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Motivated by the duality between site-centered spin and bond-centered spin in one-dimensional system,
which connects two different constructions of fermions from the same set of Majorana fermions, we show that
two-dimensional models with topological orders can be constructed from certain well-known models with
classical orders characterized by symmetry breaking. Topology-dependent ground state degeneracy, vanishing
two-point correlation functions, and unpaired Majorana fermions on boundaries emerge naturally from such
construction. The approach opens a different way to construct and characterize topological orders.
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Recently, topological orders have attracted intensive inter-
ests for different reasons.'”” The best studied example of
topological order are the fractional quantum hall (FQH)
states.® All different FQH states have the same symmetry.
Unlike classically ordered state, FQH liquids cannot be de-
scribed by Landau’s theory of symmetry breaking and the
related order parameters.>’ A new theory of topological or-
der is proposed to describe FQH liquids.® New nonlocal
quantities, instead of local order parameters, such as ground
state degeneracy,' the non-Abelian Berry’s phase,? and topo-
logical entropy,”!? were introduced to characterize different
topological orders. Topological ordered systems have also
been designed and studied in the context of quantum com-
putation as a realization of potentially fault-tolerant quantum
memory and quantum computation.®”!! It is the nonlocality
of the topological orders that significantly reduces the effect
of decoherence.!?

Theoretically, a number of soluble or quasisoluble models
which capture the topological orders have been proposed and
studied.>"713-1¢ However, unlike the conventional orders
which are entirely characterized by broken symmetries, the
topological orders have not been characterized in a universal
way. In fact, topological orders have to be studied case by
case in different models. Recently, it has also been pointed
out that the spectrum is completely inconsequential to topo-
logical quantum order'” and hidden order parameter has been
suggested in Kitaev model on honeycomb lattice.'® In this
work, we show a different way to characterize topological
orders, which is based on well-known conventional models.
First, we show that it is possible to map a model with topo-
logical order to a model with a local order parameter in cer-
tain physical realizations through a nonlocal duality transfor-
mation. A local order parameter description of topologically
ordered systems is potentially useful. For instance, thermo-
dynamic properties and energy spectrum can be easily com-
puted in terms of classical order parameters. Second, we
show that topologically ordered systems can be constructed
or designed from well-studied classically ordered states by
including a topological boundary term associated with the
lattice topology. In such a construction, topological proper-
ties are manifestly presented. The result provides an ap-
proach for easier and/or better design of physical implemen-
tations of topological orders for quantum computation,
starting from ordered systems well understood in the frame-
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work of Landau’s symmetry breaking theory. Finally, we
would like to point out that the transformation used in this
work only works for a limited class of models. However, we
conjecture that a general connection between topological or-
ders and classical orders might be possible and more beauti-
ful nonlocal transformations are waiting to be discovered.
We start with examining a well-known nonlocal transfor-
mation, namely, the duality between site-centered spin and
bond-centered spin in one-dimensional spin-1/2 system,'”

m(n)=o,(n+1)o,(n), (1)
pn) = 11 o.(m). ()

The spin operators o on the original lattice can be fermion-
ized by a Jordan-Wigner transformation,

o (n) = [ 11 iA(m)B(m>]A<n>, (3)
oy(n) = - [ II iA(m)B(m)]mm, (@)
o.(n) =iA(n)B(n), (5)

where A(n) and B(n) are Majorana fermions on site n. Fer-
mions can be defined as ¢(n)=[A(n)+iB(n)]/2. The duality
transformation of Egs. (1) and (2) now reads

p.(n) = iB(m)A(n + 1), (6)
wdn)=| IT iBm)A(m + 1) |B(n), (7)

which is another Jordan-Wigner transformation if we intro-
duce a new set of fermions d(n)=[B(n)+iA(n+1)]/2 on the
dual lattice. It is thus clear that the duality transformation
connects two different constructions of fermions from the
same set of Majorana fermions, as illustrated in Fig. 1. The
duality now appears as a very local transformation. However,
in terms of spin operators, it is inherently nonlocal. In the
following, we generalize this duality transformation to two-
dimensional systems and show that the transformation can be
used to exactly map a classically ordered system to a topo-
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FIG. 1. Duality mapping in one dimension as a recombination of
Majorana fermions. c(n)=[A(n)+iB(n)]/2 is the fermion defined on
the original lattice site and d(n)=[B(n)+iA(n+1)]/2 is defined on
the dual lattice site.

logically ordered one. Two specific models are discussed.
The first model is Wen’s exactly soluble spin model de-
fined on a square lattice,’

H=8Z Fij= 82 0‘3] i+1,j0Kz¥+1,j+10{j+1’ (8)
ij ij

where (i,j) is the coordinate of lattice site. It is easy to see
[F;j,F;1;7]=0 and the model is thus exactly soluble. This
model is shown to have robust topologically degenerate
ground states and gapless edge excitations.’

