
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2002

Distributed Collaborative Key Agreement Protocols for Dynamic Distributed Collaborative Key Agreement Protocols for Dynamic

Peer Groups Peer Groups

Patrick P. C. Lee

John C.S. Lui

David K.Y. Yau
Purdue University, yau@cs.purdue.edu

Report Number:
02-013

Lee, Patrick P. C.; Lui, John C.S.; and Yau, David K.Y., "Distributed Collaborative Key Agreement Protocols
for Dynamic Peer Groups" (2002). Department of Computer Science Technical Reports. Paper 1531.
https://docs.lib.purdue.edu/cstech/1531

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

DISTRIBUTED COLLABORATIVE KEY AGREEMENT
PROTOCOLS FOR DYNAMIC PEER GROUPS

Patrick P.C. Lee
John C.S. Lui

David K.Y. Yau

CSD TR #02-013
June 2002

DISTRIBUTED COLLABORATIVE KEY AGREEMENT
PROTOCOLS FOR DYNAMIC PEER GROUPS

Patrick P.e. Lee
John C.S. Lui

David K.Y. Yau

CSD TR #02-013
June 2002

Distributed Collaborative Key Agreement Protocols for Dynamic Peer Groups*

Patrick P. C. Lee John C. S. Lui David K. Y. Yau
Department of Computer Department of Computer Department of Computer
Science & Engineering Science & Engineering Sciences

The Chinese University of The Chinese University of Purdue University
Hong Kong Hong Kong West Lafayette, IN 47907

pclee@cse.cuhk.edu.hk cslui@cse.cuhk.edu.hk yau @cs.purdue.edu

Abstract

We consider several disrributed collaborarive key agree-
rnenr protocols for dyna~nic peer gro~rps. This problem has
sevelal irnporranr characteristics which make it dlfferenr
fron? rradiriotlal seclrre group co~n~n~rr~icatior~. They are
(I) disrrib~rred nature in which there is no centralized key
server, (2) collaborative nature ill which the group key is
contributive; i.e., each group member M ~ I collaboratively
contribute its part to the global group key, and (3) dynamic
nature in which existing members can leave the group while
new members ma? join. Instead of performing b~dividual
rekey operations, i.e., reco/npurit1g the group key after ev-
e o join or leave request, we consider an interval based
approach of rekeying. 111 pat-ricula~; we consider three dis-
tributed nlgoritlz~?ls for updating the group k e ~ ~ : (I) the Re-
build algorithm, (2) the Batch algorithm, and (3) the Queue-
batch algorithm. We analyze the perfortnatice of these dis-
tributed algorirl~~ns under dlfferetzt settings, including dif-
ferent populario~z sizes and different jobdleave probabili-
ties. We show that these three disrributed algorithms signif-
icantly outperfor~n the individual rekej~ algorithm, and that
the Queue-batch algorirhtn perfor~ns the best among the
three distributed algorithms. Moreover; the Queue-batch
algorirhtn has the irztrinsic property of balar~cing the con-
putatio~l/ro~nmunicatio~l workload such that the dyna~nic
peer group can quickly begin secure group com~nunicarion.
Tl~is provides fur1datnenral understa~zding about establish-
ing a collaborative group key for a distributed dyna~nicpeer
group.

1. Introduction

With the emergence of many group-oriented distributed
applications such as multi-player games and telelvideo-
conferencing. there is a need for security services to provide

'J. Lui was supported in pan by the Mainline and RGC Research Grant:
D. Yau was supported in part by the National Science Foundation under
grant numbers CCR-9875742 (CAREER) and EIA-9806741.

group-oriented comn2unication privacy and data integrity.
To provide this form of group communication privacy, it is
important that members of the group can establish a com-
mon secret key for encrypting group communication data.
For example, consider a group of people in a peer-to-peer
ad hoc network having a closed and confidential business
meeting. Since they have not previously agreed upon a
common secret key, communication between group mem-
bers is susceptible to eavesdropping. To solve the problem,
we need a secure distributed group key agreement proto-
col such that the group of people can establish the com-
mon group key for secure and private communication. Note
that this type of key agreement protocols is both distribu-
tive and contributory in nature: each member of the group
contributes its part to the overall group key.

It is important to point out that the type of distributed
group key agreement protocols we study is very differ-
ent from more traditional centralized group key agreement
protocols. Centralized protocols rely on a centralized key
server to efficiently distribute the group key. An excellent
body of work on centralized key distribution protocols ex-
ists [6, 7, 10, l I]. In those approaches, group members are
arranged in a logical key hierarchy known as a key tree. Us-
ing the tree topology, it is easy to distribute the group key to
members whenever there is any change in the group mem-
bership (e.g., a new member joins or an existing member
leaves). For distributed key agreement protocols, however,
there is no centralized key server available. This arrange-
ment is justified in many situations - e.g., in a peer-to-peer
or ad hoc network where centralized resources are not read-
ily available. Moreover, an advantage of distributed proto-
cols over the centralized protocols is increased system reli-
ability, because the group key is generated in a shared and
contributory fashion and there is no single point of failure.

In the special case of a communication group having
only two members, these members can create a group key
using the Diffie-Hellman key exchange protocol [2]. In the
protocol, members X and Y use a finite group G of order

Distributed Collaborative Key Agreement Protocols for Dynamic Peer Groups*

Patrick P. C. Lee
Department of Computer
Science & Engineering

The Chinese University of
Hong Kong

pclee@cse.cuhk.edu.hk

John C. S. Lui
Department of Computer
Science & Engineering

The Chinese University of
Hong Kong

cslui@cse.cuhk.edu.hk

David K. Y. Yau
Department of Computer

Sciences
Purdue University

West Lafayette, IN 47907
yau@cs.purdue.edu

Abstract

We consider several distributed collaborative key agree­
ment protocols for dynamic peer groups. This problem has
several important characteristics which make it different
from traditional secure group communication. They are
(I) distributed nature in which there is no centralized key
server, (2) collaborative nature in which the group key is
contributive; i.e., each group member will collaboratively
colltribute its part to the global group key, and (3) dynamic
nature in which existing members can leave the group while
new members may join. Instead of peiforming individual
rekey operations, i.e., recomputing the group key after ev­
ery join or leave request, we consider an interval based
approach of rekeying. In particulGl; we consider three dis­
tributed algorithms for updating the group key: (I) the Re­
build algorithm, (2) the Batch algorithm, and (3) the Queue­
batch algorithm. We analyze the peiformance of these dis­
tributed algorithms under different settings, including dif­
ferent population sizes and different join/leave probabili­
ties. We show that these three distributed algorithms signif­
icantly outpeiform the individual rekey algorithm, and that
the Queue-batch algorithm peiforms the best among the
three distributed algorithms. Moreover, the Queue-batch
algorithm has the intrinsic property of balancing the com­
putation!communication workload such that the dynamic
peer group can quickly begin secure group communication.
This provides fundamental 1II1derstanding about establish­
ing a collaborative group key for a distributed dynamic peer
group.

1. Introduction

With the emergence of many group-oriented distributed
applications such as multi-player games and tele/video­
conferencing, there is a need for security services to provide

• J. Lui was supported in part by the Mainline and RGC Research Grant:
D. Yau was supported in part by the National Science Foundation under
grant numbers CCR-9875742 (CAREER) and EIA-9806741.

group-oriented communication privacy and data integrity.
To provide this form of group communication privacy, it is
important that members of the group can establish a com­
mon secret key for encrypting group communication data.
For example, consider a group of people in a peer-to-peer
ad hoc network having a closed and confidential business
meeting. Since they have not previously agreed upon a
common secret key, communication between group mem­
bers is susceptible to eavesdropping. To solve the problem,
we need a secure distributed group key agreement proto­
col such that the group of people can establish the com­
mon group key for secure and private communication. Note
that this type of key agreement protocols is both distribu­
tive and contributory in nature: each member of the group
contributes its part to the overall group key.

It is important to point out that the type of distributed
group key agreement protocols we study is very differ­
ent from more traditional centralized group key agreement
protocols. Centralized protocols rely on a centralized key
server to efficiently distribute the group key. An excellent
body of work on centralized key distribution protocols ex­
ists [6, 7, 10, II]. In those approaches, group members are
arranged in a logical key hierarchy known as a key tree. Us­
ing the tree topology, it is easy to distribute the group key to
members whenever there is any change in the group mem­
bership (e.g., a new member joins or an existing member
leaves). For distributed key agreement protocols, however,
there is no centralized key server available. This arrange­
ment is justified in many situations - e.g., in a peer-to-peer
or ad hoc network where centralized resources are not read­
ily available. Moreover, an advantage of distributed proto­
cols over the centralized protocols is increased system reli­
ability, because the group key is generated in a shared and
contributory fashion and there is no single point offailure.

In the special case of a communication group having
only two members, these members can create a group key
using the Diffie-Hellman key exchange protocol [2]. In the
protocol, members X and Y use a finite group 9 of order

p and a generator a . They can generate their secret compo-
nents e x and e,,: respectively. Member X (resp., Y) can
compute its public key ae* (resp., a e y) and send it to Y
(resp., X). Since both members know their own exponent,
they can each raise the other party's public key to the ex-
ponent and produce a common group key aexey . Using
the common group key, X and Y can encrypt their data to
prevent eavesdropping by intruders.

In this paper, we consider a dynamic commtlnication
group in which members are located in a distributed fash-
ion. We extend the Diffie-Hellman key exchange protocol to
more than two members in the communication gmup. The
membership of the communication group is dynamic so that
inembers can leave and new members can join the group at
any time. The contributions of our work are:

The key agreement protocol is distributed in nature and
does not require a centralized key server.

The key agreement protocol is contributive - each
member contributes its part to the overall group key.

We illustrate that instead of performing individual
rekeying operations, one can use an interval-based ap-
proach to significantly reduce the computation and
communication costs of maintaining the group key.

We propose three distributed interval-based rekey pro-
tocols. and carry out qualitative and simulation-based
analyses to illustrate their performance merits.

