tree. In order to test this hypothesis, we ::Ilso consider what we call a 32-Tree. The 32-lree
is identical to a quad-tree, except lhat it divides a cell using a 32x32 grid, unlike quad-Iree's 2x2 grid. As with the
Grid inuex, pointers to children are used instead of keeping ::In array of pointers to children. In order 10 further
improve performance, we implemented the following optimization: In addition 10 leaf nodes, internal nodes can also
have an ussoeialed JIIII lis(, Only leaf nodes have a part list. AJIlII lisl conlains all queries [hat fully cover lhe
bounding rectangle (BR) of the node, bul do not fully cover Ihe BR of ils paren!. Adding a reet::lngle (or region) 10 a
nude proceed us follows. Irthe reclangle fully covers Ihe BR, il is added to Ihejillllist and the ::Ilgorithm stops for
lhat node. !fthis is a leaf node and there is space in the par' lisl, [he rectangle is auded to part list. Olherwise the set
of all rcJcvunt children is delermined and the procedure is ::Ipplied to e::lch of them.

Storingfillllists in non-leaf nodes has two ::Idvalll::lges. One advantage is saving of space: without such lists, when a
query tully covers a node's BR il would be duplic::Ited in all the node's children. A second ::Idvantage is Ihat it has
Ihe potential to speed up point queries. If a poinl query is· falls within Ihe BR of:l node lhen it is relevant to ul1
queries in theJulllist of this node ~ no further checks are needed. Leafnoue split is based on the pari list size only.
While there are many more oplimizalions possible some of which can bc found in [26], we did not explore Ihese
further. The purpose or studying Ihe 32-Tree is to establish [he generalily and flexibility of the grid-based approach.

3.4 Choice of Cell Size

We now present an analysis of appropriale choice for lhe tile size for the Griu inuex in the conlext of main-memory
query indexing. Consider lhe case where 11/ squure with side q queries unifomlly dislributed on [0, l]x[O,I] are adued
to index. sec figure 3-2. Let c denote the side of each cell. Then q can be represented liS i_c -I- x, where xE[O,c)

and i is an inleger. We now unalyze the avernge number of cells parlly covered by a query. Without loss of
generalily let us consider the case where [he top-len corner of query Q is somewhere within cell (0,0) and q>c.

It can be veri lied Ihat if the corner is inside SetO Ihen Q is presenl in 4_ip::lrtlists, for Setl lhis number is 4_i+2, and
for Sel2 it is 4_;+4. Assuming uniform distribution, the probability that the corner us inside SeW is (c-xiIc2

, inside
Setl is 2x(c_x)1c2, and inside Sel2 is.r21c2

•

Therefore, on the avemge each query will end up in al'g=[4i(c-x/+(4i+2)2x(c-.t)+(4i+4)x2]1c2 parI lisls. This
formula simplifies [0 aL1g=4c{r;+i_c]1c2= 4qlc.

Correspondingly, m queries will end up in 4qmlc part lists. Given lhe facI Ihat lotnl number of cells can be computed
as J1c2

, each cell will have parllist of size 4qmc on Ihe average.

5

"--.
. 'I"

-j

'"" II"''' t
,

"'"" I I'"I""'" I

;<--1, ')---..!.-'---'
--

.
,

I Q,

"j ,

For our implemenlation, Ihe difference in lime needed to process a
cell when ils part list is empty vs. when its pari lisl has size one is
very small. By choosing c such thaI4qmc:=/, that is c=Jl4qm, on the
average, Ihe siLe of a cell's part list will be onc. 'fhe case where (/<c:
can be analyzed similarly. TIle nnal formula for choosing cis:

Cm 1/ ,if q> 1/ ; and c- 1/ _q,olhenvise.
/4qm /2J;;; /.,J;;;

For our example in Figure 4-7. we have m=25.000; q=O.OI.
Since 1/ _0.00 I< q' the first fonnula should be used, i.e.

/2';;;;
c=Jl4qm=0.001. This means that grid should be of size JOOOxlOOO
and larger grids will not producc beller performance. We study the
impact of tile size in the experimental section :lnd show that the
results match the analytical prediclion.