Let us first introduce the two-dimensional Jordan-Wigner

transformation to fermionize the model,2°

o tioy = 2[ IT1I of,j,] [ IT Uf,j}cjj, )

i'<j i’ i'<i
0;=2c;c;;— 1. (10)
If we define the Majorana operators
A= (cf+cy) and By =i(c)— i), (11)
we find F;,
Fij =Aiin+l,jBi,j+lBi+1,j+1' (12)

It is now interesting to generalize the duality to
two dimensions and define fermions on vertical bonds
(i7j)_(i’j+1)a

dj-]:(Al]_lBl,j+l)/2 (14)
It follows that

where u;; is related to the fermion d through a Jordan-
Wigner transformation. The Wen Hamiltonian thus reads

H=8Z M?,j:“«?ﬂ,j' (16)

)

This new Hamiltonian describes a set of decoupled Ising
chains (see Fig. 2).2! A first-order phase transition from fer-
romagnetism to antiferromagnetism happens at g=0. It is
now straightforward to see that all two-point correlation
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FIG. 2. (a) Graphical representation of the Wen model. Each
circle denotes one original lattice site on which two Majorana fer-
mions A and B are defined. Each dotted rectangle contributes a
ring-exchange term given by Eq. (12). (b) After introducing fermi-
ons on vertical bonds, the model reduces to decoupled Ising chains.

functions are identically zero {(o05)=0 in the ground state.
This is so because oo} contains A;; (or B;;,y) that is un-
paired with its partner B, ;,; (or A;;) due to the fractionaliza-
tion of o;; into A;; and B;; and the recombination of A;; and
B; jy1 into ;.

It is also interesting to fermionize a Zeeman term,

bE ij=b2 (dij+d§j)(di,j—1 _dj,j—l)~ (17)
ij ij

We notice that Eq. (16) + Eq. (17) is the same fermionic
Hamiltonian obtained by fermionizing quantum compass
model using Jordan-Wigner transformation.?’ After including
a Zeeman term, Wen’s soluble model is thus equivalent to the
quantum compass model, which is shown to have dimen-
sional reduction’>?® and a first-order phase transition at
b= 8-20

The duality mapping can also be made explicit as follows.
Define 4 ; on the bond (i,))—(,j+1),

l‘«f,:‘fzyj(n U?’,j><H O'f',j+1>07'v,j+l' (18)

e N
>0 i<i

Let us first prove that u; ; commutes with u; ;. Without los-
ing generality, let us assume /=j. Let us consider the over-
laps between the original lattice sites involved in ,u,;l and uj,.
(a) If [—j=2, there is no overlap. Similarly, no overlap hap-
pens when [=j+1 and k>i and two u° commute. (b) If /
=j+1 and k=i, there is only one common site on which ¢” is
involved in both u. (¢) If I=j+1 and k<<i or [=j [see Fig.
3(b)], as far as a commutation relation is concerned, the only
relevant part is
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FIG. 3. (a) Graphical representation of Eq. (18). u® is defined on
a vertical bond as the product of spin components as labeled on the
original lattice sites along the thick dark line. (b) Nearest-neighbor
coupling between uj; and p,, ;.

(o700 1(0700)2 = (0107) 1 (0707),. (19)

Here, the subscripts 1 and 2 denote two different sites of
original square lattice, while r (red) and k (black) are used to
keep track of which u® the spin operators o come from.
Based on the above consideration, we conclude that w’s are
commuting with each other. It is also trivial to see (u)’
= and (u9)*=1. Therefore, u° can be viewed as an Ising
degree of freedom defined on a vertical bond. Let us now
consider the interaction term between two nearest-
neighboring w?, as illustrated in Fig. 3(b),

Z Z _ y 4 YV 2 y
M jMivy ;= 07,j(0‘70y)i+1 ,‘((T 0”)i+1,j0‘i+1,j+1
0‘3)10';:_1 ]Of+1 J z+1]+1 (20)

Therefore, the original Hamiltonian (8) is equivalent to Eq.
(16) and the Ising order is mapped to the quantum order
studied by Wen.? The explicit mapping (18) also allows us to
examine the topological nature of the ordering. In the basis
of ¢, ,u,fj creates two kinks at the two ends (i,j) and
(i,j+1) of the vertical bond. Therefore, the ordering is actu-
ally a condensation of kink-dipoles. The topological nature
of the order in this model is thus similar to that of the Ising
lattice gauge theory.?*

The discussion of the exact mapping is so far limited to
bulk terms. It is important to study the boundary conditions
and demonstrate explicitly the dependence of ground state
degeneracy on the topology. In general, the boundary condi-
tions will induce a nonlocal phase factor to the coupling
strength between boundary spins, due to the phase term in
the Jordan-Wigner transformation. The topology-dependent
phase factor has profound consequence as we shall show
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shortly. One immediate consequence is that it determines the
ground state degeneracy.

