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Abstract

Recently we proposed a parallel 3D reconstruction algorithm based upon Fourier analysis
using Cartesian coordinates. In this algorithm the computations to determine the values of
the 3D Discrete Fourier Transforms of the density of an asymmetric object could be naturally
distributed over the nodes of a parallel system. In this paper we discuss the accuracy of the
algorithm and a method to improve the quality of the reconstruction based UpOIl the CTF, the
Contrast Transfer Functioll, of the electron microscope.

1. Introduction.
The 3D reconstruction of asymmetric objects from 20 projections is a data intensive problem.

Indeed the reconstruction of an asymmetric virus structure, at high resolution, may require tens or
even hundreds of thousand particle projections. Such projections are obtained experimentally by
Cryo-Electron Microscopy.

There are several practical methods for reconstructing a 30 object from a set of its 20 projections.
These include usc of Fourier Transforms, 'back projection', and numerical inversion of the Radon
Transform. See [Gor74] for a review of these and other methods. Also, for descriptions of (sequential)
methods for 3D reconstruction and related tasks, sec [Dea93], [Fta9l3], and [Gra96], three of several
books containing clear e:>..-planations and many references.

In [Lyn99] an outline is given of our first parallel algorithm for 3D reconstruction which was
based on algorithm developed by Crowther in early 70's. The sequential algorithm implemented
by the 3D reconstruction programs used by the structural biology community uses Fourier Bessel
transforms and can be used for reconstruction of symmetric particles [Cro70]. The parallel algorithm
uses Cartesian coordinates and permits the reconstruction of objects that do not posses symmetries.
The main idea of the algorithm is to decomposes a large linear system with N3 unknowns into N2
systems of linear equations each with N unknowns, that can be solved independently on different
processors of a parallel computer or on a cluster of workstations.

In this paper we discuss an improvement of the algorithm in [Lyn99] which, for reconstruction
at points of an N x N x N grid, uses D(N3) arithmetic operations instead of D(NS).

The results obtained with a parallel program based upon our 3D reconstruction algorithm are
consistent with the ones produced by a sequential program used for many years for structural biology
studies. \Ve report the speedup and the load balancing results for processing crye-EM data for several
viruses. One iteration of the 3D reconstruction for the Bursalia Corella Virus that used to take about
4 hours using a sequential program was carried out in less than 3 minutes on 16 nodes, using the
program based upon our algorithm. The algorithm is general and can be used for 3D reconstruction
of asymmetric objects for applications other than structural biology.

"The research reporled ill lhi~ paper was partially !iupported by the Nalional Science Foundation granls "'",Cll
9527131 and DEI 9986316, by the Scalable I/O Inilialive, and by a grant from the Intel Corporation.
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The paper is organized as follows. Section 2 provides an informal description of the 3D atomic
structure determination and the 3D reconstruction algorithm. Theoretical basis for the algorithm
for 3D reconstruction is given in Section 3. In Sections 4, 5, and 6 we present the method used by
our algorithm to calculate the 3D Discrete Fourier Transform, DFT, of the electron density using
the 2D DFTs of the particles projections. The effect of the zero-fill and the numerical errors in
3D reconstruction are analyzed in Sections 7 and 8. The performance of the parallel program
implementing the algorithm is presented in Section 9. The symmetry and the motivation for
a parallel algorithm for 3D reconstruction are discussed in Sections 14 and 11. In Section 12 we
summarize preliminary performance data when running the parallel program on an IBM SP2, parallel
system. In Section 13 we discuss the Contrast Transfer Function corrections. Finally, in Section
15 we present our conclusions.

2. 3D AtOInic Virus Structure Determination and 3D Reconstruction.
X-ray crystallography, electron microscopy, EM, and Nuclear Magnetic Resonance, NMR, are

techniques used for gathering experimental information about the 3D atomic structure of biological
material. The atomic structure of viruses is of considerable interest for the design of anti viral drugs.
Viruses are large macromolecules, small virus structures may have few thousands aminoacids, while
larger ones have hundreds of thousands of aminoacids and millions of atoms.

X-ray diffraction and electron microscopy are the methods of choice for investigating virus
structures. X-ray crystallography is used for high resolution structure determination, in the 2A
to 2.5A range. Traditionally, electron microscopy produced low resolution maps to, say, 20-30A;
but more recently, researchers at Cambridge and NIH were able to produce maps to 7-7.5A reso
lution [Bot97, Con97J. NMR methods can only be applied to smaller structure with few hundreds
amino-acids.

The 3D atomic structure determination of macromolecules based upon electron microscopy is an
important application of 3D reconstruction. The procedure for structure determination consists of
the following steps:

Step a Extract individual particle projections from micrographs.

Step b Determine the center and the orientation of each projection.

Step c Carry out the 3D reconstruction of the biological macromolecule.

Step d Dock an atomic model into the 3D density map if the atomic structure is available.

Steps (b) and (c) are executed iteratively until the 3D electron density map cannot be further
refined at a given resolution. The number of iterations for 3D reconstruction is in the 10-20 range
and one step of 3D reconstruction for a medium size virus may take several hours on a sequential
computer. It typically takes weeks or even months to obtain an electron density map using sequential
programs for the orientation determination and for 3D reconstruction.

The maximum resolution for the 3D reconstruction process is limited by the size of a pixel in a
particle projection and by the noise in the data. For example if the pixel size is 5.5A then according
to the Nyquist theorem the highest resolution we can possibly reach is llA. In practice, the noise
in data limits the resolution to values considerably larger than the ones given by the Nyquist limit.

The development of parallel algorithms to carry out some of these computations is part of an
ambitious effort to design an environment for 'real-time electron microscopy', where results can be
obtained in hours or days rather than in weeks or months.

Algorithms for Step a, which include automatic identification of particle projections, the determi
nation of the center and orientation of each virus particle projection are discussed elsewhere [!vlar97J,
parallel algorithms to determine the orientation, Step b arc presented in [Bak97J. 'Ve use the terms
"projections" and "views" throughout this paper with essentially the same meaning, the first seems
more suitable for the description of the algorithm, we associate a direction with one projection, the
second one seems more meaningful in the context of the experiment, we have many views of a virus
particle.
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In this paper we are only concerned with Step c of the process outlined above, the 3D reconstruc
tion of asymmetric objects. This process is carried out as follows:

Step 1 Compute the 2D Discrete Fourier Transform of each projection.

Step 2 Compute the 3D Discrete Fourier Transform oCthe electron density by interpolation knowing
the set of 2D projections and their orientations.

Step 3 Compute the inverse 3D transform to get the electron density.

The 2D Discrete Fourier Transform (DIT) of each projection is computed (Step 1). With the
orientation information, the points of intersection of the plane of projection and 3D grid lines can be
determined and then estimates of the 3D Fourier Coefficients of the density at non-integral grid points
are determined. In the method outlined in [Lyn99], this step took D(NS) arithmetic operations; in
this paper we show how this can be reduced to D(N3). An inverse 3D OFT is carried out to obtain
estimates of the density at grid points (Step 3).

Some of these computations can be done independently from each other. For example in Step
1 each processor can be a.c;signed a set of projections and carry out the 2D DFT concurrently. Data
exchange among nodes is necessary to collect information for Step 2 and then each node calculates
the Fourier Coefficients on its own set of 3D planes. Different portions of the 3D DIT of the electron
density are stored on different nodes; where possible, we carry out 20 inverse transforms and then
data are exchanged among nodes and so that the final set of 10 inverse transforms takes place to
complete Step 3. Theoretical basis for this 30 reconstruction is given in Section 3.