Figure 3-3 Example of sorted and un-sorted Object
Arrays

Figure 3-2, Choosing grid size,

.l
If we expeci Ihat objecls will mainlain Iheir
locality, Ihen we can improve eache·hit rates by altering the order of processing Ihe objecls. Ifwc re-order objccts in
Ihe aITay such Ihal objccls thai arc close together in our 2D domain nrc also close togelher in Ihe objcct UITay, as in
Ihe aIT:lY on Ihe right labeled "Sorted Point AITay" shown in Figure 3·3. Wilh Ihis ordering, objecl P2 will be
analyzed first :lndlhercfore Cell(O, 0) and its !isis will be processed. Then, object Pn will be :lnalyzed and Cell(O, 0)
and its lists will be processed ngain. In this situation everything relevant to Cell(O, 0) is likely to remain in the CPU
cache aner Ihe firsl proccssing nnd will be reused from Ihe cuche during the second processing. Thc spccd up effect
is also achieved because objects Ih:ll are close together l1re marc likely to be covered by Ihe same queries th:ln
objects Ihal arc far aparl, thus queries are more likely to be rctrieved from the cache rather thnn from main memory.

3.5 Improving the Cache Hit Rate

The perronnancc of muin-mcmory algorithms is greatly affecled by
cache hjt rales. In this section we describe an optimization Ihal can drastically improve cache hit rales (:md
consequenUy the overall pcrform:mce) lor the query indexing uppronch.
In each cycle the processing involves searching the index structure for e1lch objects currenl locution in order to

detenninc the queries thaI cover the object's currenl localion.
For each object, ils cell is computed, and thefl/II Urt«If1odP"'hl c 2'-'-"_T~x Z-S",IedP"",1

and parI lisls of this cell are accessed. The """v ~~=--~=---::f----- I Arr.1~_
algorilhm simply processes objects in sequential ",'C'"//- __ __"C~=-:------~ I
order in [he array. Consider the example shown in IP2 ---- - _ _ -- ---------1 Po

Figure 3-3. The order in which the objects appear _P_3---l 1__+-_-1----------- PI<

in Ihe array IS shown on the len of the figure in the 'c--+---fI---1- <,

"Unsorted Point Array". Note thai we usc the terms 8.. '
object and poinl interehangcably. In this example, I
Ihe lists pointed to by Cell (0,0) will be accessed p,

for processing objeel P2 and then laler for Ei I
processing object P". Since scveral olher points are
processed aner P2 and before Pn, it is very likely
that the lisls for Cell(O,O) will nOI be in the cache
when Pnis processed - resuhing in a cache miss.

Sorting Ihe objects 10 cnsure Ihat objects thai are close to each other :Ire also close in thc i1rrolY order can easily be
achicved. One possible approach is to group objecls by cells - i.e. all objects Ihat fall under each cell are placcd
ndjaccmly in the array and Ihlls processcdtogether. The objects grouped by cell can Ihen be pl:lced in the array using
n row-major or coIumn-m:ljor ordering for Ihe cells. Although this will be effcctive, the benefit of the sorting is lost
if Ihe object moves out of its currcnl cell and enlers an adjacenl cell Ih,lt is not elose by in the ordering used for thc
cells (e.g. object moves 10 adjacent cell in next row and row major ordering is used). We propose an alternative
approach: Order the pain Is using any of Ihc well·known space filling curves such us Z-order or Hilbert curve. We
choose to use a sorting based on the Z-order. Z'sorting significantly improvcs the performance of the m:lin mcmory
algorilhm,:ls will be seen in the expcriment section.

6

il is imporlnnr to underSland tfml the usc of !his technigue docs nol require lhat objects have to preserve their
localily. The only elTeel of sorling lhe objecls according to lhcir carlicr positions is 10 illtcr lhe order in which
objecls arc processed in eneh cycle. The objects are slill free 10 move arbitrarily. Of course, the ej]eclivelle.\·.\· of this
technique relies upon objects mainlaining their localily over 11 period of lime. Ifillllms out lhal objecls do nol
rnaintuin their locality lhen we are, on the average, no worse than lhe siluation in which we do nol son. lllUS, for lhe
case where objecls preserve loealily soning the objecls bilsed upon their loca!ion al some lime ciln be beneficial. Il
should also be noted thilt lhe exacl posilion used for each objecl is not important. Thus tlle sorting Ciln be cnrried OUI

infrequenlly (say once a day).