The balance of the paper is organized as follows. In Sec-
tion 2, we provide the background of the Diffie-Hellman
protocol. We explain how it can be extended to a Tree-
Based Group Diffie-Hellman protocol so that it can accom-
modate more than two members in a dynamic peer group. In
Section 3, we present three interval-based distributed algo-
rithms to reduce the computation and communication costs
for maintaining the group key in a dynamic peer group.
We also carry out mathematical analyses to quantify sys-
tem performance according to given performance metrics
when the original Diffie-Hellman tree is a completely bal-
anced tree. In Section 4, we report several experiments that
illustrate the system cost under dynamic joins and leaves,
for various system parameters (e.g., group size, jointleave
probabilities). We discuss related work in Section 5. Sec-
tion 6 concludes.

2. Tree-Based Group Diffie-Hellman Protocol

To efficiently maintain the group key in a dynamic peer
group with more than two members, we use the Tree-Based
Group Diffie-Hellman (TGDH) protocol proposed in [3].
Each member maintains a set of keys. The keys are arranged
in a hierarchical bit~ary tree structure. We assign a node
ID v to every tree node. For a given node v, we associate

a secret (or private) key K, and a blinded (or public) key
BK, . Based on the Diffie-Hellman protocol [2], where all
arithmetics are performed in a group of prime order p with
generator a: the blinded key of node v can be generated by

BK, = aK"modp. (1)

Each leaf node in the tree represents the individual secret
key of a member and is uniquely defined by a group member
A,&. Every member holds all the secret keys along the key
path starting from its associated leaf node up to the root
node. Therefore, the secret key held by the root node is
shared by all the members and is regarded as the group key.
Figure 1 illustrates a possible key tree with six members MI
to MG. For example, member M I holds the keys in nodes
7, 3, 1 and 0. The secret key at node 0 is the group key of
the peer group.

Figure 1. Tree-Based Group Diffie-Hellman

The node ID of the root node is set to 0. Each non-leaf
node v' consists of two child nodes, whose node IDS are
2v' + 1 and 2v' + 2. Based on the Diffie-Hellman protocol,
the secret key of a non-leaf node v' can be generated by the
secret key of one child node of v', and the blinded key of
another child node of v'. Mathematically, we have

K, = (~ 1 < ~ , 1 + ~) ~ ~ ~ ' + 2 m o d p
= (B K ~ , , + ~) ~ ~ ~ ' + ~ mod y
- - CyK2u1+1 K ~ u f + 2 mod p. (2)

Unlike keys at the non-leaf nodes, the secret key at a leaf
node is selected by its associated member in the commu-
nication group. The key selection can be achieved through
a secure pseudo random number generator [8]. Since the
blinded keys are publicly known, every member can com-
pute the keys along its key path to the root node based on
its individual secret key. To illustrate, consider the group
membership in Figure 1 . Every member Mi will generate
its own secret key and all the secret keys along the path to
the root node. For example, member M1 generates the se-
cret key K7 and it can request the blinded key BK8 from
M2, B K 4 from M3, and BIC2 from either M 4 , A15 or MG.
Given Ml ' s secret key K7 and the blinded key B K 8 , M I
can generate the secret key K3 according to Equation (2).
Given the blinded key BIG and the newly generated secret
key K3, M l can generate the secret key K1 based on Equa-
tion (2). Given the secret key K1 and the blinded key BK2 ,

p and a generator a. They can generate their secret compo­
nents ex and ey, respectively. Member X (resp., Y) can
compute its public key a ex (resp., aey

) and send it to Y
(resp., X). Since both members know their own exponent
they can each raise the other party's public key to the ex­
ponent and produce a common group key a exey . Using
the common group key, X and Y can encrypt their data to
prevent eavesdropping by intruders.

In this paper, we consider a dynamic communication
group in which members are located in a distributed fash­
ion. We extend the Diffie-Hellman key exchange protocol to
more than two members in the communication group. The
membership of the communication group is dynamic so that
members can leave and new members can join the group at
any time. The contributions of our work are:

• The key agreement protocol is distributed in nature and
does not require a centralized key server.

• The key agreement protocol is contributive - each
member contributes its part to the overall group key.

• We illustrate that instead of performing individual
rekeying operations, one can use an interval-based ap­
proach to significantly reduce the computation and
communication costs of maintaining the group key.

a secret (or private) key K v and a blinded (or public) key
BKv . Based on the Diffie-Hellman protocol [2], where all
arithmetics are performed in a group of prime order p with
generator a, the blinded key of node v can be generated by

BKv aKvmodp. (I)

Each leaf node in the tree represents the individual secret
key of a member and is uniquely defined by a group member
Mi. Every member holds all the secret keys along the key
path starting from its associated leaf node up to the root
node. Therefore, the secret key held by the root node is
shared by all the members and is regarded as the group key.
Figure I illustrates a possible key tree with six members lVh
to M 6 . For example, member M 1 holds the keys in nodes
7,3, I and O. The secret key at node 0 is the group key of
the peer group.

Figure 1. Tree-Based Group Diffie-Hellman

The node ID of the root node is set to O. Each non-leaf
node v' consists of two child nodes, whose node IDs are
2v l + 1 and 2v' + 2. Based on the Diffie-Hellman protocol,
the secret key of a non-leaf node Vi can be generated by the
secret key of one child node of Vi, and the blinded key of
another child node of Vi. Mathematically, we have

Unlike keys at the non-leaf nodes, the secret key at a leaf
node is selected by its associated member in the commu­
nication group. The key selection can be achieved through
a secure pseudo random number generator [8]. Since the
blinded keys are publicly known, every member can com­
pute the keys along its key path to the root node based on
its individual secret key. To illustrate, consider the group
membership in Figure I. Every member M i will generate
its own secret key and all the secret keys along the path to
the root node. For example, member M 1 generates the se­
cret key K7 and it can request the blinded key BKs from
M 2, BK4 from M 3 , and BK2 from either M 4 , l\1h or M 6 .

Given M1's secret key K 7 and the blinded key BKs, M 1
can generate the secret key K 3 according to Equation (2).
Given the blinded key BK4 and the newly generated secret
key K 3 , Ml can generate the secret key K 1 based on Equa­
tion (2). Given the secret key K 1 and the blinded key BK2,

• We propose three distributed interval-based rekey pro­
tocols, and carry out qualitative and simulation-based
analyses to illustrate their performance merits.

The balance of the paper is organized as follows. In Sec­
tion 2, we provide the background of the Diffie-Hellman
protocol. We explain how it can be extended to a Tree­
Based Group Diffie-Hellman protocol so that it can accom­
modate more than two members in a dynamic peer group. In
Section 3, we present three interval-based distributed algo­
rithms to reduce the computation and communication costs
for maintaining the group key in a dynamic peer group.
We also carry out mathematical analyses to quantify sys­
tem performance according to given performance metrics
when the original Diffie-Hellman tree is a completely bal­
anced tree. In Section 4, we report several experiments that
illustrate the system cost under dynamic joins and leaves,
for various system parameters (e.g., group size, join/leave
probabilities). We discuss related work in Section 5. Sec­
tion 6 concludes.

2. Tree-Based Group Diffie-Hellman Protocol

To efficiently maintain the group key in a dynamic peer
group with more than two members, we use the Tree-Based
Group Diffie-Hellman (TGDH) protocol proposed in [3].
Each member maintains a set of keys. The keys are arranged
in a hierarchical binary tree structure. We assign a node
ID v to every tree node. For a given node v, we associate

(BK2v'+l)K2V'+2 modp

(BK2v'+2)K2V'+1 modp

a K2v '+l K 2v'+2 modp. (2)

M1 can generate the secret key KO at the root. From that
point on. any comn~unication between any members in the
group can be encrypted based on the group key (or secret
key) KO.

To ensure backward and forward confidentiality, rekey-
big is performed whenever there is any change in the group
membership. This includes any new member joining or any
existing member leaving the group. Let us first consider
individual rekeying, meaning that rekeying is carried out
for each single join or leave event. Before the group mem-
bership is changed, a special member called the sponsor
is elected: and the sponsor is responsible for updating the
keys held by the new members (in the join case) or departed
members (in the leave case). We use the convention that the
rightmost member under the subtree rooted at the sibling of
the joinlleave nodes takes the sponsor role. Note that the
existence of sponsors does not violate the requirement of
the decentralized management as the group key generation
still requires the contribution of all members in the group.

Figure 2. Rekeying for single leave

Figure 2 illustrates the event of a member leave event.
Suppose that the member M5 leaves the system, node 11
will be promoted to node 5, and member Mq will be the
sponsor. A44 needs to rekey the secret keys K2 and KO,
and broadcasts the blinded keys BK2 and BK5 to all the
members. Upon receiving the blinded key BK2, M I , M2
and M3 can compute the group key KO. Members M6 and
M y , upon receiving BK5, can compute K2 and then the
group key KO.

Figure 3. Rekeying at a single join

Figure 3 illustrates a new member M8 that wishes to join
the group. has to first determine the insertion node un-
der which M8 can be inserted. To add a node, say v' (or
tree, say T') to the insertion node, a new node, say n', is
first created. Then the subtree rooted at the insertion node
becomes the left child of the node n', and the node v' (or
the root node of the tree Ti) becomes the right child of the

node n'. The node n' will replace the original location of
the insertion node. The insertion node is either the right-
most shallowest position such that the join does not increase
the tree height, or the root node if the tree is initially well
balanced (in this case, the height of the resulting tree will
increase by I). Figure 3 illustrates this concept. The inser-
tion node is node 5 and the sponsor is Ad4. M8 then broad-
casts its blinded key BK12 upon insertion. Given BKI2 ,
M4 rekeys K5, K2 and KO in its local memory, and then
broadcasts the blinded keys BK5 and BK2 to all members
in the group. After receiving the blinded keys from AJ4, all
remaining members can rekey all the keys along their key
paths and obtain the new group key.