To use efficiently a parallel computer or a cluster of workstations, we need parallel algorithms
that partition the data and computations evenly among nodes to ensure load balance and, moreover,
which minimize the communication among processors by maintaining a high level of locality of
reference. Similar efforts have been reported in the past [Joh94J, but the performance data available
to us suggest that new algorithms have to be designed to reduce dramatically the computation time.

The algorithm for 3D reconstruction was designed to work well on workstation clusters. The
program uses MPI (Message-Passing Interface) and consists of several phases including initialization,
2D Fourier analysis, estimating the 3D coefficients of the DFT, solving linear systems, and Fourier
synthesis. In the first phase of the algorithm, pixel frames are distributed evenly among nodes and
processed independently. The values of the 3D DFT are calculated by interpolation and collected
for all three directions in a node. The systems are distributed among nodes so that a 20 Fourier
synthesis for a plane can be done without an exchange. Then data must then be exchanged so that
10 syntheses can be done to obtain the electron density.

3. 3D Reconstruction by Fourier Transforms. In this section we summarize the Fourier
Transform method (sec [Cro70]), the basis of our original algorithm.

The experimental information is gathered from digitized images of many identical macromolecules
obtained with a cryo electron microscope. Individual particle projections are identified and the
orientation of each 2D image, with respect to a standard XYZ Cartesian System, and the location on
the image of the projection of the centroid of the molecule's electron density are determined. See
[Lyng9j for an outline and see [Bak97j and [1\'laI'97] for more details.

Each pixel frame is a square At! x M array of pixel values p which arc taken as the values of the
projection of the electron density, p, normal to the (r, s)-plane of the pixel frame:

(1) Pt(r,s) = 1Pt(r,s,t)dt,

(2)

where the subscript t indicates the unit vector normal to the (r, s)-plane of projection.
The electron density of the macromolecule is to be estimated at grid points of a 3D Cartesian

coordinate system, we call the 'XYZ System'; the centroid of the density is at its origin. Th(~ Fourier
Transform of the electron density is taken as

1 J > ·h' fAF(h) = A3 p(x) e-- rr
, l< dx
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where T denotes transpose, x = (x, y, z)T, h = (h, k, f)T, and A denotes the edge-length of a cube
containing the electron density. As is customary in crystallography and electron microscopy, we call
x a point in real space and h a point in reciprocal space.

Projection Theorem. We sketch a proof of the projection theorem which states that the 3D Fourier
Transform of p at points on a plane through the origin is equal to the 20 Fourier Transform of the
projection of p onto that same plane; (also see [Cro70], [Dea93], etc.).

A rotation about the origin of the XYZ System to an RST Cartesian System is accomplished by
the transformation r = Ex, where E is a 3 x 3 orthogonal matrix; that is, E is real, invertible,
and its inverse, E-1, is equal to its transpose, E T , It is easy to verify that lengths are invariant:
IIxll = VxTx = ../rTr; e,g., xTx = xT(ETE)x = (Ex)T(Ex) =rTr. Similarly, angles are invariant:
if u =Eh, then h T x = u T r = Ilxllllhl! cos e, Thus, E defines a rotation of the XYZ System about
its origin. Rotations of macromolecules are 'proper' so that the determinant of E is equal to +1 and
thus dx =dr ('improper' rotations have det(E) = ~1). Set p(x) = p(r) =p(ET r), then, by direct
substitution into (2),

(3) F(h) = ~3! p(r) e- 211",u
T

rIA dr = F(u)

(5)

In particular, if u = (u, V, w)T with w =0 and (u, v, O)T =Eh', then

(4) F(h') = ~2!! {~! .0(1', 5, t) dt} e-211"i(ur+<l8)IA dr ds = F(u, v, 0) = P(u, v)

This shows that the 20 Fourier Transform, P, of the 20 projection of the density onto the plane
througn the origin with normal parallel to the t-axis is equal to the 3D transform, F, at points h'
on tne reciprocal space image of the plane of projection.

Application of the Projection Theorem. The macromolecule has finite volume, it is sufficient to
use the limits -A/2 to A/2 for each of the three integrations in (2). Then wnen h = (h, k, t) has
integer components, F(h) is a Fourier coefficient of the periodic ex-tension of p, with period A in
each coordinate direction. Thus its density can be represented as a 3D Fourier Series:

p(x) = 2::F(h)e211"ihTxIA
h

where h hn.c; integer components, h, k, and t. Since 1tr + vs in (4) is equal to u'l'r = (h')Tx, use of
the series representation of p yields

where the components of h' are, typically, not integers. Since

(7) 1 1"1' . {_ e2",[tIAdt =sinc(t)=
A -AI'!.

sin(7i"£)/1l"£
1

ife:;60 }
'[£=0 '

we have, as in [Cro70],

(8) F(h') = P(u, v) = 2:: F(h, k, e) sinc(h - h') sinc(k - k') sinc(t - f).
h,k,[

Evalualion of F(h, k, f). Similar to (5), the projection, p, of the electron density onto the plane
of the pixel frame can be represented as a 2D Fourier Series with period B. The series and its
coefficients, P, are

(9)
~

p(r,s) = 2:: P(u,v)e2"i(lIr+ usl/H,
U,u=-oo

1 I B/2
.) .P(u u) = _ p(n) e-_",(ur+usl! TJ dr ds

, B2 -H/2 ' "
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Figure 1. One-dimensionaJ interpolation on a line parallel to the a.-xes of the 3D grid in the Fourier domain.
The N values of the function at grid points (arrows pointing upwards) are unknown, the ones corresponding
to arrows pointing downwards are the I known/observed values. We can determine by interpolation the
values at grid points for all H-lines and construct the H-grid. Similarly we obtain the K-grid and the L-grid.
Then we can average the three independent values of the function, for every grid point and obtain a final
grid in the Fourier domain.

and P(u, v), with u, v integers, ean be used in (B).
Onp. limits each of the indices to a finite number) say N; then there are N 3 unknown values

F(h, k, f). There are M2 known values of P for each projection and suppose there are vM projections,
with v > (N/lv1)3. For N :::: M, [Ros9B] gives a lower bound on v such that the number of
experimental data is equal to the number of unknowns.

One can solve the resulting linear least squares problem using standard mathematical software,
such as the LAPACK routine SGELSS [And92], which uses the singular value decomposition. The order
of magnitude of the number of arithmetic operations required to solve this system is the product of
the number of equations and the square of the number of unknowns (see [GoI96], p. 263), so when
M :::: N, O(N9) arithmetic operations are required.

Reduction in Arithmetic. In (B), 'IL, v, h, k, and e, are integers and P is evaluated at grid points of
the transformed pixel frame. [Cr070] points out that the computation can be significantly reduced
if h', k' in (8) are the integers h, k. But then the point at which P is evaluated is no longer a grid
point. Instead, (8) reduces to

(10) P(u',v'):::: I:F(h,k,e)sinc(e-e),
where u' and v' are not integers. Because P is not evaluated at a grid point, some kind of interpo
lation must be used to estimate P(u/, v') in terms of values of P(u, v) at grid points.

In (10), hand k are fixed and one has a single system of equations with N unknowns; for vN
pixel frames, and the complexity of the algorithm to solve the system is O(N3). There are N2 such
systems, one fOT each integer pair (h,k). So there arc O(N:» operations required to estimate all the
coefficients F(h, k, e), instead of the O(N9) operations needed to solve (8).