4 Experiments
In lhis section we presenl lhe performance results for the index slruelUres. Each index structure was implemenled
and tesled - 1I0t simulilled. The results report the aelmd times for the execulion of the vurious algorilhms. Firsl we
describe the parameters of lhe experimenls, followed by the rcsults nnd discussion.

In illl our experiments we used a I GHz Penlium 111 machine with 2GB of memory. The machine has J2K of level I
cache (16K for instructions nnd 16K for data) and 256K level 2 cache. Moving objects were represenled as points
distributed on lhe unit square [O,I]x[O,l]. The number of objects ranges from 100,000101,000,000. Rllllge-queries
were represented as squares with sides 0.01. Experiments wilh other sizcs of queries yielded simililr results ilnd ilre
lhus omillcd. For distributions ofobjeels and queries in the domain we considered the lollowing cases:

I) Uniform: Objecls and queries arc unifonnly dislributed.
2) Skewed: The objecls and queries are dislributed among five clusters. Within each cluster objec!s and dalu l1re

distributed nonnally with a slandilrd deviation of 0.05 for objects and 0.1 for queries.
3) Hyper-skewed: Hillf of the objects (queries) arc dislribuled unifonnly on [O,I]x[O,I], the olher half on

[O,O.OOI]x[O,O.OOl). Queries in [O,O.OOl]x[O,O.OOi] are squilres with sides 0.00001 to avoid excessive
selectivity.

We consider the skewed Cl1se 10 be most represenlative. The hyper-skewed case represents a pathological situation
designed to sludy lhe perfonnance of the schemes under extreme skew. In the majority of our experimenls lhe Grid
was chosen 10 consist of 1000xlOOO cells. Thc tesling proceeds as follows: First, queries and objccts are generated
lind put into nrrays. Then lhe index is inilialized and lhe qucries rlrc added 10 11. Then in erich cycle, we first update
lhe localions fo!lowed by an eVllluation of lhe query reslIlls.

4.1 Comparing efficiency of indexes

1i:IC•
~ 2S•
.~

~ 15J
U '"

• Oro
o Fl' T,oo
oR·T,,,,,

,-,CR·T,,,,,

n Quad Treo

,OOK/IOK

Uniform

lOOK/lOOK 1M/10K

"ObJocts I'Q,,~,les

••.....:"!••

lJ.ll25K

E 20

", '"
~ 10

.=
"R·T",o
oR·T"",

D CR-T"'u

[][]"",~n""

lOOK/10K

Skewed

lOOK/lOOK 1M/10K

_Oblod.. llQuor/1IS

11.I/25X

Figure 4-1 Figure 4-2

Figure 4-1 shows lhe rcsulls for various combinalions of number of objects and queries with unifonn distribulion.
The y-axis gives the processing lime for one cycle in seconds for each experiment. Figure 4-2 shows similar results
for the skewed case.

Each cycle consists of lwo sleps: //loving objecls (i.e., determining current object locations) and
evaluation/processing. From Figure 4-2 for lhe case of 100,000 objecls and 100,000 queries we can sce lhat the
eVillualion step for Grid lilkes 0.628 seconds. Altering object localions lakes 0.15 seconds for lOOK objeels antll.5
seconds lor IM objects on the average. Thus the length ofcl1ch cycle is just 0.778 seconds on lhe nverage.

7

·••

lMJ25KIMJIOK

IIObJ.cIS ItCuorios

Figure 4-3

l00ItlIOOK

Hyper-skewed

.G'id
!JR·Tr~~

o R·Tree
DeR·T,,,,,

o Ou>llTroo

lOOltilOK

~ SO

.!!. 40

~ 30,
~ro

,
i

The Grid index gives lhe besl perfonnance in all lhese cases.
While the superior perfonnance of Grid for the unifornl case
is expected, the case for skewed data is surprising. For all
experimenls lhe Grid index consisted of only a single level.