Based on the above leaveljoin events in Figures 2 and
3 , it is clear that we can reduce one rekeying operation if
we could simply change the association of node 12 from
M5 to I%&. Interval-based rekeying is thus proposed such
that rekeying is performed on a batch of join and leave re-
quests. Members carry out rekeying operations at regular
rekey inten~als. The motivation is to improve system per-
formance. Security becomes weaker since, for instance, a
departed user could still access data until the next rekeying
interval. However, the tradeoff may be acceptable to prac-
tical applications, since we can adjust the rekeying inter-
val according to application requirements. In the following
section, we describe three interval-based distributed algo-
rithms.

3. Interval-Based Distributed Algorithms

3.1. Description of Algorithms

In this subsection, we present three interval-based dis-
tributed rekeying algorithms. They are the Rebuild algo-
rithm, the Batch algoritlzm and the Queue-batch algorithm.
The use of interval-based rekeying aims to maintain good
rekeying performance, independent of the dynamics of joins
and leaves. The three distributed algorithms are developed
based on the following assumptions:

The key tree of TGDH is used as a foundation of all
the algorithms.

The rekeying operations are carried out at the begin-
ning of every rekey interval. There exists a virtual
queue holding all join and leave requests till the be-
ginning of the next rekey interval.

When a new member sends a join request, it should
also include its individual blinded key.

For simplicity, all clients know the existing key tree
structure and they also know all the blinded keys
within the tree structure.

The group members would elect sponsors to be respon-
sible for computing and broadcasting blinded keys. To

M 1 can generate the secret key K o at the root. From that
point on, any communication between any members in the
group can be encrypted based on the group key (or secret
key) K o.

To ensure backward and forward confidentiality, rekey­
ing is perfonned whenever there is any change in the group
membership. This includes any new member joining or any
existing member leaving the group. Let us first consider
individual rekeying, meaning that rekeying is carried out
for each single join or leave event. Before the group mem­
bership is changed, a special member called the sponsor
is elected, and the sponsor is responsible for updating the
keys held by the new members (in the join case) or departed
members (in the leave case). We use the convention that the
rightmost member under the subtree rooted at the sibling of
the join/leave nodes takes the sponsor role. Note that the
existence of sponsors does not violate the requirement of
the decentralized management as the group key generation
still requires the contribution of all members in the group.

Figure 2. Rekeying for single leave

Figure 2 illustrates the event of a member leave event.
Suppose that the member M s leaves the system, node 11
will be promoted to node 5, and member M 4 will be the
sponsor. 1\1[4 needs to rekey the secret keys K 2 and K o,
and broadcasts the blinded keys BK2 and BKs to all the
members. Upon receiving the blinded key BK2 , M I , M 2

and M3 can compute the group key K o. Members Me and
M7 , upon receiving BKs, can compute K 2 and then the
group key K o.

Figure 3. Rekeying at a single join

Figure 3 illustrates a new member M s that wishes to join
the group. 1\I[s has to first determine the insertion node un­
der which M s can be inserted. To add a node, say v' (or
tree, say T') to the insertion node, a new node, say n', is
first created. Then the subtree rooted at the insertion node
becomes the left child of the node n', and the node v' (or
the root node of the tree T') becomes the right child of the

node n'. The node n' will replace the original location of
the insertion node. The insertion node is either the right­
most shallowest position such that the join does not increase
the tree height, or the root node if the tree is initially well
balanced (in this case, the height of the resulting tree will
increase by I). Figure 3 illustrates this concept. The inser­
tion node is node 5 and the sponsor is .M4 . M s then broad­
casts its blinded key BK12 upon insertion. Given BK12 ,

M 4 rekeys K s, K2 and Ko in its local memory, and then
broadcasts the blinded keys BKs and BK2 to all members
in the group. After receiving the blinded keys from M 4 , all
remaining members can rekey all the keys along their key
paths and obtain the new group key.

Based on the above leave/join events in Figures 2 and
3, it is clear that we can reduce one rekeying operation if
we could simply change the association of node 12 from
M s to Ms. Interval-based rekeying is thus proposed such
that rekeying is performed on a batch of join and leave re­
quests. Members carry out rekeying operations at regular
rekey inten'als. The motivation is to improve system per­
formance. Security becomes weaker since, for instance, a
departed user could still access data until the next rekeying
interval. However, the tradeoff may be acceptable to prac­
tical applications, since we can adjust the rekeying inter­
val according to application requirements. In the following
section, we describe three interval-based distributed algo­
rithms.

3. Interval-Based Distributed Algorithms

3.1. Description of Algorithms

In this subsection, we present three interval-based dis­
tributed rekeying algorithms. They are the Rebuild algo­
rithm, the Batch algorithm and the Queue-batch algorithm.
The use of interval-based rekeying aims to maintain good
rekeying performance, independent of the dynamics of joins
and leaves. The three distributed algorithms are developed
based on the following assumptions:

• The key tree of TGDH is used as a foundation of all
the algorithms.

• The rekeying operations are carried out at the begin­
ning of every rekey interval. There exists a virtual
queue holding all join and leave requests till the be­
ginning of the next rekey interval.

• When a new member sends a join request, it should
also include its individual blinded key.

• For simplicity, all clients know the existing key tree
structure and they also know all the blinded keys
within the tree structure.

• The group members would elect sponsors to be respon­
sible for computing and broadcasting blinded keys. To

obtain the blinded keys of the renewed nodes (a node
is said to be renewed if it is a non-leaf node and its as-
sociated keys are updated), the key paths of the spon-
sors should contain those renewed nodes. Since the
interval-based rekey ing operations involve nodes lying
on more than one key paths, more than one sponsors
may be elected. Also, a renewed node may be rekeyed
by more than one sponsor. In this case, we assume
that the sponsors can coordinate with one another such
that the blinded keys of all the renewed nodes are only
broadcast once.

We adopt the following notations for the three distributed
algorithms. Let T denote the existing key tree. Assume
that L 2 0 existing members M' = (Ad:, . . . , ML) wish to
leave, and J 2 0 new members ~j = (M ; , . . . , M:) wish
to join the communication group within a rekey interval.

3.1.1. Rebuild Algorithm
The motivation for the rebuild algorithm is to minimize

the final tree height so that the rekeying operations for each
group member can be reduced. At the beginning of every
rekey interval: we reconstruct the whole key tree with all
existing members who remain in the group, together with
the newly joining members. The resulting tree would be a
cornplete tree. The pseudo-code of the Rebuild algorithm to
be performed by every member is shown below:

Rebuild (T . M ~ , J , M', L)
1. obtain all members from T and store them in M ' ;
2. remove the L leaving members in M' from M ' ;
3. add the J new members in MJ to M ' ;
4. create a new binary tree T' based on members in M' and set

T = T ' ;
5. rekey the key nodes and broadcast the new blinded keys in T ;

Figure 4 illustrates the scenario that members Ad2, M5
and M7 wish to leave the communication group and a new
member Ma wishes to join the group. The resulting key tree
has five members and all the nodes need to be renewed. The
sponsors will include all the five members.

M,,M,,M, leave

M l ~ ~ l M 3 1 ~ j

M, M,

Figure 4. Example of the Rebuild algorithm

3.1.2. Batch Algorithm
The Batch algorithm is based on the centralized ap-

proach in [6], except that we are now applying it to a dis-
tributed system without a centralized key server and all

clients contribute to the composition of the group key. The
pseudo code of the Batch algorithm is given as:

Batch (T , M 3 . J , M', L)
I . i f (L = = O) { / * pure join case * /
2. create a new tree T' based on new members in M j ;
3. either (a) add T' to the shallowest node of T (which need

not be the leaf node) such that the merge would not in-
crease the height of the result tree, or (b) add T' to the root
node of T if the merge to any node of T would increase
the tree height:

4.)e l se { / * L > 0 * /
5. sort M' in an ascending order of the associated node

IDS of the members and store the results in M'." =
(Mi" , . . . , M i S) ;

6. i f (L 2 J) {
7. / * more members want to leave than

join * /
8. if (J > 0)
9. replace the departed nodes of (Mi2', . . - , M$') with

J loined nodes;
lo. i f (L - J > O) {
1 I . remove remaining L - J leaving leaf nodes to the

parent node:
12. promote the siblings of the leaving leaf nodes;

13 1
14) else {
15. / * more newly joining members than

leaving members * /
16. divide MJ into L subgroups G = (G I , . . . , G L) such

that the fi rst J m o d L subgroups (G, . - . , G J mod L)
contain + 1 new members and the rest contain
new members;

17. create L subtrees (T;, . . . ,TL) for the subgroups G ;
18. replace the departed nodes of (Mi3', . . . , M::,,, .)

with the roots of (T l , . . . ,T; ,,, .) and the remaining
departed nodes with the roots of remaining subtrees;

19.)

21. elect the members to be sponsors if (1) they are new mem-
bers, or (2) the rightmost members of the subtrees rooted at
the siblings of the departed nodes or replaced nodes in T ;

22. if (sponsor)
23. rekey the key nodes and broadcast the new blinded keys;

Notice that the sponsors may have to wait for the blinded
keys on another key path in order to proceed upwards to
rekey the nodes. Finally, all the members obtain the neces-
sary blinded keys to compute the new group key KO.

The Batch algorithm is illustrated with two examples. In
Figure 5 , we illustrate the case L > J > 0 of the Batch
algorithm. Suppose M2, M5 and M7 leave and a new mem-
ber Ma wishes to join. The following steps will be carried
out: (i) Ma broadcasts its join request, including its indi-
vidual blinded key. (ii) The leaf node 6 associated with M7
is replaced by the node of Ma, and the leaf nodes 8 and
24 are removed. Nodes 7 and 23 are promoted to nodes 3

obtain the blinded keys of the renewed nodes (a node
is said to be renewed if it is a non-leaf node and its as­
sociated keys are updated), the key paths of the spon­
sors should contain those renewed nodes. Since the
interval-based rekeying operations involve nodes lying
on more than one key paths, more than one sponsors
may be elected. Also, a renewed node may be rekeyed
by more than one sponsor. In this case, we assume
that the sponsors can coordinate with one another such
that the blinded keys of all the renewed nodes are only
broadcast once.