The most interesting boundary condition is the case where
we put the original spin model into a closed topology. A
simple closed manifold is a torus by taking periodic bound-
ary conditions along both directions. The boundary term
along y direction is Hi:go{L (o) L 071,107, It is clear that
the phase term cancels and the perlodlc condition along the y
direction is mapped to a periodic boundary condition in the
direction perpendicular to the Ising chain. The periodic
boundary condition along x direction induces a boundary
term Hy=goy ;01,04 ;07 ;- This term is mapped to

Hy= ng],u,l’],u,L ; with the coupling strength g, given by
gH ] lj+l_gH le]:u’]Az]H (21)

The boundary term couples nearest-neighboring chains non-
locally, which manifestly represents the hidden topological
structure in the original model. A direct consequence of this
coupling is the partial lift of ground state degeneracy.

Another interesting case is the ribbon structure, where
periodic boundary condition in the y direction and open
boundary condition in the x direction are assumed. The open
boundary condition in the x direction is now mapped to the
open boundary conditions in the spin chains. Consequently,
the ground state now has an effect of dimension reduction
and huge degeneracy 2, where we denote L, and L, as the
system sizes along the x and y directions, respectively. The
degeneracy can actually be related to free Majorana fermions
on boundaries. This can be shown by considering an equiva-
lent geometry where we set periodic boundary condition
along x and open boundary condition along y. The ground
state degeneracy is 2% in this case. The mapping thus leads
to unpaired Majorana fermions, Ai‘L_(i =1,...,L,) on the
sites of the top boundary and B; |(i=1,...,L,) on the sites of
the bottom boundary. A; L, are coupled to the bulk system
through the boundary term in the form of I A; iLy: Similarly,
B; ; are coupled to bulk through H,:1Bz,1- Therefore, the op-
erators that flip even numbers of unpaired Majorana fermi-
ons on top and/or bottom boundaries are conserved quanti-
ties and consequently lead to degenerated ground states. For
instance, we can combine A; ; and A, ; into a fermion whose
particle number (iA| A, ;+1)/2 is a conserved quantity. We
thus have successfully mapped the global (nonlocal) Z, de-
gree of freedom of the decoupled Ising chains into a local
degree of freedom of unpaired Majorana fermions at the ends
of the chains.

To illustrate our approach further, we show that similar
physics can also be reached for the second Kitaev model
defined on a honeycomb lattice,’

2 2 LSS (22)

\=x,y,z N bonds

This topologically ordered model can be mapped to a model
of spinless fermions whose ground states are characterized
by local order parameters.

Again, we fermionize this model using the Jordan-Wigner
transformation. The idea is to deform the honeycomb lattice
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FIG. 4. Deformed honeycomb lattice and three types of
bonds.

into a brick wall lattice as shown in Fig. 4. We introduce the
subscripts b and w to denote the white and black sites of a
bond as illustrated in Fig. 4. We also define the correspond-
ing Majorana fermions A,,=(c—c"),/i and B,,=(c+c"),, for
white sites and B,=(c—c'),/i and A,=(c+c"), for black
sites. After a Jordan-Wigner transformation given by Egs. (9)
and (10), the Hamiltonian of Kitaev model becomes

i
H==7| 2 JAA= 2 JAA,
x bonds y bonds
i
-7 2 A, (23)
4z bonds

where a=iB,B,, defined on each vertical bond. It is easy to
see that « is a conserved quantity'® and can now be taken as
a number that can take either +1 or —1. The Hamiltonian is
now quadratic in A and readily to be solved exactly.

We are now ready to generalize the duality to brick wall
lattice and introduce fermion on a z bond, d=(A,,+iA,)/2
and d'=(A,,—iA,)/2, where A,, and A, are the Majorana fer-
mions on the white and black sites of a given z bond. We
thus have a model for fermions on a square lattice with site-
dependent chemical potential,

PHYSICAL REVIEW B 76, 193101 (2007)

4H =72 (df +d)(d],; ~dirz)

+0,2 (d] + )]s ~dip;) +T. 2 ai(2d]d;~1).

i+éy
(24)

Here, éy connects two z bonds and crosses a y bond, similar
to é,, as illustrated in Fig. 4. This Hamiltonian describes a
system of spinless fermions with p-wave BCS pairing and
site-dependent chemical potential, where the ground states
are characterized by local order parameters. Previous discus-
sions about ground state degeneracy and vanishing two-point
spin correlation functions can now be extended to this model
straightforwardly. Unpaired free Majorana fermions also
emerge naturally at open boundaries. For instance, a ribbon
geometry can be achieved by breaking a row of z bonds. For
each broken z bond, the Z, degree of freedom a=iB,B,, is
fractionalized into two unpaired free Majorana fermions,
B,=(c—c"),/i on the top boundary and B,,=(c+c"),, on the
bottom boundary. A detailed study of the fermionized Hamil-
tonian (24) will be presented elsewhere.?

In summary, we have successfully constructed exact map-
pings from topological orders to classical orders in two ex-
actly soluble spin models. The topological dependence in the
latter model is manifestly represented in the terms resulted
from the mapping of boundary conditions. Unpaired Majo-
rana fermions on open boundaries and vanishing two-point
spin correlation functions also follow naturally from our con-
struction. Our work suggests a different approach to con-
struct certain topological orders from well-studied classical
orders through a nonlocal transformation.
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