Figure 4-3 shows the resulls for the hyper-skewed case. ror
the hyper-skewed case, a second level grid is required lor the
cell conlaining il large number of queries. 11 is interesting 10
see lhal the Grid index once ngain oUlperforms the other
schemes. There is a significant difference in performance of
Grid and lhe other npproaehes for ull three distribulions. For
example, wilh 1,000,000 objecls and 25,000 queries, Grid
evaluates all queries in 1.724 seconds as compared 1033.2
seconds lor the R-Trec, amI 3.5 seconds for the Quad Tree.
This extremely fasl cvulualion implles that with lhe Grid
index, lhe cycle time is very small - in other words, we can re·compule the set of objects contained in each query
every 3.2 seconds or fasler (1.7 seconds for the evalualion step + 1.5 seconds for updaling the localions of objects).
lllis establishes lhe feasibility of in-memory query indexing for managing conlinuous queries.

4.2 32-Tree index

Skewed

'G':]El R· Tree

o 32xJ2

'"
"
"I14

~ 12

· '"••..u ,,
,
o

-- :g
-0
-ri

Uniform

_Grid

nR'Tr""

032.<32

"
"

11 can be seen lhatt1le quad-lree perfonns beller than R-Tree like duta structures lor skewed cuses, bul worse for lhe
majoriry of the unifonn lind hyper-skewed cases.

I "

lOOK/10K lOOK/lOOK 1M/10K 1M12SK lOOK/10K 100KlIOOK 1M/10K lM/25K

lObJeclslllQu.rles

Figure 4-4

_______.O_bJCelS /lQ,",·_'C"'-- _
Figure 4-5

_Grid

I:lR·Trce

lJ 32~32

IM/25K1M/10K

!lOb/eelS I "Queries

Hyper-skewed

lOOK/lOOK

'"
'"
"'ff 14

! 12

·"~ 8.. ,
U ,,

o1--''''''''-
lOOK/10K

L_

The performance of the 32-Tree along with lhat lor the
Grid and R*~Tree for unifonn, skewed, i:lnd hyper
skewed data is shown in Figures 4-4, 4-5, and 4-6
respectively. As can be seen from the graphs our
hypolhesis is lrue: lhe perfonnance of the 32-Tree lies
belween lhat of the R·-Trce und the Grid.

The problem wilh a qmld-tree for hyper-skewed case is
lha! il has a large height. This suggesls that if il were
able to zoom faster il would be a belter index than R*
Tree. We lesl this hypothesis by evalualing the 32-Tree
which is similar to lhc quad.tree excepl that il has more
divisions at each node.

Figure 4-6

8

4.3 Choice of Grid Size

In Ihis experiment we Silidy lhe impilel ot"fhe number of cells in the grid. The anulysis in Section 3.4 predidedlhal iI

choice of a 1000xl000 grid IS optimal. Figure 4-7. presenls the processing lime needed with grid sizes IOOx 100,
1000xlOOO, and 2000x2000 cells. As can be seen, increasing lhe number of cells has lhe effect of reducing the
i1verage number of queries for a cell thereby reducing lhe processing lime. There is a subslanlial increase in
perfonnance as we move rrom 100xIOO cells 10 JOOOxlOOO cells. The increase is minor when we move from
1000xlOOO to 2000x2000 cells for ollr case of 1M objects and 25K queries. This behuvior corroborates Ihe
analylical resulls.

1M/10KlOOK/,ooK

Skewed

lOOK/10K

,, '". .
G'W=

"'~
C Goo: z·_od po;nlS

Figure 4-8. Effecliveness of Z-Sorling.

_____-".o'"'eo'ctsllJOC"C'"C·C· _

':j,..
j 1.4

!1.2
1 '
F.,,
~ D,G,.

",
"

~ .,:;

i·-·,-·_·IL_l
~ ...

Impact of grid sIze

1-"-'-~-'OO-'-l~ "G';~l-=-.-'-~--"-'-'-.-'~-"-~-1

"

,

Figure 4-7. Impact of grid size on processing time.

4.4 7.--80rt Optimization
Figure 4-8 illuslrutes the effect of the Z-Sorl technique on evalualion time for ideally Z-sorted datil. Z-sorting
reorders the data such thai objects thai are close logelher tend 10 be processed elose together. When processing each
objeci in the array from the beginning 10 the cnd, objeels Ihm e10se to each other will tend 10 reuse information
stored in Ihe cache ralher then relrieving it from main-memory. From Ihe resutls, we see Ihat sorting objects
improves Ihe performance by roughly 50%.