We adopt the following notations for the three distributed
algorithms. Let T denote the existing key tree. Assume
that L :2: 0 existing members M 1 = (Mf, ... ,Mi) wish to

leave, and J :2: 0 new members Mj = (M/,.··, M~) wish
to join the communication group within a rekey interval.

3.1.1. Rebuild Algorithm

The motivation for the rebuild algorithm is to minimize
the final tree height so that the rekeying operations for each
group member can be reduced. At the beginning of every
rekey interval, we reconstruct the whole key tree with all
existing members who remain in the group, together with
the newly joining members. The resulting tree would be a
complete tree. The pseudo-code of the Rebuild algorithm to
be performed by every member is shown below:

Rebuild (T. Mi, J, M I
, L)

I. obtain all members from T and store them in M';
2. remove the L leaving members in M I from M';
3. add the J new members in Mj to M';
4. create a new binary tree T' based on members in M' and set

T == T':
5. rekey the key nodes and broadcast the new blinded keys in T;

Figure 4 illustrates the scenario that members M 2 , M 5

and M 7 wish to leave the communication group and a new
member M s wishes to join the group. The resulting key tree
has five members and all the nodes need to be renewed. The
sponsors will include all the five members.

M2 ,M5 ,M., 1eave,
MB joins

Figure 4. Example of the Rebuild algorithm

3.1.2. Batch Algorithm

The Batch algorithm is based on the centralized ap­
proach in [6], except that we are now applying it to a dis­
tributed system without a centralized key server and all

clients contribute to the composition of the group key. The
pseudo code of the Batch algorithm is given as:

Batch (T, Mj. J, M I
, L)

I. if (L ==== 0) { / * pure J Oln case * /
2. create a new tree T' based on new members in Mi;
3. either (a) add T' to the shallowest node of T (which need

not be the leaf node) such that the merge would not in­
crease the height of the result tree, or (b) add T' to the root
node of T if the merge to any node of T would increase
the tree height:

4. } else { / * L > 0 * /
5. sort M I in an ascending order of the associated node

IDs of the members and store the results in MI,s ==
(M:'s, ... , MiS);

6. if (L 2: J) {
7. /* more members want to leave than

join */
8. if(J > 0)
9. replace the departed nodes of (M:'s, ... , M~'S) with

J joined nodes;
10. if(L - J> OJ{
11. remove remaining L - J leaving leaf nodes to the

parent node:
12. promote the siblings of the leaving leaf nodes;
13 }
14 } else {
15. /* more newly joining members than

leaving members */
16. divide Mj into L subgroups G == (G1, , GL) such

that the fi rst J mod L subgroups (en, , G J mod L)
contain Li J+ 1 new members and the rest contain Li J
new members;

17. create L subtrees (T{,· .. , T£) for the subgroups G;

18. replace the departed nodes of (M:'s, ... , M~'~nod L)
with the roots of (T{, ... ,T~ mod L) and the remaining
departed nodes with the roots of remaining subtrees;

19. }
20. }
21. elect the members to be sponsors if (I) they are new mem­

bers, or (2) the rightmost members of the subtrees rooted at
the siblings of the departed nodes or replaced nodes in T;

22. if (sponsor)
23. rekey the key nodes and broadcast the new blinded keys;

Notice that the sponsors may have to wait for the blinded
keys on another key path in order to proceed upwards to
rekey the nodes. Finally, all the members obtain the neces­
sary blinded keys to compute the new group key K o.

The Batch algorithm is illustrated with two examples. In
Figure 5, we illustrate the case L > J > 0 of the Batch
algorithm. Suppose M 2 , M 5 and M7 leave and a new mem­
ber M s wishes to join. The following steps will be carried
out: (i) Ms broadcasts its join request, including its indi­
vidual blinded key. (ii) The leaf node 6 associated with M 7
is replaced by the node of M s, and the leaf nodes 8 and
24 are removed. Nodes 7 and 23 are promoted to nodes 3

and I I , respectively. (iii) M1, M 4 , M6 and M8 are selected
to be the sponsors. M1 rekeys secret keys K 1 and KO and
Mq rekeys K 5 , K 2 and KO. Adl then broadcasts BIC1 and
M4 broadcasts B I G and B K 2 . M6 and though hav-
ing the sponsor role, do not need to broadcast any blinded
keys as M4 has already broadcast this information. (iv) Fi-
nally, every member can compute the group key based on
the received blinded keys.

Figure 5. Example 1 of the Batch algorithm
whereL> J > O

Figure 6 illustrates the case J > L > 0 of the Batch
algorithm. Suppose Ma, Ad9 and M I o join, and M2 and
M7 leave. The rekeying process is: (i) Ada, M g , and Adlo
broadcast their join requests together with their own indi-
vidual blinded key. (ii) Ad8 and Mg form the subtree Ti
and Mlo is the only member of the subtree Ti. The root of
Ti replaces node 6 and the root of Ti replaces node 8. (iii)
The sponsors will be M I , Ad6, Adg and Adlo. (iv) M8
and Ad9 first need to compute the secret key Kg, and either
one of them can compute and broadcast the new blinded key
B K 6 . (v) M I (or Mlo) rekeys I(3 and K 1 and broadcasts
B I G and B K l . n/ls rekeys 1C2 and broadcasts B K 2 . (vi)
Finally, all the members can compute the group key KO.

Figure 6. Example 2 of the Batch algorithm
where J > L > 0

3.1.3. Queue-batch Algorithm

The previous approaches perform rekeying at the begin-
n ing of every rekey interval, which can result in a high pro-
cessing load during the update instance and thereby delay
the start of the secure group communication. The process-
ing load includes the computation cost of the exponentiation
operations in generating the keys, as well as the communi-
cation cost of broadcasting all the blinded keys to all mem-

bers in the communication group. We propose a more ef-
fective algorithm which we call the Queue-batcl7 algorithm.
The intuition of this algorithm is to reduce the rekeying load
by pre-processing the joining members in the virtual queue
during the idle rekey interval.

The Queue-batch algorithm is divided into two phases,
namely the Queue-subtree fonnation phase and the Queue-
merge phase. The first phase occurs whenever a new mem-
ber joins the communication group during the rekey inter-
val. In this case, we append this new member in a tempo-
rary key tree T'. The second phase occurs at the beginning
of every rekey interval and we merge the temporary tree T'
(which contains all newly joining members) to the existing
key tree T . Specifically:

Queue-subtree (T')
1. if (a new member joins) {
2. if (T' == NULL) / * no new members i n T ' * /
3. create a new tree T' with the only one new member;
4. else { / * there a re new members i n T ' * /
5. fi nd the insertion node;
6. add the new member to T ' ;
7. elect the rightmost member under the subtree rooted

at the sibling of the joining node to be the sponsor;
8. if (sponsor)
9. rekey the key nodes and broadcast the new blinded

keys to the communication group;
lo. }
11 . }

Queue-merge (T , T ' , M', L)
I . i f (L = = O) (/ * there a re no leave * /
2. add T' to either (a) the shallowest node (which need not

be the leaf node) of T such that the merge would not
increase the resulting tree height, or (b) the root node
of T if the merge to any locations would increase the
resulting tree height;

3. } else / * there a r e leaves * /
4. add T' to the highest leave position of the key tree T ;
5. elect members to be sponsors if they are (a) the rightmost

member of the subtree rooted at the sibling nodes of the de-
parted leaf nodes in T , or (b) the rightmost member of T ' ;

6. if (sponsor)
7. rekey the key nodes and broadcast the new blinded

keys to the communication group;

The Queue-batch algorithm is illustrated in Figure 7!
where members Ma, Mg and Mlo wish to join the com-
munication group, while M2 and M7 wish to leave. Then
the rekeying process is as follows: (i) At the Queue-subtree
fonnation phase, the three new members &I8, M g , and Mlo
would first form a tree T' . Mlo, in this case, will be elected
as the sponsor. (ii) At the Queue-merge phase, the tree T'

and II, respectively. (iii) M 1 , M 4 , M 6 and Ms are selected
to be the sponsors. M 1 rekeys secret keys K 1 and K o and
M 4 rekeys K 5 , K 2 and K o. M 1 then broadcasts BK1 and
M 4 broadcasts BK5 and BK2 . M 6 and Ms, though hav­
ing the sponsor role, do not need to broadcast any blinded
keys as M 4 has already broadcast this information. (iv) Fi­
nally, every member can compute the group key based on
the received blinded keys.

/ 6~i M2 ,M5 ,M, le:v~•.~~; \

\.~" Me joins: :
M, \MliS/

Figure 5. Example 1 of the Batch algorithm
where L > J> 0

Figure 6 illustrates the case J > L > 0 of the Batch
algorithm. Suppose Ms, M 9 and M 10 join, and M 2 and
M 7 leave. The rekeying process is: (i) M s, M 9 , and kho
broadcast their join requests together with their own indi­
vidual blinded key. (ii) Ms and M9 form the subtree T{
and M 10 is the only member of the subtree T~. The root of
T{ replaces node 6 and the root of T~ replaces node 8. (iii)
The sponsors will be M 1, M 6 , M s, M 9 and M 1O . (iv) Ms
and M 9 first need to compute the secret key K 6 , and either
one of them can compute and broadcast the new blinded key
BK6 . (v) M 1 (or M 1O) rekeys K 3 and K 1 and broadcasts
BK3 and BK1 . M 6 rekeys K 2 and broadcasts BK2 . (vi)
Finally, all the members can compute the group key K o.

Figure 6. Example 2 of the Batch algorithm
where J > L> 0

3.1.3. Queue-batch Algorithm

The previous approaches perform rekeying at the begin­
ning of every rekey interval, which can result in a high pro­
cessing load during the update instance and thereby delay
the start of the secure group communication. The process­
ing load includes the computation cost of the exponentiation
operations in generating the keys, as welJ as the communi­
cation cost of broadcasting all the blinded keys to all mem-

bers in the communication group. We propose a more ef­
fective algorithm which we call the Queue-batch algorithm.
The intuition of this algorithm is to reduce the rekeying load
by pre-processing the joining members in the virtual queue
during the idle rekey interval.