The process can be repeated for each integer pair (h, l) and (k, l) as indicated in Figure 1. As
a result we obtain three estimates for the valuc of each coefficient F(h, k, e) and by averaging the
three estimates the accuracy of the algorithm can bc improved. The three sets of values of the
coefficients F(h ,k, e) corresponding to the pairs (h, k), (h, l) and (k, I) are called the L, J( and H
grid respectively in Figure l.

For each grid, the N 2 systems are independent from each other and they can be solvcd coneur
renlly. This is the basis for the first method we described in [Lyn99).
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4. Projedions onto Slabs. We carried out numerical experiments with our program when
(10) was reduced to a diagonal system. The quantity F(h, k, e) sinc(£ - e') was included on the right
side only if 1£ - £'1 < 1/2. For each £i and the corresponding P(ui, vi), (10) reduces to

(11) P(uj. vi) = F(h, k, £) sinc(£ - £j) + G(h, k, tj)

such that all the other F's are discarded and G(h,k,fi) is the error. The least square solution of
the set of equations (11) chooses F(h, k, £) to minimize E(h, k, £) = L G(h, k, fir' and since

j

dE(h, k, 1)/dF(h, k, I) ~ d [L: j (P(ui, vi) - F(h, k, I) sino(1 - lill'] /dF(h, k, I)

~ 2L: j {sino(I-li)[P(ui,vi)-F(h,k,l)sino(I-li)]}

the least square error is minimized

(12) F(h, k, I) ~ { Jt sino(£ - li)P(ui, vi) } / Jt sino(e - Ii)'

Solving (12) instead (10), reduces the amount of arithmetic by O(N2
).

In this method, values of P are given large weights when £' is very close to £ because sinc(x) is
an oscillating function decaying at the rate of l/x and has its global ma."dmum at x = o.

The resulting electron density values at grid points obtained by a Fourier Synthesis were re
markably close to those obtained, with the same input, by the method described in [Bak88]; the
program described there has been producing electron density values for several years which have
been accepted as accurate. Based on these experimental results, we constructed a model of the
approximations which leads to equations like (10), but having only one term on the right side.

Piecewise Constant Model. Variation of the value inside a pixel square cannot be measured, and
thus we take p to be a piecewise constant function on the pixel frame:

(13) pt(r, s) = Pl(illr,jlls) for Ir - illrl < llr/2, Is - jllsl < !:1s/2, with llr = !ls,

where i and j arc integers, the subscript t denotes a unit vector normal to the plane of the pixel
frame, and (iilr, jlls) denotes grid points at the center of pixel squares.

If we regard this function to be defined on a plane, then we are lead to the system in (10) because,
except at the origin, it is unlikely that any of the grid points of the XYZ system would be in the
plane of the projection of a randomly oriented molecule and similarly for its transforms in reciprocal
space.

We now regard the projection (1) as a function defined on a slab of thickness llr, rather than
on a plane. This not only gives a formulation which is consistent in the three coordinate directions,
but also leads to an algorithm using fewer arithmetic operations, namely, O(NJ ) instead of O(N5 ),

and produces accurate results.
\-Ve take the slab to have thickness !lr, use t to denote a point on the axis normal to the projcction,

and for each point (r, s), we take thc value of the projection to be independent of t so that the left
side of (1) and (13) becomes

(14) ItI < Ilr/2.

This fUIlction is piecclvise constant (because of (13) and (14)) in the three coordinate directions.
5. Grid Points in Slabs. Recall that the HKL System is the reciprocal space of the XYZ System

of the macromolecule. The UV System is the reciprocal space of the pixel frame and the W-axis is
orthogonal to the UV-plane. The 3-by-3 matrix G = (IE is constructed to relate points in the UVW
System and the HKL System:

(15) (u,v,wf =G(h,k,f)T

7
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Figure 2. Slab projection simplified to the 20 case. The ID 'pixel frame' shown on the left, is placed in
its correct orientation in the 20 - Discrete Fourier Transform, DFT, (h,k) domain on the right. The DFT
at a grid point (h;,kj) in the 2D domain is calculated by interpolating the value from the pixel frame, as
indicated by the shaded square. In the original method presented in [Lyn9g], the unknown DFT values along
the h-linc line formed a system of equations with N llllknoWDs. The known values were the intersections of
the h-line with all 1·0 pixel frames.

We are only concerned with points (u,v,w)T in the reciprocal space of the slab and points
(h, k, f.)T in the reciprocal space of the molecule that satisfy

(16) luLlvl :5 M/2, Iwl:5 1/2,

We call the sets of such points satisfying (15) and (16) the lllC£ and UVW systems, respectively.
We want to find sets of integers, h, k, e, in lllC£ and the corresponding u, v, 11) in UVW.

Let Gi,j denote the entry that is in the i-th row and the j-th column of G. Then the equation
in (15) for 11) is

(17)

We choose a pair of integers, h, k, which satisfy (16), and because of the restrictions on 11) in (16),
we need £ which satisfies

(18)

If this condition cannot be satisfied for any integer ewith lfl ::; N/2, then we reject the pair of
integers h, k and choose another pair.

Suppose that the pair of integers h, k are such that (18) is satisfied for integers f i with -N/2 ::;
i\ < ... < fj ::; N/2. Then for such an integer, ei, we have

(19)

If Iud> }r1/2 or IVil > M/2, then we reject the integers h, k, and t j and try another value of e.
When we find integers h, k, f, and corresponding 'lli, Vi, such that (16) is satisfied, then we

have found a grid point in the 1llC£ System which corresponds to a point (u;, Vi, Wi)1' in the UVW
System. In our model, which uses piecewise constant functions, we set the value of P(u, v, 0) equal
to PI(U,V, t), where 1l and V are the integers nearest Hi and Vi, respectively.

Because h, k, [i are integers, the equation (10) with N terms on the right side reduces to

(20) F(h,k,ti ) =Pl(U,V,t),

Here the right side is a known value of the transform of the pixel values.
As described above, one exams each of the N 2 integer pairs h, k; however this O(N2 ) work can

be reduced to O(N) because we know, by use of simple linear algebra, that acceptable pairs lie ill a

8



specific slab of width 6.w containing the origin. Finding the set of acceptable integer pairs reduces
to an integer programming problem but one for which we have very specific information about the
location of its set of solutions.

Figure 2 illustrates the intuition behind the slab method simplified for the 20 case.
6. Estimate of the Electron Density. Because we are dealing with finite sets of points,

Discrete Fourier Transforms (OFT) are used instead of Fourier Transforms.
Each pixel frame produces estimates of the F(h,k,e) for a set of grid points, (h,k,e), near a

plane in the 10:::-£ System. These are obtained from (20) in terms of values of the OFT of the pi.xel
frame. For a fixed grid point, (h, k, f), suppose that there are estimates of F(h, k, f) obtained from S
different pixel frames; denote these values by Fs(h, k, f), s = 1, ... , S. The final estimate of F(h, k, f)
is obtained by averaging:

(21)
1

F(h,k,n = sI: F.(h,k,e)
,

If there are no estimates of F(h, k, f), then F(h, k, e) is set equal to zero.
We accept these as the OFT of the the electron density and invert the transform to obtain the

estimate of the electron density.
7. The Effect of Zero-Fill. We can put an M p x M p array of pixel values into a larger M x M

array; the extra array entries are set equal to zero. We call this "zero-fill" and the amount of fill is
called the "aspect ratio k" J defined by

zero-fill aspect ratio k = MjkIp

After the zero-fill, 20 OFT of the larger array is determined. Here we show the relationship between
the grid spacings of the OFT of the pixel values and the spacing when the domain of the OFT is
expanded to a larger domain with zero-fill (see [Bri95], p. 90 ff).

