R32 HEAT TRANSFER COEFFICIENT DURING CONDENSATION IN A MINI-CHANNEL MULTIPORT TUBE

LÓPEZ-BELCHI, Alejandro*
ILLÁN-GÓMEZ, Fernando;
GARCÍA-CASCALES, José Ramón;
VERA-GARCÍA, Francisco
1. Introduction
2. Experimental installation
 2.1. Installation description
 2.2. Test section
 2.3. Experimental method
 2.4. Experimental conditions
 2.5. Uncertainties
3. Results
 3.1. Frictional pressure gradient
 3.2. Heat transfer coefficient
 3.3. HTC and pressure drop analysis
4. Conclusions
5. Acknowledgement
1

Introduction
Introduction

1. Introducción
 • Minichannels use is widely extended.
 ↑ Performance ↓ Size → ↓ System charge
 Environmental and security advantages

 • Optimal design = f(HTC, dP, flow pattern,…)
 • Power transferred 2 phase >> 1 phase
 • Pioneers in the 80’s with single mini-channels
 • Today single and multiport tubes

 • Results of HTC and dP of R32 and R410A.
2 Experimental installation

2.1. Installation description
2.2. Test section
2.3. Experimental method
2.4. Condiciones experimentales
2.5. Incertidumbres
2.1. Description

- Experimental installation places at the Technical University of Cartagena.
Experimental Installation

2.2. Test section

- Mini-channel multiport tubes provided by Modine.

<table>
<thead>
<tr>
<th>Tube</th>
<th>Area (mm²)</th>
<th>Nº webbs</th>
<th>Inner perimeter (mm)</th>
<th>Outer perimeter (mm)</th>
<th>Dₜ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square</td>
<td>12.54</td>
<td>10</td>
<td>43.22</td>
<td>40.17</td>
<td>1.16</td>
</tr>
</tbody>
</table>

Technical University of Cartagena
2.3. Experimental method (1/3)

- Based on Park et al. (2011) methodology

\[Nu_{ref} = \frac{f/8 \times (Re - 1000)Pr}{1 + 12.7 \sqrt{f/8} \times (Pr^{2/3} - 1)} \]
2.3. Experimental method (2/3)

- Based on Park et al. (2011) methodology
2.3. Experimental method (3/3)

\[G_{R32} = 800 \text{ kg m}^{-2} \text{ s}^{-1} \]

\[\frac{\partial p}{\partial z}_{tp} = -\left(\frac{\partial p}{\partial z} \right)_f - \left(\frac{\partial p}{\partial z} \right)_g - \left(\frac{\partial p}{\partial z} \right)_{ac} \]

\[HTC_{ref,j} = \frac{\dot{q}_j}{T_{ref,j} - (T_{wall\ inner})_j} \]
2.4. Experimental conditions

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Mass velocity (kg m(^{-2})s(^{-1}))</th>
<th>Saturation temperature(º C)</th>
<th>dX</th>
<th>Vapour quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>R32</td>
<td>350-800</td>
<td>20-55</td>
<td><0.08</td>
<td>0.13-0.94</td>
</tr>
<tr>
<td>R410A</td>
<td>350-800</td>
<td>20-55</td>
<td><0.08</td>
<td>0.11-0.95</td>
</tr>
</tbody>
</table>

2.5. Uncertainties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Total uncertainty range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat flux</td>
<td>3.4-4.5</td>
</tr>
<tr>
<td>Vapour quality</td>
<td>2.2-12.5</td>
</tr>
<tr>
<td>Heat transfer coefficient</td>
<td>5.6-21.7</td>
</tr>
<tr>
<td>Inlet saturation pressure</td>
<td>1.6-3.4</td>
</tr>
<tr>
<td>Frictional pressure drop</td>
<td>2.2-11.9</td>
</tr>
</tbody>
</table>
3 Results

3.1. Frictional pressure gradients
3.2. Heat transfer coefficient
3.3. HTC and pressure drop analysis
3.4. Experimental data predictions
3.1. Frictional pressure gradient (1/2)

- $G \uparrow$, $X \uparrow$, $\downarrow P_{\text{red}} \rightarrow dP \uparrow$
Results

3.1. Frictional pressure gradient (2/2)

- $dP \text{(R410A)} < dP \text{(R32)} \approx 25\%$
- Clearer at $G \uparrow$, $P \downarrow$
3.2. Heat transfer coefficient

- HTC (R410A) < HTC (R32)
 - Clearer at $G \downarrow$.
 - $T \downarrow$ HTC \uparrow. Temperature effect not so clear
Results

3.3. HTC and pressure drop analysis

Viscosity (R410A) ≈ Viscosity (R32)
At fixed G → Reynolds (R410A) ≈ Reynolds (R32)

Velocity (R32) > Velocity (R410A)

\[\text{dP (R32)} > \text{dP (R410A)}\]

Liq. Thermal conductivity (R32) > Liq. Thermal conductivity (R410A)

Liq. Thermal conductivity differences \(\neq f(\text{Temperature})\)

Differences between both refrigerants seem to be independent of the saturation temperature
Results

3.4. Experimental data predictions
4 Conclusions
Conclusions

4. Conclusions

- Experimental measurements of R32 and R410A
- $GWP \ (R32) \approx \frac{1}{3} \ GWP \ (R410A)$
 Performance $\ (R32) \approx 1.05 \ Performance \ (R410A)$
 \[\downarrow\]
 Charge $\ (R32) \approx 0.7/0.8 \ Charge \ (R410A)$

- R32 is one single component fluid \rightarrow Easier recycling process
- Some manufacturers already use R32 instead of R410A
- Not many models predict reasonably well HTC of both fluids
- Accurate predictive tools are required, not many authors have measured these fluids.
Acknowledgements
5. Acknowledgements

This study was developed under the financiation of the Spanish Goverment:

- Ministry of Economy and Competitiveness (DPI2011-26771-C02-02)
- Ministry of Science and Innovation (08766/PI/08)

The authors are grateful to colleagues at Modine for their kindness and hospitality during the different rooms in Racine, USA.
Universidad Politécnica de Cartagena

Thermal and Energy Systems Modelling

http://www.upct.es/~ditf/investigacion_mste.php