The Queue-batch algorithm is divided into two phases,
namely the Queue-subtree formation phase and the Queue­
merge phase. The first phase occurs whenever a new mem­
ber joins the communication group during the rekey inter­
val. In this case, we append this new member in a tempo­
rary key tree T I

. The second phase occurs at the beginning
of every rekey interval and we merge the temporary tree T I

(which contains all newly joining members) to the existing
key tree T. Specifically:

Queue-subtree (T')
I. if (a new member joins) {
2. if (T' == NULL) / * no new members in T' * /
3. create a new tree T' with the only one new member:
4. else { / * there are new members in T' * /
5. Ii nd the insertion node;
6. add the new member to T';
7. elect the rightmost member under the subtree rooted

at the sibling of the joining node to be the sponsor;
8. if (sponsor)
9. rekey the key nodes and broadcast the new blinded

keys to the communication group;
lO. }
11. }

Queue-merge (T, T', M 1
, L)

l. if(L==O){ /* there are no leave */
2. add T J to either (a) the shallowest node (which need not

be the leaf node) of T such that the merge would not
increase the resulting tree height, or (b) the root node
of T if the merge to any locations would increase the
resulting tree height;

3. } else / * there are leaves * /
4. add T' to the highest leave position of the key tree T;
5. elect members to be sponsors if they are (a) the rightmost

member of the subtree rooted at the sibling nodes of the de­
parted leaf nodes in T, or (b) the rightmost member of T';

6. if (sponsor)
7. rekey the key nodes and broadcast the new blinded

keys to the communication group;

The Queue-batch algorithm is illustrated in Figure 7,
where members Ms, M 9 and M 10 wish to join the com­
munication group, while M 2 and M 7 wish to leave. Then
the rekeying process is as follows: (i) At the Queue-subtree
formation phase, the three new members kIs , M 9 , and M 10
would first foml a tree T'. M 10 , in this case, will be elected
as the sponsor. (ii) At the Queue-merge phase, the tree T'

Figure 7. Queue-batch: the Queue-merge phase

will be added at the highest departed position, which is at
node 6. Also, the blinded key of the root node of T', which
is B K s , is broadcast by M l o . (iii) The sponsors, M i , Ad6,
and Mlo, are elected. (iv) M l rekeys the secret key IC1 and
broadcasts the blinded key BK1: M6 rekeys the secret key
K2 and broadcasts the blinded key B K 2 . (v) Finally, all
members can compute the group key.

3.2. Performance Evaluation

In this section, we present the mathematical analysis of
the three proposed algorithms. We consider two perfor-
mance measures, namely:

I . A~~erage iluinber of r e t ~ w e d nodes: a node is said to be
reriewed if it is a non-leaf node and its associated keys
are renewed. This metric provides a measure of the
communicatioii cost since new blinded keys of the re-
newed nodes have to be broadcast to the whole group.

2. Average rzurnber of e~~orzetitiation operations: this
metric provides a nieasure of the coinputation load for
all members in the communication group.

For simplicity, we assume the following in the analysis:

The existing key tree T is a completely balanced tree
before the interval-based rekeying event.

Each member has a homogeneous leave probability.

The number of blinded key computations simply
equals that of renewed nodes, provided that the blinded
key of each renewed node is broadcast only once.

For the mathematical analysis, let N be the number of
members originally in the system, L (where L 5 N) be
the number of members which wish to leave the system,
and J > 0 be the number of new members which wish to
join the communication group. Let T denote the existing
tree which contains N members. The level of a node v is
1 = Llog2(v+ I)] , where v is the node ID, and the maximum
level of T is h. Based on the first assumption, we know that
N = 2h. Also, let Ralg be the number of renewed nodes
and &,lg be the number of exponentiations for the particular
algorithm alg. The performance measure Ea19 is composed
of two parts: &ilg and &,big, which represent the number
of exponentiations of calculating the secret keys (which is

done by all members) and the number of exponentiations
of calculating the blinded keys (which is done by sponsors
only). We have

Based on the last assumption. we know the number of
blinded key computations is

In the following analyses, we only consider the number
of secret key computations &,Sig .

3.2.1. Analysis of the Rebuild Algorithm

Given N , L and J, we can obtain the exact expressions
for the two performance measures RReblLild and
even if the existing key tree T is not completely balanced
originally.

The resulting number of members is N* = AT- L + J >
0. Thus, the number of renewed nodes (i.e. the number of
non-leaf nodes) is

For EReblLiid(Nf). we find that when N* 5 1,
ERebuild(Nf) = 0. If Nf E (2h'-1, 2h'] for hr > 1 where
h' = Llog2(Nf - 1) J + 1, we have

&AebTLild(Nf) = (number of members at level h') x h'

+ (number of members at level h' - 1) x (h' - 1)
- - 2 (N* -2L'0gz(N*-1)J)(~log2(~* - 1)J + 1)

+ (N * - ~ (N * - ~ L ' o ~ z (~ ' - ~) J)) Llog2(N* - 1)J
= NfLlog2(N* - 1)J +2~*-2(L'ogz(N*-l)J+l). (6)

3.2.2. Analysis of the Batch Algorithm

In analyzing the performance of the Batch algorithm, we
consider the following five cases. Note that when L > 0, the
performance metrics will depend on the membership leave
positions and exact metrics cannot be obtained. Therefore,
whenever L > 0, we derive the expected performance mea-
sures. We also define RaLg,, and &,lg,, be the two perfor-
mance measures under condition c. We also adopt the con-
vention that the combination (:) equals 0 if n < 0, r < 0
or n < r . Due to limited space, readers can refer to [5] for
detailed mathematical derivation and results.

3.2.3. Analysis of Queue-batch Algorithm

The main idea of the Queue-batch algorithm exploits the
idle rekey interval to pre-process certain rekeying opera-
tions. When we compare its performance with the Rebuild
or Batch algorithms, we only need to consider the rekey op-
erations occurring at the beginning of each rekey interval.

Figure 7. Queue-batch: the Queue-merge phase

done by all members) and the number of exponentiations
of calculating the blinded keys (which is done by sponsors
only). We have

(3)

Based on the last assumption, we know the number of
blinded key computations is

In the following analyses, we only consider the number
of secret key computations [~lg'

3.2.1. Analysis of the Rebuild Algorithm

Given N, Land J, we can obtain the exact expressions
for the two performance measures nRebui.ld and [Rebuild,

even if the existing key tree T is not completely balanced
originally.

The resulting number of members is N* = N -L+J:::::
O. Thus, the number of renewed nodes (i.e. the number of
non-leaf nodes) is

For [Rebuild(N*), we find that when N* :S 1,
[Rebuild(N*) = O. If N* E (2 h'-1,2 h'] for hI::::: 1 where
hI = llog2(N* - l)j + 1, we have

[Rebuild(N*) = (number of members at level hI) x hI

+ (number of members at level hI - 1) X (hI - 1)

= 2 (N*-2l1og2(N'-llJ)(llog2(N* -l)j + 1)

+ (N*-2(N*-2l1og2(W-llJ))llog2(N* -l)j

= N* llog2(N* - l)j +2N*_2(llog2(W- 1lJ+i). (6)

will be added at the highest departed position, which is at
node 6. Also, the blinded key of the root node of T I

, which
is BK6 , is broadcast by M IO · (iii) The sponsors, ~Ml, M 6 ,

and M IO , are elected. (iv) M 1 rekeys the secret key K 1 and
broadcasts the blinded key BK1 , M 6 rekeys the secret key
K 2 and broadcasts the blinded key BK2 . (v) Finally, all
members can compute the group key.

3.2. Performance Evaluation

In this section, we present the mathematical analysis of
the three proposed algorithms. We consider two perfor­
mance measures, namely:

l. Average /lumber ofrenewed nodes: a node is said to be
renewed if it is a non- leaf node and its associated keys
are renewed. This metric provides a measure of the
communication cost since new blinded keys of the re­
newed nodes have to be broadcast to the whole group.

2. Average number of exponentiation operations: this
metric provides a measure of the computation load for
all J!lembers in the communication group.

For simplicity, we assume the following in the analysis:

• The existing key tree T is a completely balanced tree
before the interval-based rekeying event.

n alg .

{ ~*-1
if N* = 0,
otherwise.

(4)

(5)

• Each member has a homogeneous leave probability.

• The number of blinded key computations simply
equals that of renewed nodes, provided that the blinded
key of each renewed node is broadcast only once.

For the mathematical analysis, Jet N be the number of
members originally in the system, L (where L :S N) be
the number of members which wish to leave the system,
and J ::::: 0 be the number of new members which wish to
join the communication group. Let T denote the existing
tree which contains N members. The level of a node v is
1= llog2(v+1)j, where v isthenodeID,and the maximum
level ofT is h. Based on the first assumption, we know that
N = 2h . Also, let n alg be the number of renewed nodes
and [alg be the number of exponentiations for the particular
algorithm alg. The performance measure [alg is composed
of two parts: [~Ig and [~Ig, which represent the number
of exponentiations of calculating the secret keys (which is

3.2.2. Analysis of the Batch Algorithm

In analyzing the performance of the Batch algorithm, we
consider the following five cases. Note that when L > 0, the
performance metrics will depend on the membership leave
positions and exact metrics cannot be obtained. Therefore,
whenever L > 0, we derive the expected performance mea­
sures. We also define nalg,c and [alg,c be the two perfor­
mance measures under condition c. We also adopt the con­
vention that the combination (~) equals 0 if n < 0, r < 0
or n < r. Due to limited space, readers can refer to [5] for
detailed mathematical derivation and results.