To be able to display jnformative figures, we simplify the discussion to the case of a 10 set of
pixel values at kIp grid points and a 20 density. As we now show, zero-fill results in interpolation
(and scaling) of the Discrete Fourier Coefficients in reciprocal space; although the domain in real
space increases by the zero-fill factor, the spacing in reciprocal space is reduced by this factor, so
the length of the domain is not changed. An example with k = 2 is shown in Figure 3.

The spacing in real space is .6.4 = AjMp • For even M p , the DFT of f can be written as

(22)

and its inverse as

(23)

The transformed values arc complex. Because f is real valued, the complex valued transformed
function, j, is conjugate symmetric so that its real part is an even function and its imaginary part
is an odd function. The real and the imaginary parts of the transform j arc shown in Figure 3(10)
as piecewise linear interpolants to the values.

The arguments of the exponential can be written in terms of the spacings 6.1· and .6.u of real
space and reciprocal space, respectively, as

2-;r i upjMp = 2-;r i (ujA)(p.4jMp ) = 2-;r i (u.6.u)(p.6.r)

so that the spacings in real and in reciprocal space arc

.6.r = AjMp and

9
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Figure 3. The effect of zero-fill. (la): An 8-point step function; the circles represcnt thc dcnsity inside and
outside a uniform sphcrc. (lb): The real part of the 8-point DFT of (la); the imaginary part is zero because
the step function is symmetric. (2a): The function (2a) with zero-fill factor k = 2; (la) is augmented by
8 zero valucs, indicated by crosses; the spacing is the same as in (la). (2b): The real part of the 16-point
DFT of (2c) multiplied by sqrt2. The spacing in (2b) is half that in (lb). The values, indicated by circles, at
0, ±l, ±2, ±3,4 in (2b) are the same as those in (lb); the 8 values indicate by x's are due to the zero-fill.
This shows that zero-fill in real space results in interpolation (after scaling) in reciprocal space.

respectively. The units of 6.r are Angstroms and those of f},u are reciprocal Angstroms.

In both spaces, there are M p points in a fundamental period. The length of the fundamental
domain of f in real space is M p 6.r = A, and the length of the fundamental domain of j in reciprocal
space is lvlp 6.u = MpJA = O.

Next consider eA-tending the domain of f from Mp grid points to 2Mp points with zero-fill (see
Figure 3 for an example with .Mp = 8). The transform is given by

1 M" .
F" ~!'ITT I: f, exp(-2~,up/2M,).

V 2lv1p _ -AI ,p- ,,+

Because of the zero-fill, fp = 0 for p = ±M/2, ±(M/2 + 1), ... , and we have

(24)

The argument of the exponential can be written in terms of 6.r, 6.u, and 6.U = D.u/2 as

-2rri up/2Mp = -2rri (u/2A) (PA/J.Hp ) = -2rr i (uD.u/2) (pD.r) = -2rr i (uD.U)(p6.r)

The grid spacing D.r in real space does not change length when the length A of the real domain
is doubled to 2A and f is set equal to zero in the extended domain. But, the grid spacing D.U in
reciprocal spac:e, after the zero-fill, is half that of the spacing before the zero-fill. Consequently, the
length of the fundamental domain in reciprocal space after the zero-fill is the same as without the
zero-fill; specifically:

D.U = 6.u/2,

where 11 is the length of the original reciprocal space fundamental domain as well as the fundamental
domain after zero-fill.
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P The number of pixels on the edge of a P x P pixel frame
D The diameter of the sphere in pixel edges
V The number of pixel frames or 'views'
k Zenrfill aspect ratio; the pixel frame is put into a kP x kP array

Table 1. The parameters for the test cases.

Comparing (22) and (24), one sees that Ju = ..j2F2u , II = 0, ±1, ±2,···. Hence, ..;'iF interpolates
to j at these points (see Figure 3).

In this example, we doubled the number of grid points and set f equal to zero at the points
outside the fundamental period. It is easy to verify that if we had used M points, with M > M p ,

and set f equal to zero at the M - !vIp additional points, and kept the spacing f::::.r in real space
constant, then there is no change in the length of the domain in reciprocal space - it is n with
or without zero-fill. The new grid length, D..U, in reciprocal space is a fraction of D..u, the original
reciprocal grid length:

M
D..U = ---..!!..6.u

M '
M

MD..U = M ;; D..u =MpD..u =D.

Similar to the example above, which considered M = 2.Mp , here a value Fu interpolates to jlJ. at
any point vD..U which is a grid point uD..u in the original domain.

Note that zero-fill does not extend the domain in reciprocal space - onC! does not obtain estimates
of Fourier Transform values having longer wavelengths but, one does obtain estimates on a finer grid
in reciprocal space.

These results extend to multi-dimensional transforms. Thus, when the M p x !vIp domain in real
space of the 20 pixel frame is enlarged to M x M with zero-fill, then the grid spacing is reduced by
the factor Mp/M. But the length of the sides of the domain in in reciprocal space is the same before
as after the zero-fill.

Use of subsets of the computed F's The usc of zero llll increases the number of approximate
Fourier coefficients (see Figure 3). The pixel frames arc P x P and the arrays are kP x kP. In order
to reconstruct a density with P x P x P (or fewer) density density values, one must select a portion
of the kP x kP values. Figure 4 shows the effect of using values only close to the origin - clearly
such reconstruction gives inaCCllrate representation. To obtain a reason reconstruction, one must
use value extended across the whole domain. For example in the case illustrated in Figure 4), one
could use values at x = -2,0,2, and 4, but certainly not at x = -1, -1/2,0, 1/2, and 1 (see Figure
3).

B. Nmnerical Errors in 3D Reconstruction. 3D reconstruction is subject to eA"perimental as
well as numerical errors. In this section we address only the problem of numerical errors. To deter
mine the accuracy of the reconstruction method we take a known object and generate projections
for randomly selected orientations.

Then we reconstruct the object from these projections and compare the original values with the
computed ones. Our experiments are conducted using a uniform sphere with a constant density
inside, equal to one, and zero outside, see Figure 5.

\Ve used the piecewise constant model to compute estimates of the values of 3D DFT coefficients.
The parameters for a test case aTe: the size of a pixel frame, the diameter of the sphere, the number
of pixel frames, the aspect ratio for zero-fill, and the size of 3D DFT. The size of output grid is
determined by the size of pixel frame, it is P x P x P for P x P frames. The parameters for a test
care are listed in Table 1.

Vle calculate the estimate of the maximum and minimum pointwise error and also the mean
square error as a function of radius to determine the effect of t.he zero-fill .lnd the number of views.
For the mean square error, we average of the square root of the sum of the squares of the errors in
a set of annular regions inside the uniform sphere; we do not include grid points at the edge of the
sphere where the jump discontinuity occurs.
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Figure 4. U5e of subsets of F. (a),(b),... (f) show the 'reconstruction' obtained by synthesis of subsets of F.
In each case we use a subset consisting of F{O) and its nearest neighbors. This leads to inaccurate values of
the density.
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Figure 5. The original object: a uniform sphcrc_with constant density inside and 7.ero o\lt~ide. The I;cnter
of the sphere with diameter aN with a < 1 coincidcs with the ccntcr of thc cube with edge N.
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Figure 6. The transformation of a P x P pixel frame containing one projection consists of a translation of
the origin and zero-fill. The frame is cut into 4 segments and rearranged in a larger frame of size of kP x kP.
k is the aspect ratio of zero-fill (k = 1.5, in this example), and the centroid of the projection (point 0) is
moved to the upper left corner.