, , ".,"'So"","" """"., .
•,"u UII. """'7 .~•••, .0." '000. '000 <....

,

.•c.':1--:,:-·. ----'--

"
--"---'''-''- ..J

i"!

4.5 Time to add/remove queries to/from Grid

We now Sludy lhe efficiency of modifying Ihe Grid index. The
results in Figure 4-9 show how long il lakes 10 add and remove
queries la/from an existing index !hal already eonlains some
queries. Allhough modifications 10 queries <lre expected to be rare,
we see lhat adding or removing queries is done very efficiently with
the Grid. For example, lhe 100% bar shows lhal 100% of 25K
queries can be added or deleted in only 2.408 seconds. The decision
whelher 10 add or delele a query at a particular step is made wilh
probubility of 0.5 for each query. Therefore we see lhat even
significant changes 10 lhe query set eiln be elTectively handled by
the Grid approach.

Figure 4-9 Adding and deleting queries.
Summary

In this paper we presenled II Query-Index approach for in-memory evaluation of continuous range queries on
moving objeels. We eslablished lhat the proposed approach is in fael a very efficient solution even if there arc no
limits on object speed or nalure ofmovemenl- a common reslrielion made is similur research. We presented results
for seven differenl in-memory spalial indexes. The Grid approach showed lhe besl result even for lhe skewed cilse.
/\. technique of sorling lhe objects 10 improve lhe cache hit-mtio was presenled. The performance of Ihe Grid index
wus roughly doubled wilh this optimization. An analysis for seleeling oplimal grid size and experimcnlal valida lion
was presented. We also showed lhat even though lhe set of continuous queries is 10 remilin almosl unchanged,
nevertheless Grid can very efficiently ildd or remove l<lrge numben; of queries. OvemJl, indexing the queries using
the Grid index gives orden; of magnitude beller performance than other index structures such <lS R*-trees.

5

9

6 References
[I] S. fleharya, R. Alonso, M. J. Frnnklin, and S. H.
Zdonik. Broadcast disks: Dala managemelll for asymmdrk
eommuniealions environmCIllS. In Proceedings of SIGMOD,
pages 199-210, 22-25 May 1995.

[2J P. K. Agarwal, L. Arge, and J. Erickson. Indexing
movillg poinls. In Proe. 2000 ACM Symposium on Principles
of Database Syslem~ (PODS), 2000.

[3] A. Beckcr, S. Gschwind, T. Ohler, 13, Secger, :lnd P.
Widmaycr. An asymplOtically optimal multiversion B-tree.
The VLDB Journal, 5(4):264-275, December 1996.

[4] P. A. Bernstein ct, a!. The Asilomar Repon on Dal,l!J;lse
Rcscarch. SIGMOD Record, 27(4), pages 74-80,1998.

[5] US Wireless Corp. The market pOlential of the wireless
location induslry. hllp:/Iwww.usweorp.eom/

[6] L. Forlizzi, R. H. Gllling, E. Nardelli, and M. ScheiLier.
A data model anLi dala slruelures for moving objects
databases. In Proc. ufACM SIGMOIJ 2000.

[7] R.H. GUllng, M.II.Bohlen, M. Erwig, C.S. Jensen. N.A.
Lorent7.OS. M. SchneiLler, and M. Vazirgiannls. A foundalion
for representing and querying moving objecls. ACM
TransaClions on Database Systems, 2000.

[8] S. E. lIambruseh, C.-M. Liu, W. Aref, and S.
rr:lbh,.knr. Query Processing in BroadeaSled Spatial Index
Trees. In 7lh Intemalional Symposium un Spmial and
Tempordl Databases (SSTD 2001), July 200 I.

[9J S. J1ambrusch., S. Prnblmkar, W, Arcr, D. Kala~hnikov,

and Y. Xia, PLACE projecl, hllp:/Iwww.cs,purdue.edulplaee!

[10] Q. Hu, W.-c. Lcc, and D. L. Lee. Power conservative
muhi-auriblile queries on data broadcast. In Proecedings of
lhe Inlemational Conference on Dala Engineering (ICIJE),
pages 157--166, 2000.