3.2.3. Analysis of Queue-batch Algorithm

The main idea of the Queue-batch algorithm exploits the
idle rekey interval to pre-process certain rekeying opera­
tions. When we compare its performance with the Rebuild
or Batch algorithms, we only need to consider the rekey op­
erations occurring at the beginning of each rekey interval.

When J = 0, Queue-batch is equivalent to Batch in
the pure leave scenario. For J > 0: the number of re-
newed nodes in Queue-batch during the Queue-merge phase
is equivalent to that of Batch when J = 1. Thus, the ex-
pected number of renewed nodes is

- L , if J = 0 and L > 0

if J > 0 and L > 0.

Also, the expected number of exponentiations when J >
0 for Queue-batch is given by

E[E~atch ,L> J=o], i f J = O a n d L > O
EIEBatch.J=l and L>O] - + dJ:

if J > Oand L > 0.

(8)

For J > 0 and L > 0, assume the new subtree is at-
tached to a node at some level d. We first decrement d from
E[EBatch, J=l and L>o] to exclude the secret key computa-
tions of the leaf node which is now replaced by the root
node of the new subtree. We then add d J to account for the
secret key computations done by these new J members.

The value d is the level of the highest node that has all
its descendents departed. Instead of computing the expected
value of d, we can find the upper bound value of d, which
occurs when the leaving leaf nodes are evenly distributed in
the key tree. Thus, d is given by

4. Experiments

In the previous section, we quantify the performance
measures by assuming that the existing tree is completely
balanced. In this section, we perform a more elaborate per-
formance study by investigating the costs of exponentia-
tions and renewed nodes of the three proposed algorithms
under different experimental settings. The experiments as-
sume a finite population of 1024 users. Out of these 1024
users, there are 512 members originally in the communica-
tion group at the beginning of each experiment. We assume
that potential members outside the group have a tendency

to join the group with the same join probability. Similarly,
members within the group have a fixed leave probability
of leaving the group. We let p~ and p~ denote the join and
leave probabilities, respectively. The performance measures
include the average number of renewed nodes E[Rnr,] and
the average number of exponentiations EIEalS] as defined
in Section 3.2.

Experiment 1: (Evaluation based on mathematical
models). This experiment evaluates the metrics of the three
interval-based algorithms based on the mathematical mod-
els presented in Section 3.2. We start with a well-balanced
key tree involving 5 12 members and then obtain the metrics
under different values of joins and leaves (i.e. J and L).

Figure 8 and 9 illustrate the average number of exponen-
tiations and average number of renewed nodes under difier-
ent numbers of joining and leaving members. From these
figures? we observe that the Queue-batch algorithm outper-
forms the other two interval-based algorithm in all cases and
there is a significant computatiodcommunicationreduction
when the peer group is very dynamic (i.e., high number of
members who wish to join or leave the group).

Experiment 2: (Average analysis of a finite popula-
tion with varying join probabilities). The previous exper-
iment studies the case where the original tree is a balanced
key tree. In this experiment, we further examine the case
when the key tree becomes unbalanced after many intervals
of join and leave events. We vary the join probability p~ to
be 0.25,0.5: and 0.75 and evaluate the average performance
measures of the three algorithms under various leave prob-
abilities. The results are illustrated in Figures 10 and 11.
From these figures? we observe that Queue-batch outper-
forms the other two algorithms in terms of the costs of expo-
nentiations and renewed nodes in most cases. The exception
is that Queue-batch needs more exponentiations than Batch
when the leave probability is low (smaller than 0.2). The
reason is that attaching the subtree of new members to an
existing tree with few leaves may make the key tree unbal-
anced, leading to more computations in subsequent rekey
intervals.

Moreover, the performance of Rebuild is the worst when
p~ is lowt but approaches that of Batch when p~ is high
(e.g., they have similar average numbers of exponentiations
and average numbers of renewed nodes when p~ is higher
than 0.6 and 0.8, respectively). Nevertheless, Queue-batch
outperforms the other two algorithms at difierentjoidleave
probabilities. This shows that the pre-processing of the join
requests in Queue-batch can significantly reduce the com-
putation and communication loads at the rekey intervals.

Experiment 3: (Instantaneous performance mea-
sures of a finite population). This experiment compares
the instantaneous performance measures of the Batch and
Queue-batch algorithmsover 300 rekey intervals (we ignore
the rebuild algorithm because it performs the worst among

Also, the expected number of exponentiations when J >
ofor Queue-batch is given by

When J = 0, Queue-batch is equivalent to Batch in
the pure leave scenario. For J > 0, the number of re­
newed nodes in Queue-batch during the Queue-merge phase
is equivalent to that of Batch when J = 1. Thus, the ex­
pected number of renewed nodes is

E[EQueue-batch]

{

N + J, if J > 0 and L = 0
= E[EBatch,L>J=O], if J = 0 and L > 0

E[EBatch,J=1 and L>O] - d + dJ,
if J > 0 and L > O.

(8)

E [R.Queue - batch]

1, if J > 0 and L = 0

",h-1 21 [1 _ (N_;:/2
1
)] _ L. if J = 0 and L > 0

LJl=O (~) ,

",h-I 21 [1 _(N_;:/2
1
)] _ (L _ 1)

LJl=O (~) ,

if J > 0 and L > O.

(7)

to join the group with the same join probability. Similarly,
members within the group have a fixed leave probability
of leaving the group. We let PJ and PL denote the join and
leave probabilities, respectively. The performance measures
include the average number of renewed nodes E[Ralg] and
the average number of exponentiations E[Ea1g] as defined
in Section 3.2.

Experiment 1: (Evaluation based on mathematical
models). This experiment evaluates the metrics of the three
interval-based algorithms based on the mathematical mod­
els presented in Section 3.2. We start with a well-balanced
key tree involving 512 members and then obtain the metrics
under different values of joins and leaves (i.e. J and L).

Figure 8 and 9 illustrate the average number of exponen­
tiations and average number of renewed nodes under differ­
ent numbers of joining and leaving members. From these
figures, we observe that the Queue-batch algorithm outper­
forms the other two interval-based algorithm in all cases and
there is a significant computation/communication reduction
when the peer group is very dynamic (i.e., high number of
members who wish to join or leave the group).

Experiment 2: (Average analysis of a finite popula­
tion with varying join probabilities). The previous exper­
iment studies the case where the original tree is a balanced
key tree. In this experiment, we further examine the case
when the key tree becomes unbalanced after many intervals
of join and leave events. We vary the join probability PJ to
be 0.25, 0.5, and 0.75 and evaluate the average performance
measures of the three algorithms under various leave prob­
abilities. The results are illustrated in Figures 10 and II.
From these figures, we observe that Queue-batch outper­
forms the other two algorithms in terms of the costs of expo­
nentiations and renewed nodes in most cases. The exception
is that Queue-batch needs more exponentiations than Batch
when the leave probability is low (smaller than 0.2). The
reason is that attaching the subtree of new members to an
existing tree with few leaves may make the key tree unbal­
anced, leading to more computations in subsequent rekey
intervals.

Moreover, the performance of Rebuild is the worst when
PL is low, but approaches that of Batch when PL is high
(e.g., they have similar average numbers of exponentiations
and average numbers of renewed nodes when PL is higher
than 0.6 and 0.8, respectively). Nevertheless, Queue-batch
outperforms the other two algorithms at different join/leave
probabilities. This shows that the pre-processing of the join
requests in Queue-batch can significantly reduce the com­
putation and communication loads at the rekey intervals.

Experiment 3: (Instantaneous performance mea­
sures of a finite population). This experiment compares
the instantaneous performance measures of the Batch and
Queue-batch algorithms over 300 rekey intervals (we ignore
the rebuild algorithm because it performs the worst among

(9)
ifN>L
ifN=L.

d = { ~log2(N - L)J + 1

4. Experiments

For J > 0 and L > 0, assume the new subtree is at­
tached to a node at some level d. We first decrement d from
E[EBatch.J=1 and L>O] to exclude the secret key computa­
tions of the leaf node which is now replaced by the root
node of the new subtree. We then add dJ to account for the
secret key computations done by these new J members.

The value d is the level of the highest node that has all
its descendents departed. Instead of computing the expected
value of d, we can find the upper bound value of d, which
occurs when the leaving leaf nodes are evenly distributed in
the key tree. Thus, d is given by

In the previous section, we quantify the performance
measures by assuming that the existing tree is completely
balanced. In this section, we perform a more elaborate per­
formance study by investigating the costs of exponentia­
tions and renewed nodes of the three proposed algorithms
under different experimental settings. The experiments as­
sume a finite population of J024 users. Out of these 1024
users, there are 512 members originally in the communica­
tion group at the beginning of each experiment. We assume
that potential members outside the group have a tendency

the three algorithms). We consider the cases with different
values of pJ and p~ to represent different mobility charac-
teristics of the peer group.

Figure 12 illustrates the instantaneous number of expo-
nentiations at different values of p ~ and p ~ . We note that
when the communication group has a high leave probabil-
ity, Queue-batch significantly outperforms Batch. Figure 13
illustrates the instantaneous number of renewed nodes. It
shows that Queue-batch has a much lower cost in renewing
nodes, as compared to Batch. This implies that Queue-batch
can reduce the communication cost significantly.

5. Related Work

Wong er al. [I I] and Wallner er 01. 1 101 independently
proposed the key tree approach to secure group communi-
cations. They suggested to associate keys in a hierarchical
tree and rekey at every join or leave event. Later, the au-
thors in [6, 7, 121 introduced the concept of batch rekeying
to enhance system efficiency since the rekeying workload
is independent of membership dynamics. All the above ap-
proaches rely on a centralized key server, which is respon-
sible for generating and distributing new keys.