Casel Case 2 Case 3

Aspect ratio k
FrameSize 41 x 41 FrameSize 61 x 61 FrameSize 81 x 81

Diameter 32 Diameter 48 Diameter 64
NumberViews 20100 NumberViews 45150 NumherViews 80802

1 20.16 23.38 24.41
2 6.92 7.97 7.77
4 1.63 2.11

Table 2. Mean square error (%) inside reconstructed uniform sphere. "FrameSb-:e" denotes the number of pix
cis 011 each size of a pixel frame. "Diameter": denotes the diameter of the sphere in Pixels. "NumberViews"
denotes the number of projections used for reconstruction.

We also report some of these same values as obtained with a sequential program widely used by
the structural biology community, EM30R.

The effect of zero-fill.

Before 2D OFT is carried out on pixel frames, the pixel values in the frame are rearranged and
put into a larger frame with the c;\.""tra array entries set equal to zero. Figure 6 illustrates the prOcess
of zero-fill. Errors as a function of the zero-fill aspect ratio k are listed in Tables 2 and 3. The
mean square errors listed in Table 2 decrease from 20 - 25% for k :::: 1 to about 2% for k :::: 4. For
a fixed k, the variation in the error is small as the size of the pixel frame changes with the ratio
(diameter/[frame edge]) being kept nearly constant (about 0.79).

The values in Table 3 list the minimum and maximwn of the density inside the sphere. The
variation of the density becomes smaller when the aspect ratio increases.

The number oj views. The effect of the number of views on the percent errors and on the minimum
and ma.-..:imum errors arc summarized in Tables <1 and 5 for the aspect ratio k :::: 4. For fixed pixel size
and diameter, the variation in the percent error varies very little as the number of views increases.
Similarly, there is little change in the range of computed values inside the sphere.

Case 1 Case 2 Case 3

Aspect ratio k
FtameSize 41 x 41 FramcSize 61 x 61 FrameSize 81 x 81

Diameter 32 Diameter 48 Diameter 64
NumberVicws 20100 NumberViews 45150 NumberViews 80802

1 0.57/1.00 0.50/1.01 0.48/1.00
2 0.86/1.00 0.84/1.01 0.84/1.01
4 0.97/1.00 0.96/1.01

Table 3. The elfe("t of the zero-fill aspect ratio upon the minimumjma.ximum density values inside the
sphere. F'ramf.Size is size of the pixel frames in number of pixels and Diameter i~ the diameter of the sphere
and em NumberViews is of projections used for reconstructiOil. The true value.<; of the electron den~ity arc
1 inside the sphere and 0 outside.
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Case 1 Case 2 Case 3

NumberViews
FtameSize 21 x 21 FtameSize 41 x 41 FtameSize l31 x l31

Diameter 16 Diameter 32 Diameter 48
Aspect ratio 4 Aspect ratio 4. Aspect ratio 4

300 1.68 2.01 2.21
1250 1.41 1.77 1.88
2775 1.39 1.78 1.90
5000 1.34 1.72 1.88

11250 1.67 1.80
20100 1.63 1.05
45150 2.11

Table 4. The effect of the number of projections upon the least square errors (%) in 3D reconstruction.
FrameSizc gives the dimensions of the pLxel frames in number of pixels, Diameter is the diameter of the
sphere in number of pixels, and Num&erViews is the number of projections used for reconstruction.

Case 1 Case 2 Case 3

NumberViews
FrameSize 21 x 21 FtarneSize 41 x 41 FrameSize 61 x 61

Diameter 16 Diameter 32 Diameter 48
Aspect ratio 4 Aspect ratio 4 Aspect ratio 4

300 0.97/1.00 0.96/1.00 0.96/1.00
1250 0.98/1.00 0.97/1.00 0.96/1.00
2775 0.97/1.00 0.97/1.00 0.96/1.00
5000 0.98/1.00 0.97/1.00 0.96/1.00
11250 0.97/1.00 0.96/1.00
20100 0.97/1.00 0.96/1.00
45150 0.96/1.01

Table 5. Tbe effect of the number of projections upon the minimum/maximum density values inside the
sphere. F'rnmeSize gives the dimensions of the pLxel frames in uumber of pixels, Diameter is the diam
eter of the sphere in number of pL"'I:els, and NumberViews represents the number of projections llsed for
reconstruction.

We expect that increasing the aspect ratio of the zero-fill allows us to use fewer projections for
the 3D reconstruction. Table 6 and Figure 7 show the results when the size of pixel frames is 41 x 41
and the number of pixel frames varies from 25 to 200 for zero-fill aspect ratio is 1 and 4. For both
zero-fill aspect ratios, the results converge when the number of pixel frames goes beyond a certain
value (approximately 75 for this case). However, when zero-fill aspect ratio is 4, with the same
number of pixel frames, the results get close to the correct values.

Distribution oj the errors as a function of radius. Figure 8 provides conclusive evidence that the
magnitude of errors increases with the radius. This increase is quite obvious in Figures 8.1b, 8.2b,
8.3b where we display the density function of the radius for k = 1. The oscillation of the graph is
quite obvious in this case. For k = 4 Figures 8 indicate again that the results are improved only
slightly by increasing the number of views.

The effeet of 110ise. Random numbers uniformly distributed between -0.1 and +0.1 were added
to the constant value, p ::: 1, of the density inside the sphere to simulate the effect of the noise

kIF 25 50 75 100 150 200
1 21.67 20.69 20.39 20.81 20.68 20.62
4 8.84 4.47 2.08 1.68 1.85 1.97

Table 6. The effect of the zero-fill aspect ratio, k, and the number of projections, 11, upon the errors (%)
inside the sphere. The true values are 1 inside the sphere and 0 outside.
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Figure 7. TIle effect of the number of views, V, upon the distribution of the density function of the radius
of the sphere. For Figures (la)-(lf), the aspect ratio of zero-fill k = 1; for Figures (2a)-(2f), k = 4. The size
of pixel frames is 011 x 41, and the diameter of the sphere is 32.
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Figure 10. The effect of noise. Pixel values were computed for the 011 x 41 projections of the uniform sphere
with diameter of 32. Theil uniformly distributed random numbers equal to 5% of the ma..ximum projected
density were added to the pixel values.

on the reconstruction process. The results shown in Figure 9 indicate that the noise leads to
noticeable distortion of the sphere. The reconstruction algorithm behaves reasonably well, compare
for example Figure 3(la) with Figure 7(lf) and Figure 10(2a) with Figure 7(2f). The results support
our c),.-pcctation that the reconstruction is more accurate when we usc a larger number of views and
a larger aspect ratio. For the same number of views the effect of increasing aspect ratio is noticeable.
Increasing the number of views has a more pronounced effect for the noisy data than for the noiseless
case.

CompaTi.~on of Tesults 01 pumllel 3D Tecon.~trllction P1YJ9m1Tl with the results plYJduced by the
sequential p7'Ogmm EM3DR. Table 7 lists the mean difference (e), the variance (a) and coefficient
of variation (0) of the difference between the density computed by the parallel program based the
algorithm described in this paper with the density computed by the sequential program, EM3DR.