/11] Q. Hu, W.-C. Lee, and D. l. Lee. A hybrid index
teChnique for powcr efficient data broadeas!. Distributed and
ParallcllJ:ll:lbilscs, 9(2):151-177, 2001.

[12] T. Imielinski, S. Viswanmhan, and B. R. Badrinmh.
Energy eflicient indexing on air. In Proc. ofSIGMOD 1994.

{13] K. Kim, S. K. Cha, and K. Kwon. Optimi7.ing
multidimensional index trees for main memory access. In
Proe. ofSIGMOD 2000.

[[4] G. Kollios, D. Gunopulos, ,lIld V.J. TSOLras. On
indcxing mobilc objects. In Proe. ACM Symp. on Principles
ofDalabase System~ (PODS), June 1999.

[15] H. Koshima and J. lIoshen. Personal lucator services
emerge. IEEE Speclrum, 37(2):41-48, 2000.

10

[16J A. Kumar, V. J. Tsotras, and C. FaIOUlSOS. DeSigning
access melhods for bilcmporal dawbnses. IO(I): 1-20, 1998.

[17] P. Pfoser alld C. S. Jensen. Capturing the uncertainly of
moving-objects reprcsclltations. In Procccdings of the
SSIJBM Conf., pages 123-132, 1999.

118J P. Pfoser, C.S. Jensen, and Y. Theodoridis. Novel
approaches in qucry processing for moving objccls. In Proc.
of the 26lh Inl. Conf. on Very Large Databases (VLIJB),
Cairo, Egypl, 2000.

[19] P. Pfoser, Y. Theodoridis, aod C.S. Jensen. Inde:l:ing
trajectories of moving point objecls. TechniC:J1 Report
Chorochronos Tech. Rep. CII-99-3, June 1999.

[20] S. Prilbhakar, Y. Xia, D. Kalashnikov, W. Aref, and S.
lIambrusch. Query Indcxing and Velocity Constraincd
Indexing: Scalable Techniqucs fur Continuous Queries on
Moving Objecls. TR 01-012, Purdue Univcrsity, July 2001.

[21] 1. Rao and K. A. Ross. Making B--Trees Cachc
Conscious in M:Jin Memory. In Proc. ACM SIGMOD Tm.
Conf. on Managemem of Data, pages 475-486, 2000.

[22] S. Saltenis, C. Jensen, S. Leuteneggcr, and M. Lopez.
Indexing the position of continuously moving objccts. In
Procccdings of ACM SIGMOD Confcrencc, May 2000.

[23] H. Same!. The Design and Analysis of Spatial Dam
Structures, Addison.Wesley, 1990.

[24] A. Y. Seydim, M.II. Dunham, and V. Kumar. Location
dependent qucry processing. In Proc, of the 2nd ACM
illlcrnational workshop on Dala engineering for wireless and
mobile access, pp47-53, 2001

[25J A. Prasad Sislla, Ouri Wolfson, Sam Chamberlain, and
Son Dao. Modeling and querying moving objects. In Proc. of
the 14th In\. COllfcrence on Dala Engineering (lCDE'97),
pages 422-432, 1997.

[26] Jamel Taycb, 07.gur Ulusoy, and Ouri Wolfson. A
quadtree-based dynamic allribUle indexing method. The
Computer Journal, 41 (3): 185-200, 1998.

[27] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and G.
Mcnde7.. COSl and imprecision in modeling the position of
moviog objcClS. [n Procecdings of the Fourteenth
Illlcntalional Conference on Data Enginecring (ICDE), 1998.

[28] O. Wolfson, P. A, Sislla, S. Chambcrlain, alld Y. Ycsha.
Updating and qucrying databases lhal track mobile ullits.
lJislributeLi and Parallel Datab<,~es, 7(3);257-387,1999.

[29} Ouri Wulfson, 130 Xu, Sam Chilmberlain, :Jnd L. Jiang.
Moving objects databases: Issucs and solutions. In
Proceedings of the SSDBM Conf., pages I 11-122, 1998.

	Efficient Evaluation of Continous Range Queries on Movng Objects
	Report Number:
	

	tmp.1307986960.pdf.yHBEk