The authors in [I , 9, 3, 41 extended the Diffie-Hellman
protocol [2] to group key agreement schemes for secure
communications in a peer-to-peer network. Burmester er
al. [I] proposed a computation-efficient protocol at the ex-
pense of high communication overhead. Steiner et nl. [9]
developed Cliques. in which every member introduces its
key component into the result generated by its preceding
member and passes the new result to its following mem-
ber. Cliques is efficient in rekeying for leave or partition
events, but imposes a high workload on the last member in
the chain. Kim er a/. [3] proposed the Tree-Based Group
Diffie-Hellman (TGDH) to arrange keys in a tree struc-
ture. Every member only needs to hold the keys along
its key path, implying that the rekeying workload is dis-
tributed to all members. The authors also suggested a vari-
ant of TGDH called STR which minimizes the communi-
cation overhead by trading off the computational complex-
ity [4]. All the above schemes are contributor)^, meaning
that key generation is performed by all members and hence
avoids the single-point-of-failure problem in the centralized
approach. While the scheme in [I] is independent of mem-
bership change, the rest of the schemes [9, 3 , 4] suggest to
perform rekeying at single join, leave, merge or partition
events. Our paper enhances the scheme in [3] to support
rekeying involving a batch of join and leave events.

6. Conclusion

We have considered several distributed collaborative key
agreement protocols for dynamic peer groups. The key
agreement setting is performed wherein there is no cenrrnl-
ized key server to maintain or distribute the group key. We

show that one can use the Tree-Based Group Diffie-Hellman
protocol to achieve such distributive and collaborative key
agreement. To reduce the rekey complexity, we propose to
use an interval-based rekey approach so that we can group
multiple joinlleave requests and process them at the same
time. In particular, we show that the Queue-batch algorithm
can significantly reduce both computational and communi-
cation costs. This reduction enables a more efficient way to
manage secure group communication.

References

[I] M. Burmester and Y. Desmedt. A secure and efficient con-
ference key distribution system. In Advances ;ti Cnprologjl-
EUROCRYPT '94, volume 950 of Lecture Notes in Computer
Science, pages 275-286. Springer-Verlag, 1995.

[2] W. Diffi e and M. Hellman. New directions in cryptography.
lEEE Tratisnctioris 011 hiformation Theon, IT-22(6):644
654, 1976.

[3] Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant
key agreement for dynamic collaborative groups. Proc. of
7rh ACM CorZferetice 011 Computer and Co~nmunications Se-
curity, pages 235-244, November 2000.

[4] Y. Kiml A. Penig, and G. Tsudik. Communication-efi cient
group key agreement. Information Systems Security, Pro-
ceeditigs of the 17th Itirertiariorial Itiformatior7 Security Coti-
feretice IFIP SEC'OI, November 2001.

[5] P. P. C. Lee, J. C. S. Lui, and D. K. Y. Yau. Distributed col-
laborative key agreement protocols for dynamic peer groups.
Technical report, Dept of Computer Science and Engineer-
ing, Chinese University of Hong Kong. August 2002. Also
as CS TR-02-013, Purdue University, West Lafayette. IN.

[6] X. S. Li, Y. R. Yang, M. G. Gouda, and S. S. Lam. Batch
rekeying for secure group communications. Proceedi~igs of
Tetith hirernational World Wide Web Cotiferetice (WWWIO),
May 2001.

[7] S. Setia, S. Koussih, and S. Jajodia. Kronos: A scalable group
re-keying approach for secure multicast. Proc. of lEEE Sytn-
posilrm oti Security and Privacy 2000, May 2000.

[8] W. Stallings. Cryptography atid Network Securir):: Pritici-
pies atid Practice. Prentice Hall, 2nd edition, 1999.

[9] M. Steiner. G. Tsudik, and M. Waidner. CLIQUES: A new
approach to group key agreement. lEEE hitertiational Coti-
ference oti Distributed Cotnputitig Systems. pages 38C387,
May 1998.

[lo] D. M. Wallner, E. J. Harder, and R. C. Agee. Key man-
agement for multicast: Issues and architectures. Inter-
net draft draft-wallner-key-arch-00.txt. Internet Engineering
Task Force, July 1999. Expires in six months.

[I I] C. K. Woilg. M. Gouda, and S. S. Lam. Secure group com-
munications using key graphs. Proc. ofACM SlGCOMM'98.
September 1998.

[I21 Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam. Reli-
able group rekeying: A performance analysis. Proc. of ACM
SIGCOMM'OI, August 2001.

the three algorithms). We consider the cases with different
values of PJ and PL to represent different mobility charac­
teristics of the peer group.

Figure 12 illustrates the instantaneous number of expo­
nentiations at different values of PJ and PL. We note that
when the communication group has a high leave probabil­
ity, Queue-batch significantly outperforms Batch. Figure 13
illustrates the instantaneous number of renewed nodes. It
shows that Queue-batch has a much lower cost in renewing
nodes, as compared to Batch. This implies that Queue-batch
can reduce the communication cost significantly.

5. Related Work

Wong et al. [11] and Wallner et al. [10] independently
proposed the key tree approach to secure group communi­
cations. They suggested to associate keys in a hierarchical
tree and rekey at every join or leave event. Later, the au­
thors in [6, 7, 12] introduced the concept of batch rekeying
to enhance system efficiency since the rekeying workload
is independent of membership dynamics. All the above ap­
proaches rely on a centralized key server, which is respon­
sible for generating and distributing new keys.

The authors in [I, 9, 3, 4] extended the Diffie-Hellman
protocol [2] to group key agreement schemes for secure
communications in a peer-to-peer network. Burmester et

af. [I] proposed a computation-efficient protocol at the ex­
pense of high communication overhead. Steiner et al. [9]

developed Cliques, in which every member introduces its
key component into the result generated by its preceding
member and passes the new result to its following mem­
ber. Cliques is efficient in rekeying for leave or partition
events, but imposes a high workload on the last member in
the chain. Kim et al. [3] proposed the Tree-Based Group
Diffie-Hellman (TGDH) to arrange keys in a tree struc­
ture. Every member only needs to hold the keys along
its key path, implying that the rekeying workload is dis­
tributed to all members. The authors also suggested a vari­
ant of TGDH called STR which minimizes the communi­
cation overhead by trading off the computational complex­
ity [4]. All the above schemes are contributory, meaning
that key generation is performed by all members and hence
avoids the single-point-of-failure problem in the centralized
approach. While the scheme in [I] is independent of mem­
bership change, the rest of the schemes [9, 3, 4] suggest to
perform rekeying at single join, leave, merge or partition
events. Our paper enhances the scheme in [3] to support
rekeying involving a batch of join and leave events.

6. Conclusion

We have considered several distributed collaborative key
agreement protocols for dynamic peer groups. The key
agreement setting is performed wherein there is 110 central­

ized key server to maintain or distribute the group key. We

show that one can use the Tree-Based Group Diffie-Hellman
protocol to achieve such distributive and collaborative key
agreement. To reduce the rekey complexity, we propose to
use an interval-based rekey approach so that we can group
multiple join/leave requests and process them at the same
time. In particular, we show that the Queue-batch algorithm
can significantly reduce both computational and communi­
cation costs. This reduction enables a more efficient way to
manage secure group communication.

References

[1] M. Burmester and Y. Desmedt. A secure and effi cient con­
ference key distribution system. In Advances in CryplOlogy­
EUROCRYPT '94, volume 950 of Lecture Notes in Computer
Science, pages 275-286. Springer-Verlag, 1995.

[2] W. Diffi e and M. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, IT-22(6):644-­
654, J976.

[3] Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant
key agreement for dynamic collaborative groups. Proc. of
7th ACM Conference on Computer and Communications Se­
curity, pages 235-244, November 2000.

[4] Y. Kim, A. Perrig, and G. Tsudik. Communication-effi cient
group key agreement. Information Systems Security, Pro­
ceedings of the 17th Il1Iernational Information Security Con­
ference IFfP SEeOI, November 2001.

[5] P. P. C. Lee, J. C. S. Lui, and D. K. Y. Yau. Distributed col­
laborative key agreement protocols for dynamic peer groups.
Technical report, Dept of Computer Science and Engineer­
ing, Chinese University of Hong Kong, August 2002. Also
as CS TR-02-013, Purdue University, West Lafayette, IN.

[6] X. S. Li, Y. R. Yang, M. G. Gouda, and S. S. Lam. Batch
rekeying for secure group communications. Proceedings of
Tenth Il1Iernational World Wide Web Conference (WWWIO),
May 2001.

[7] S. Setia, S. Koussih, and S. Jajodia. Kronos: A scalable group
re-keying approach for secure multicast. Proc. ofIEEE Sym­
posium on Security and Privacy 2000, May 2000.

[8] W. Stallings. Cryptography and Network Security: Princi­
ples and Practice. Prentice Hall, 2nd edition, 1999.

[9] M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A new
approach to group key agreement. IEEE Il1/ernational Con­
ference on DistribUled CompUling Systems, pages 380--387,
May 1998.

[10] D. M. Wallner, E. 1. Harder, and R. C. Agee. Key man­
agement for multicast: Issues and architectures. Inter­
net draft draft-wallner-key-arch-OO.txt, Internet Engineering
Task Force, July 1999. Expires in six months.

[II] C. K. Wong, M. Gouda, and S. S. Lam. Secure group com­
munications using key graphs. Proc. ofACM SIGCOMM'98.
September 1998.

[12] Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam. Reli­
able group rekeying: A performance analysis. Proc. ofACM
SIGCOMM'OI, August 2001.

7000 Rebuild -
BalCh - - -

0ueue.balch

3000

: 2000
p ,000
4

0 100 200 300 403 500

Number 01 leaves

(a) J = 128

mw
Rebulld -

$ 8003 Batch - - .
Queue-batch

2 70W

0 1 W 203 3 W 400 5 W

Number ol leaves

(b) J = 256

low0

: moo
? 8000

L 7000

? 60W

5WO

z 4W0
3000

B 2003

d loo0

Rebuild -
Q~eue-balch

'.-. -.-.

Figure 8. Average number of exponentiations at different numbers of joins when the original tree is
completely balanced

7 W
Rebuild -

Batch - - -
Queue-batch

? 405

f 3 M
- - - - - -

E,
2 w ,' ..-.