Both versions of parallel 3D reconstruction program produced results close to those of EM3DR,

Virus Polyomavirus Papillomavirus
Number of views 158 x 60 60 x 60

Si7,e of pixel frame 69 x 69 99 x 99
Si7,c of output 35x35x35 49 x 49 x 49

Average density 289.604 SOAil5
lvlean difference (e) 12.5827 0.7743

Variance (a ) 36.1211 7.8799
Coefficient of Variation (15 ) 12.4726% 9.7922%

Table i. The difference in the densitics computed with a 3D parallel reconstruction program based upon the
illgorithm dcscribed in this paper and the ones computed with a ~equential program.
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FrameSize NumberViews InsideError (%)
21 x 21 45 x 60 28.45
41 x 41 198 x 60 51.29
61 x 61 459 x 60 33.35
81 x 81 831 x 60 32.46

Table 8. The least squaxe errors (%) for 3D reconstruction with a widely used sequential program that uses
icosahedral symmetry. FrameSi.ze and Number Views are the size and number, respectively, of pixel frames.
ITl.~ideErTor is least square error inside the sphere.

FrarneSize NumberViews InMin InMax OutMin OutMax
21 x 21 45 x 60 0.4787 1.0000 0.0000 0.1615
41 x 41 198 x 60 0.9225 1.8677 0.0009 0.4451
61 x 61 459 x 60 0.3715 1.0000 0.0199 0.1870
81 x 81 831 x 60 0.6659 1.5402 0.0859 0.3422

Table 9. The minimum and maximum density for 3D reconstruction with a widely used sequential program
that uses icosahedral symmetry. F'rameSize and NumberViews axe the si7.e and number, respectively, of
pixel frames. InMin and InMax are the minimum and the maximum of the density value inside the sphere,
OutMin and Ou/Max are the values outside the sphere, respectively. The true values arc 1 inside and a
outside.

a sequential program based upon the method described in [Cro70] and widely used for structural
studies using cryo-EM data. The improved algorithm leads to slightly better agreement with the
results produced by the sequential program.

Table 8 indicates that the least square errors are slightly larger than the ones reported above
for zero-fill aspect ratio of 1. Table 9 indicates that the range of density values inside the sphere is
slightl)' wider than the ones reported above even for k = 1. Figure 11 shows the distribution of the
density for for several cases.

9. The performance of a parallel program implementing the 3D reconstruction al
gorithm. A program implementing the algorithm presented in this paper was written and tested
using internal data as described in the previous section as well as several experimental data sets.
The program is written in Fortran, uses the MPI library for communication, and was designed to nm
efficiently on a cluster of inexpensive PCs. We use a cluster of 16, 400 MHz Pentium II processors
running SunOS5.6. Each processor has 25G MB of main memory and a 8 GB disk. The connectivity
is provided by a 100 MBps Ethernet switch. The total cost of the system is about $40K. The actual
performance of this system is comparable for this problem with the performance of a 16 processor
SGI Origin 2000.

The program is based upon a data parallel execution model, all nodes perform essentially the
same computation but on different data. The coordinator node reads the input files containing the
set of projections and the orientation of each projection and then distributes the projections evenly
among the set of available nodes. Then, each node processes the individual frames assigned to it;
first it transforms each frame and expands it, if the zero-fill aspect-ratio k > 1 and then carries
out a 2D DFT. A data exchange stage occurs at the end of the Fourier analysis phase, each node is
assigned a set of linear equations. After solving the linear systems the nodes carry out a 2D DFT
then a global exchange takes place and a 10 FFT completes the Fourier synthesis pha5e. Finally,
the coordinator node gets individual sections of the 3D map from the other nodes and writes the
electron density map out. We have opted for this solution because we do not have a parallel file
system and several nodes reading the input data concurrently and then writing the output density
maps concurrently would lead to an unacceptable performance degradation due to I/O contention.

We are primarily interested in the load balancing properties of the algorithm and in the speedup
of the implementation. \Vhile the tests conducted with the internal data presented in Section 7 gave
us enough confidence in the correctness of the algorithm and its implementation, we used actual data
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Figure 11. The density function of the radius for the sequential program. The size of pixel frames and the
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and Cd) 81 x 81 and 831 x 60.

collected in cryo-EM experiments as shown in Table 10, to further test the correctness of our program.
We used only data for symmetric objects because our objective was to compare our results with the
results produced by a sequential program widely used by the structural biology community. Figure 12
shows the picture of Paramecium Bursaria Chlorella Virus, type 1 (or PBCV_1), reconstructed with
the parallel program using the algorithm presented in this paper, see Cases E and I in Table 10.

A first objective of our analysis is to profile the program and determine the time used for each
execution phase. Table 11 shows that interpolation is the most intensive phase, followed by the
2D Fourier analysis, while solving the linear systems requires a relatively low amount of arithmetic
operations. In [Lyn99] we reported that solving the linear systems was the most time-consuming
phase of 3D reconstruction. The expected improvements of the algorithm described in this paper are
confirmed by the measurements.

Our ne),.-t objective is to study the load balancing properties of the algorithm and the speedup.
Table 12 shows the time used in each node when the program solves one of the problems in multiple
nodes. From the data in Table 12, we can see that the computation is evenly distributed among
multiple nodes. We need to keep in mind that the coordinator is assigned extra duties in the initial
and final phases of the algorithm.

Table 13 shows the seedups, for the nine problems presented above. The speedups are larger
than 1.85 for two nodes, larger than 3.5 for four nodes, range from a low of 3.7 to a high of 6.9 in
eight nodes and from 6.8 to 11.1 in 16 nodes. In case of problem H and I due to the problem size
we were unable to run in one node and report only the speedups relative to the running time in two
nodes.

14. Exploiting symmetry. The 3D reconstruction algorithm was specifically designed for
asymmetric objects. However, when used for objects with known symmetry, such as dihedral,
icosahedral, or other type of symmetry, the symmetry can be used to decrease the execution time
and only a portion of the object has to be reconstructed.

Such a symmetric object is composed of a number ./1 as,ymmetric units, e.g., an object with
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Problem Virus Pixels Views Symmetry
A Polyomavirus (Papovaviruscs) 69 x 69 158 x 60 Icosahedral
B Papillomavirus (Papovaviruscs) 99 x 99 60 x 60 Icosahedral
C Sindbis virus (Alphaviruses) 221 x 221 389 x 60 Icosahedral
D Sindbis virus (Alphaviruses) 221 x 221 643 x 60 Icosahedral
E Paramecium Bursaria Chlorelia Virus, type 1 281 x 281 107 x 60 Icosahedral
F Ross River Virus (Alphaviruses) 131 x 131 1777 x 10 Dihedral
G Bacteriophage Phi29 l!H x 191 609 x 10 Dihedral
H Auravirus ( Alphaviruses) 331 x 331 1940 x 60 Icosahedral
I Paramecium Bursaria Chiarella Virus, type 1 359 x 359 948 x 60 Icosahedral

Table 10. Data for 9 (nine) problems used to test the parallel 3D reconstruction program. The virus family is
indicated in parenthesis. The number of pixels, the number of views/projections and the types of symmetry
are indicated.

Figure 12. The Paramecium Bursaria Chiarella Virus, type 1, reconstructed using the algorithm and the
program discussed in this paper.

