Experimental and Modeling Improvements to a Co-Fluid Cycle Utilizing Ionic Liquids and Carbon Dioxide

Scott S. WUJEK, Mark J. McCREADY, George MOZURKEWICH, William F. SCHNEIDER, Stefan ELBEL
Presentation outline

- Overview of the co-fluid cycle and thermodynamics of the co-fluid pair
- Modeling for ionic fluid selection
- Experimental facilities for systems testing
- Exploration trends in data
- Performance non-idealities and areas to focus for improved performance
- Conclusions
What is a co-fluid cycle?

- Same basic concept as a traditional vapor-compression cycle, but takes advantage of some thermodynamics of absorption cycles
- A non-volatile liquid is utilized to lower the pressure at which the volatile refrigerant changes phase
- Spauschus et al (1999) demonstrated possibility of using such a cycle to lower the operating pressures of carbon dioxide to the levels of common automotive refrigerants
 - Cofluids: Neopentylglycol diacetate, diisobutyl adipate, N-methyl-2 pyrrolidone
- Others refer to such cycles as "heat pump cycles with solution circuits" or "chemically assisted vapor compression cycles"
Co-fluid cycle components

- Laboratory system utilized pump in parallel with compressor
- Less efficient, but robust and allowed independent control of parameters
Co-fluid pairs

- Carbon dioxide utilized as refrigerant due to its well known strengths:
 » Safe (non-flammable with very low toxicity)
 » Inexpensive
 » Good transport properties

- Primary weakness stems from low critical temperature and high critical pressure: co-fluid cycle can mitigate

- Previous co-fluid pairs involved chemicals such as acetone
Ionic liquids

- Ionic liquids are salts which are liquid around room temperature
- Cations and anions can be individually selected organic ions
 - Anions have strong effect on absorption
 - Cations have strong effect on viscosity
- Ionic liquids are good candidates for co-fluid because:
 - Stay liquid at relevant temperatures
 - Can be selected to absorb/desorb at relevant temperatures and pressures
 - Transport properties can be adjusted
Co-fluid cycle on a p-h diagram
Modeling for ionic fluid selection

- Main goal of selecting ionic liquids for co-fluid cycles is to have good performance: high COP and cooling capacity
- Cycle model used was first presented by Mozurkewich et al (2002)
 - Uses thermodynamic mixture properties
 - Allows non-ideal heat exchanger effectiveness
 - Calculates based on isentropic wet compression
 - Later expanded to include independent compression and pumping
 - Isenthalpic expansion
- Primary model weaknesses
 - Does not account for non-equilibrium effects
 - Viscous effects are neglected
- Model is useful primarily for screening studies to identify suitable ionic fluids
Laboratory facility

- Due to time constraints, facility constructed with off-the-shelf components
Laboratory facility
Experimental trends

Due to a few limitations, which will be discussed later, COP was far below from modeled values.

- COP will be compared to a baseline with a COP of 37% and a capacity of 566W.

These limitations relate primarily to:

- Not achieving thermodynamic equilibrium at inlet/exit of each component.
- Compressor not capable of handling large quantities of liquid.
- Low efficiencies of compressor and pump, as well as motor and VFD, due to low speed operation.
- Improper tube sizing in heat exchangers related to viscous effects.
Effect of relative charge of carbon dioxide to ionic liquid

- Standstill pressure at room temperature is a function of relative charge of IL and CO₂
- Optimal charge ratio necessary to maximize efficiency
Effect of expansion valve opening

- Expansion valve opening is not directly measured; mass flow serves as a surrogate
- Opening the valve increases flow but decreases the pressure difference between the high and low side
- Similar to other systems with very high glide fluids, high side pressure is very important
Effect of compressor speed

- Compressor effects system by creating pressure difference and refrigerant mass flow
- Very small, open shaft compressors were not available so compressor utilized was oversized
 - Reducing speed increased COP
- Capacity increased due to increasing mass flow, then decreased due to shift in relative flow rates
 - Little capacity from pure CO$_2$ at high side pressures <30 bar
Effect of pump speed

- Pump speed controlled the relative flow rate of IL to CO$_2$
- Since IL is non-volatile it does not directly contribute to cooling
- Higher fractions of IL lead to warmer temperatures after the expansion process
Key performance non idealities

- Allowing sufficient time/space to achieve equilibrium
 » Exit of expansion valve did not get sufficiently cold prior to entering desorber
 » Speed mass diffusion process, allow more time, or create greater liquid-vapor area
- Achieve wet compression
 » Models showed that wet compression is necessary to achieve good performance and to have low discharge temperatures
- Design heat exchangers for fluid
 » Due to high glide and high viscosity compared to other refrigerants, dramatically different designs must be built to achieve good performance
Conclusions

- Ionic fluid based co-fluid cycles allow carbon dioxide to be utilized at much lower pressures for air conditioning applications
- Ionic fluid screening from models is possible
- Performance improved by
 » Proper relative charges of co-fluids
 » Proper expansion valve setting
 » Proper sizing of heat exchangers compared to compressor
 » Having “wet” compression
 » Designing components for unique properties of ionic-liquid co-fluid pairs
Acknowledgements

- Marco Timmerman and Lukas Lazar for laboratory measurements
- US Department of Energy for financial support (DE-AR0000119)