.,. -... l lW ,-' -.._
0 I M 200 303 403 5 W

Number ol leaves

(a) J = 128
Number 01 leaves

(b) J = 256

Rebulld -
BalCh - - -

Queue-balch

$ 400

Number o l leaves

(c) J = 384

Figure 9. Average number of renewed nodes at different numbers of joins when the original tree is
completely balanced

Leave Pmbabiliry

(a) p J = 0.25
Figure 10. Average

12000
Rebuild - Rebuild -

Queue-bath

: 20, ..

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Leave Probabilify Leave Prababiliry

(b) p j = 0.5 (c) pj = 0.75
number of exponentiations at different join probabilities

Rebuild -
Balm - - -

Queue-balm -

800

P

Rebuild -

Queue-balch

6 M
0

5 400

0 0 1 0.2 0 3 0 4 0.5 0.6 0.7 0.6 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0 1 0.2 0.3 0.4 0.5 0 6 0.7 0 8 0 9 1
Leave Probablily Leave Probabllily ~ e a v e Probability

(a) p~ = 0.25 (b) pj = 0.5 (c) pj = 0.75
Figure 11. Average number of renewed nodes at different join probabilities

Rebuild ­
Balch - - .

Queue-balch _.-..

"
\
-.,~

100 200 300 400 500

".-._.-.-.-.-._--

10000

~
9000

8000

i 7000

~
6000

5000

~
4000

3000

" 2000

~ 1000

0
0500

'--.

400300200100
o'-----~-~~-~~-~--..-...J

o

9000 .---------~-::-R'-,.b--:"H--:d-----.-,

Balch - - ­
Queue·batch _._..~ 8000

i 7000

g 6000

~ 5000 /"

.8 4000
E
E 3000

~ 2000

.a; 1000

500400300200100
o'-----~-----~----..-...J

o

7000 .---------~-::-R'-,.b--:";--:,d-----.-,

Balch - - .
Queue·balch -'-"Q6000

~
~5000 __
c. ,_- __ - ...

~40001/· --.::-

i 3000 Ii::,....~~:_...,
~ 2000

"~ 1000
«

Number 01 leaves Number 01 leaves Number at leaves

(a)J=128 (b)J=256 (c) J = 384

Figure 8. Average number of exponentiations at different numbers of joins when the original tree is
completely balanced

500400300200100

900 ""------------:R:-'~b"::-Hd.,----...,

::J 800 Balch - - •
'8 Queue-balch --_.•

~ 700

~ 600

~ 500 ,."

1: 400

~ 300

~ 200

.a; 100 ./'/
o '--__~_~~__~__~_---"-.J

o500400300200100

o '---__~__~__~__~_--=:..J

o

800 .---------~---:R=-'~b"--:Hd.,-----.-,

Balch - - .
Queue-balch _._ ..j 700

'0 600
~
~ 500•
~ 400

1300

~ 200

".¥ 100

500400300200100

700 .---------~---:R:-',.-b"--:ild.,----...,

Batch - - .
Queue·batch _._..~ 600

t 500

~ 400

"1: 300,
~ 200 ,

] 100 /1/"
o '---__~__~__~__~__'_"..J

o
Number 01 leaves Number 01 leaves Number of leaves

(a)J=128 (b)J=256 (c) J = 384

Figure 9. Average number of renewed nodes at different numbers of joins when the original tree is
completely balanced

",
........................

r::::----·'·:::.·:: - -
j ...
i
i
i

2000 j

12000 '-~--~---~--;::R--:'b--'";--:'d---'
Balch - - •

Queue-balch -.---
~

~ 10000

} 8000

a 6000

14000

"~-.-.-....
-',

12000 '-~-----------:R--:'b-"""Hd"""'--'
Baldi - - ­

Queue· balCh _._.•0210000
'g
~ 8000

~ 6000 r-'~""'::<:-..~
~e" ,4000 I ...
~ 2000:
i<-'-.-

12000 '-~---~-~----::R--:'b--'";--:'d---'
Batch - - .

Queue·balch _._.•~
.g 10000

~i 8000

a 6000 C··....i 4000 I -'~"'~."",~,- _
4> J

~ 2000 I
i<

o 0 0 '---~-~~-~~~-~----'
00.10.20~Q40.50BOJO.8Q9 o 0.1 0.2 0.3 OA Q5Q6 0.7Q8 0.9 OQ10.20.30AO.5Q60.70~0.9

Leave Probability Leave Probability Leave Probability

(a) PJ = 0.25 (b) PJ = 0.5 (c) PJ = 0.75
Figure 10. Average number of exponentiations at different join probabilities

0.7 0.8 0.90,' 0.2 0.3 0.4 0.5 0,6

leave Probabilily

,:'
i

f

1200 .-~-~~--~---:--~--,
Rebuild ­

Batch - - •
Queue-balch _._ .•

a 600

Ie~ 400

j 200

g 1000

~ 800

•

1200 .----~------=_----,
Rebuild ­

BalCh - - •
Queue-batCh _._.-mg 1000

~ 800

Ii

0.7 0.8 0.9

--'- --
0.3 OA 0.5 0.6

leave Probability

600
2
~

400 l'::-._.-.-.-
j 20: r .-.-.-----._._._.__._._.

o 0.1 Q2 ~ ~ 0.5 0.6 OJ O~ 0.9

leave Probability

(a) PJ = 0.25 (b) PJ = 0.5 (c) PJ = 0.75
Figure 11. Average number of renewed nodes at different join probabilities

,~...._--._.-.-.-
!

o'---~-~~----~~-...::::="'"--.J

o 0,1 0.2

1200 ,-~-----~-~-=_----,
Rebuild ­

Balch - - •
Queue-balch _._..

" 600

i 400

~ 200
i<

g 1000

I 800

•

g 52M) - Balch -
Oueue-balch g m - r 1 5 30W

""" - 0 50 . 1 M) 150 2M) 250 3W z 5md SO 150 ZOO 250 3b0
Rehey lnlervals Rekey lnlervals

(a) p ~ = 0.25, p ~ = 0.25 (b) p j = 0.25, p ~ = 0.75

Figure 12. lnstantaneous number of exponentiations at different join and leave probabilities for Batch
and Queue-batch Algorithms

$ 7000

-
: I 5 0 , , . , , 1
- 0 50 100 150 203 250 3W

Rehey lnlervals

(a) p j = 0.25, p ~ = 0.25

-
: moa

: 5000 -
5 40W.

S

3 350
Batch -

n 3W - Oueve-batch

," 254

n 5 150 -

Batch -
Oueve-balch

-

-
e 0 , . 1
- 0 50 1W 150 2W 250 300

Rehey intervals

(b) p j = 0.25, pr, = 0.75

30W -

- 0 50 1W 150 2W 250 300 - 0 50 100 150 200 250 300

Rehey inlervals Rehey mlervals

(c) p j = 0.75, pr, = 0.25 (d) p j = 0.75, pr, = 0.75

B mo
Batch -

3 7W
Balch -

C 550 - Oueuebatsh - Oueue-balch

- ; 4W
-

400
B I

-
P O ' . . " 1

0 50 100 150 200 250 3W - 0 50 1M) 150 200 250 3W

Rehey nntervals Rehey intervals

(c) p j = 0.75, p ~ = 0.25 (d) p j = 0.75, p ~ = 0.75

Figure 13. lnstantaneous number of renewed nodes at different join and leave probabilities for Batch
and Queue-batch Algorithms

Balch -­
Queue·balch -_..-

Rekey inlervals

(b) PJ = 0.25, PL = 0.75

~ 3500
;;;

I 3000

~ 2500

"· 2000

~ 1500

i 1000
I~.i

~
~ 500

0

Balch -­
Queue-balch _..._.

.~ 5200
;;;

5000

I 4800

~ 4600

". 4400

~ 4200

! 4000

~
3800

~
50 HX) 150 250

Rekey intervals

(a) PJ = 0.25, PL = 0.25

Rekey inlervals

(C) PJ = 0.75, PL = 0.25

Batch -­
Queue-balch ---

100 150 200 250 300

Rekey intervals

(d) PJ = 0.75, PL = 0.75

g 7000

iii
'E 6000

i
~ 5000

"'" 4000

~
~
~

~

~
100 150 200 250 30050

Q 8500 r----~-----c-:B:-a""h,-,-------'

iii Queue-balch --_.

18000

~

"'"~
~
~

~
~

Figure 12. Instantaneous number of exponentiations at different join and leave probabilities for Batch
and Queue-batch Algorithms

'0 200·~ 150

" 100

~
" 50

'"E 0 L-_~_~_~_~__~---.J

o 50 100 150 200 250 300300250200'5010050

150 L-_~_~__~_~_~__

o
Rekey inlervals

(a) PJ = 0.25, PL = 0.25
Rekey intervals

(b) PJ = 0.25, PL = 0.75

30050 100 150 200 250

Rekey inlervals

(d) PJ = 0.75, PL = 0.75

OL-_~_~_~_~__~---.J

o

300

200

~ 700 r---------~-=-c.,.-.----,

g Queue.~~:~~ -.-a: 600

i 500 ~~.M'tL,.'jlj~~~~'f'ItMlt~l#I"~Tl-llMrtMi
'0 400

'"~
o··~
~

30050 100 150 200 250

Rekey inlervals

(C) PJ = 0.75, PL = 0.25

~ 400

~ 350

o 300 \\f1J,¥Ji.··,'lfl(rlri~,Ni'"~'>·il.I·;\'l.'41i·"f\'i;"Mj
ll) 250.
" 200 rj 150 L._~__~_~_~~_~_-!

o

~ 600 r---------,-,B'"""a,--,ch,..,-~-=---,
g 550 Queue-balch ..._--

1500 I'IWlf"W4IMlIf\IrYI~%t-N~'f-JHINV~
~ 450

Figure 13. Instantaneous number of renewed nodes at different join and leave probabilities for Batch
and Queue-batch Algorithms

	Distributed Collaborative Key Agreement Protocols for Dynamic Peer Groups
	Report Number:
	

	tmp.1307986960.pdf.sqfTd