Execution Phase A B C
Initialization 0.26 0.13 0.13

2D Fourier analysis 1.75 1.2 75.9
Interpolation 11049 8.34 270.2

Data Exchange for solvesys 0.0016 0.006 0.073
Solvcsys and combine 0.019 0.053 0.611
2D Fourier synthesis 0.067 0.23 4049

Data Exchange for 1D synthesis 0.010 0.027 0.33
ID Fourier synthesis 0.030 0.10 2.15

Gather data 0.0050 0.015 0.18
\Vrite density map 0.2 0,45 3.11

Table 11. Time (in seconds) for each phase of the 3D reconstruction progra.m ror problems A,B and C running
in one node.
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1 2 4 8 16
60.63
57.56
57.55
57.55

91.70 57.55
88.68 57.55

161.99 88.70 57.55

567.22
322.45 158.79 88.69 57.55
318.88 158.81 88.69 57.55

158.76 88.69 57.55
88.69 57.55
88.69 57.56

57.55
57.55
57.55
57.56

Table 12. Time (in seconds) used by each node for problem D, Execution with I, 2, 4 ,8, and 16 nodes.

Input \ Node Number 2 4 8 16
A 1.82 2.79 1.16
B 1.85 2.86 1.54
C 1.82 3.57 6.18 8.59
D 1.76 3.50 6.19 9.35
E 1.73 3.25 4.31 5.98
F 1.94 3.63 6.32 7.73
G 1.92 3.21 5.77 7.00
H 1.93 x 2 4.04 x 2 7.62 x 2
I 1.87 x 2 2.77 x 2 4.84 x 2

Table 13. The speedups attained by the 3D recoustnlction program for the nine sample problems. The la<;t
two problems could only run in two or more nodes.
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icosahedral symmetry consist of A = 60 asymmetric units, one with dihedral symmetry has A = 10.
If a projection plane is normal to the orientation of one of the asymmetric units, then for each of
the other asymmetric units there is an orientation normal to the same projection.

The symmetry of an object allows us to use fewer pixel frames for its 3D reconstruction. One
particle projection can be used repeatedly. For example, in case of icosahedral symmetry, one projec
tion has associated with it 60 orientations; in dihedral symmetry, one projection has 10 orientations.
This allow us to carry out the Fourier Transform of a pixel frame only once and use the transform
A times in estimating the 3D OFT by interpolation. In case of a symmetric particle the number of
arithmetic operations increases, because the nwnber of projections is multiplied by A. At the same
time we have a corresponding reduction in the amount of I/O operations and the input data size
simply because we reduce the number of projections by A.

The symmetry in real space imposes symmetry in reciprocal space and this effect can be used
to reduce the number of arithmetic operations required to compute the 3D OFT. For example to
reconstruct an object with icosahedral symmetry, we only need to estimate the 3D OFT in one of
the octants instead of four. This results in the reduction of the number of arithmetic operations for
interpolation as well as in solving linear systems by a factor of four.

11. Motivations for using parallel algorithms for 3D reconstruction of asymmetric
objects. The 3D reconstruction algorithm proposed by Crowther [Cro70] almost 30 years ago has
been used extensively by the structural biology community ever since. The algorithm is based upon
Fourier-Bessel Transforms and can be used for reconstruction of symmetric objects.

The protein shell of a spherical virus exhibits various degrees of symmetry, but the core of
the virus consisting of genetic material does not. Structural studies of the virus core provide the
motivation for 3D reconstruction algorithms of asymmetric objects.

The amount of experimental data for the reconstruction of an asymmetric object is considerably
larger than the one for a symmetric one as discussed in Section 14. While a typical reconstruction
of an icosahedral virus at say 20A resolution may require a few hundreds projections, e.g. 300, the
reconstruction of an asymmetric object with the same dimensions and at the same resolution would
require 60 times more data, i.e. 18,000 projections.

X-ray crystallography is the only method to obtain high resolution (2.2.sA) electron density
maps for large macromolecules like viruses, while unW recently electron microscopy was only able to
provide low resolution (20A) maps. Crya-EM is appealing to structural biologists because crystallizing
a virus is sometimes impossible and even when possible, it is technically more difficult than preparing
samples for microscopy. Thus the desire to increase the resolution of cya-EM methods to the sA range.
In the last years results in the 7-7.sA range have been reported, [Bot97J, [Con97]. But increasing the
resolution of the 3D reconstruction process requires more e),:perimental data. It is estimated that the
number of views to obtain high resolution electron density maps from crya-EM micrographs should
increase by two order of magnitude from the current hundreds to tens of thousands.

The amount of experimental data may further increase because structural studies of even larger
virus-antibody complexes may be necessary. La.<;t but not least, using larger zera-fill aspect ratios
to improve the accuracy of 3D reconstruction will increase the number of arithmetic operations and
the amount of space needed for reconstruction. Thus it is not unrealistic to expect an increase in
the volume of experimental data for high resolution asymmetric objects by three to four orders of
magnitude in the next future.

Even though nowadays faster processors and larger amounts of primary and secondary storage
are available at a relatively low cost, the 3D reconstruction of asymmetric objects at high resolu
tion requires computing resources, CPU cycles, primary and secondary storage, well beyond those
provided by a single system. Thus the need for'parallel algorithms.

12. Preliminary results on a high performance system.
The parallel program implementing the algorithm presented in this paper can benefit from the

ample computing resources of a parallel computing system. Faster processors, larger main memory
and secondary storage space, higher communication bandwidth and reduc:ed communication latency,
lead to reduced execution time and better speedups.

We ported the parallel program 1.0 an IB~I'I SP2 system with 64 nodes each with four-processors.
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I Symmetry IViewsPixelsVirus

A Polyomavirus (Papovaviruses) 99 x 99 60 x 60 Icosahedral
B Paramecium Bursaria Chlorella Virus, type 1 281 x 281 107 x 60 Icosahedral
C Auravirus ( Alphaviruses) 331 x 331 1940 x 60 Icosahedral
D CIV Chilo lridiscent Virus 342 x 342 667 x 60 Icosahedral
E Herpes Virus 511 x 511 173 x 60 Icosahedral
F Ross River Virus (Alphaviruses) 131 x 131 1777 x 10 Dihedral
G Paramecium Bursaria Chlorella Virus, type 1 359 x 359 948 x 60 Icosahedral
H Bacteriophage Phi29 191 x 191 609 x 10 Dihedral
1 Sindbis virus (Alphaviruses) 221 x 221 389 x 60 Icosahedral
J Sindbis virus (Alphaviruses) 221 x 221 643 x 60 Icosahedral
]( Polyomavirus (Papovaviruscs) 69 x 69 158 x 60 Icosahedral

I Problem I

Tobie 14. The 11 (eleven) problems used to test the parallel 3D reconstruction program on an IBM SP2. The
virus type, the number of pixels, the number of views/projections and the types of symmetry are indicated.

J QQ1HGFEDc( ProccssoIS IT:] B

1 13.4 1126.1 437.2 470.9 519.5 612.7 28.0
2 8.4 566.4 3553.7 972.7 223.4 2335.0 241.0 262.8 413.6 14.1
4 4.5 287.6 1801.2 498.7 115.8 1186.3 126.9 136.0 210.5 7.4
8 2.6 149.6 968.2 265.4 376.9 64.2 617.7 72.1 71.0 110.0 3.9
12 1.9 102.2 635.4 184.7 278.9 47.7 420.1 60.1 51.1 77.0 2.9
16 1.6 78.9 493.3 146.8 266.4 38.3 337.5 39.7 39.5 59.7 2.2
20 1.3 67.1 421.2 122.9 181.6 31.7 269.0 34.7 32.7 50.3 1.9
24 1.2 55.9 339.6 104.4 165.1 27.5 232.0 30.2 28.7 44.4 1.6
28 1.2 50.8 307.4 93.0 151.4 23.7 204.4 28.7 25.4 37.6 1.6
32 1.2 46.6 275.9 84.2 132.5 21.8 186.7 22.3 23.7 35.1 1.5

Table 15. The execution time in seconds of the parallcl3D reconstruction program in 1,2,4,8,12,16,20, 24,28,
and 32 processors on the IBM SP2. The 4 processors in each node share the node's main memor)' and
commllnicate using MPI with local processors and with processors in a different node. The execution time
does not include the time to write out the 3D electron density map.

The processors are POWER II, running at 375 Mhz, each node has 4 GBytes of main storage and
has a 36.4 GByte disk.

We ran the parallel program using 1 to 32 processors for the cleven problems in Table 14.
The results <lIe summarized Table 15. The speedups are good for large problems, B-H. Memory
limitations prevented us from running problems, C, D, E, and G in one processor.

To assess the quality of the results produced with the parallel program we compared several
electron density maps produced by our program with the ones produced by the sequential program.
In Figures 13 and 14 we show a central cross-section, section 171, of the electron density map
obtained with the parallel and with the sequential program respectively. The result in Figure 14 is
from reference [YanOO]. The virus is a lipid-containing, dsDNA icosahedral virus, the Chilo Iridescent
Virus, CN, with a diameter of 1850A. The virus has a layered structure consisting of a dsDNA
protein core, surrounded by a lipid bylayer and icosahedral capsid shells consisting of thousands of
subunits. The outer diameters of the virus capsid range from 1615A along the two and three-fold
a"'(es to 1850A along the five-fold axis [YanOO].

13. The effect of the CTF corrections. The relationship between the electron image of a
specimen and the specimen itself is described by the Contra,<;t Transfer FUnction, CTF, (Bak98J. The
phase and the amplitude of the CTF are characteristic to a particular microscope, the specimen,
and the conditions of imaging.

The CTF that enables the visualization of unstained specimens must be compensated in the
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Figure 13. Crosssection 171 of the ClV, Chilo Iridiscent Virus at 27A resolution. The reconstruction is done
with the parallel program based upon tbe algorithm prcsented in this paper and running on an SP2 system.
The time to produce the electron density map is 280 seconds using 32 processors. The size of a frame is
342 x 342 pi.xels. The zero fill aspect ratio is k = 1.5. The image for k = 1.5 is slightly bctter than that for
k = 1.0.

Figure 14. Crosssection 171 of the CIV, Chilo Iridiscent Virus at 27..\ resolution. The 3D reconstruction
is done with the sequcntial program based upon all 3D algorithm due to Crowther. The size of a frame is
342 x 342 pixels and it is zero filled to 512 x 512. The image is from [YanODj. The time to produce the
electIOn density map is more than two hours using 11 400 1-1hz Alpha processor with 500 ~'IByte.~ of memory.
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Figure 15. Crossscction 80-83 ofph:X174, a bacteriophage virus with icosahedral symmetry at 10 Are.501ution
without CTF correction.

Figure 16. Crosssection 80-83 ofph:X174, a bacteriophage virus with icosahedral symmetry at 10 Aresolution
with CTF correction.
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reconstruction on order to achieve a reliable representation of the structure. The transfer function
reverses, removes, and attenuates data in the image. The effects of the transfer function are more
important at higher resolution. One can correct the transfer function by Winner filtering.

Our algorithm allows an effective CTF correction. In the interpolation phase we weight experi
mental data points coming from different micrographs with the corresponding value of CTF.

Figures 15 and 16 show cross-section 80-83 of ph:X174, a bacteriophage virus with icosahedral
symmetry at 10 A resolution without and with CTF correction. The improvement in the quality of
the reconstruction is visible.

14. Conclusions.
In this paper we discuss an improvement of our 3D reconstruction algorithm for objects without

symmetry based upon Fourier analysis using Cartesian coordinates [Lyn97j, fLyn99] which, for
reconstruction at points of an N x N x N grid, uses G(N3 ) arithmetic operations instead of G(NS).

Though developed for structural biology studies the algorithm is general and can be used for any
applications to reconstruct a 3D object from its 2D projections.

We report the results of an error analysis that shows that embedding the pixel frames into larger
arrays, a technique we call "zero-fill" J helps lower the numerical errors in the reconstruction process
but increases the amount of space and the number of arithmetic operations. For example we can
reduce the error inside a uniform sphere from about 25% for a zero-fill aspect ratio of k = 1 to less
than 4.5% for k = 4. For the sake of completeness we report on errors both inside and outside a
uniform sphere though for practical purposes only the errors inside matter.

The magnitude of the least square errors of a 3D reconstruction program based upon the algorithm
presented in this paper is slightly lower than the OIles for a sequential program based upon one of
the algorithm described in [Cro70j when the zero-fill aspect ratio is one and significantly lower when
we increase k.

In practice, the data collected in cryo-electron microscopy is subject to experimental errors due
to various factors e.g. variations of the intc!llsity of the beam, the non-uniform layer of ice, and
other sources of noise. Additional errors occur when extracting the individual projections from the
micrographs, determining the center of each projection, etc. The traditional wisdom is that using
a number of projections much larger than the minimum number required for reconstruction, see
[Ros98], the effect of errors can be overcome. Indeed many structures have been solved along the
years yet the reconstruction was carried out at relatively low resolution.

Our results confirm our intuition that errors have a non-uniform distribution, the further we are
from the center of the sphere the larger arc the errors. We studied also the effect of the number of
projections upon the magnitude of errors. Since we are performing a Monte Carlo calculation, we
expect that the least square error should decrease as 1j-Jnumber oj views. Interestingly enough,
the least square errors seem to decrease even slower than the rate above, e.g. in one case, the error
in the density inside a uniform sphere was only 4.59 % for 1250, 4.51 % for 5000, and 4.45 % for
20100 projections.

We profiled the program and report results regarding the parallel aspects of our algorithm, namely
load balance and speedup. As expected, the most time consuming phases of the program execution
arc: (a) the interpolation, (b) the 20 Fourier analysis, and (c) the initialization phase where input
files containing the projections and the orientation of each projection arc read in. Recall that in our
previous experiments [Lynggj we reported that the most time consuming phase of the program was
solving linear systems.

The load balancing results are very good. In most cases the execution times of all but the
coordinator node are within 1 % of each other. The need to exchange data among nodes ilnd to
synchronize after eClch phase reduces somewhat the speedup on realistic problems. \Ve report on
the results of 3D reconstruction for 8 virus structures. The speedup in 4 nodes is about 3.5, ranges
from a low of 3.7 to a high of 6.9 for 8 nodes and is in the range of 7 to 11 for 16 nodes. While
the problem size may be too small in some of the cases we report on there is no doubt that further
improvements in the implementation of the algorithm are needed.

The original experiments reported in this paper were conducted on a low-cost parallel system
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consisting of a cluster of 16 Pentium II processors running at 400 MHz, each with 256 MB of memory,
interconnected by a 100 Mbps Ethernet.

Preliminary results on an IBM SP2 parallel machines are also reported. The speedup relative to
a sequential program is impressive and the quality of the solution is comparable.

The results reported here are only for symmetric particles. No experimental data for asymmetric
particles were available to us. The number of particle projections necessary for the reconstruction
of an asymmetric particle is almost two orders of magnitude larger than for one with icosalledral
symmetry. We attempted to reconstruct the CIV without imposing the known icosahedral symme
try, using the few hundred projections available to us but, as expected, the results were not very
encouraging due to the insufficient amount of experimental information.

15. Acknowledgments. The authors are grateful for many insightful discussions with Timothy
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