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AN AGENT-BASED NETCENTRIC
FRAMEWORK FOR
MULTIDISCIPLINARY PROBLEM
SOLVING ENVIRONMENTS (MPSE)

8. Markus, E. N. Houstis, A. C. Catlin, J. R. Rice, P. Tsompanopoulou, E. Vavalis, D,
Gottfried, Ke Su, G. Balakrishnan

ABSTRACT

The process of profefyping is part of every scientific inquiry, product design, and learning
activity. The new economic realities require the rapid prototyping of manufactured artifacts
and rapid solutons to problems with numerous interrelated elements. This, in mem, requires
the fast, accurate simulation of physical processes and design optimizaton using knowledge
and computational models from muitipse disciplines (mnlti-plysics and malti-seale smodels) in science
and engineerng. Thus, the realization of rapid multidisciplinary prototyping is the new
grand  challenge. In this applicadon sccnaro the nawral computational resource is a
“computational grid” that connects the needed distributed hardware and software resources
used to simulate the elements of the artifact. Our research goal is to address this application
scenano in the context of parallel computing, cluster computing (LAN based computational
grids), and Intranct/Intemet computational grids. In this document, we describe the initial
design of a generic MPSE framework based on a network of computational agents assuming
a net-centric run-time support cnvironment. Morcover, we present the realization of this
framcwork for designing a prototype MPSE (GasTurbnlab) for supporting simulations
needed for the design of efficicnt gas turbine engines.
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SECTION 1: INTRODUCTION

[t is predicted that in the next century, the available computational power will enable any one with
access to a computer to find an answer to any question that has a known or effectively computable
answet. The recently proposed concept of problem solving environments (PSEs) [5][8] promises to
contribute toward the realizaton of this prediction for physical modeling and to provide students,
scientists, and engineers with environments that allow them to spend more time doing science and
engineering rather than computing.

The predicted growth of computational power and network bandwidth suggests that computational
modeling and expetimentation will be one of the main tools in big and small science. In this scenario,
computational modeling will shift from the current single physical component design to the design of
2 whole physical system with a large number of components that have different shapes, obey
different physical laws and manufacturing constraints, and interact with cach other through
geometric and physical interfaces. For cxample, the analysis of an engine involves the domains of
thermodynamics (behavior of the pases in the piston-cylinder assemblies), mechanics (kinematics
and dynamic behaviors of pistons, links, cranks, etc.), structures (stresses and strains on the parts)
and geometry (shape of the components and the structural constraints). The design of the engine
requires that these different domain-specific analyses interact in order to find the final solution. The
different domains share common parameters and interfaces but each has its own paramecters and
constraints. We refer to these multi-component based physical systems as multi-physics applications
(MPAs). The realization of the above scenanio, which is expected to have significant impact in
industry, education, and training, will require the development of new algorithmic strategies and
software for managing the complexity and harvesting the power of the expected HPCC resources; it
will require PSIZ technology to support programming-in-the-large and reduce the overhead of HPCC
computing. The main research thrust in this area should be to identify the framework for the
numerical simulation of multi-physics applicadons and to develop the cnabling theories and
technologies needed to support and realize this framewotk in specific applications. The MPSE is the
software implementation of this framework. It is assumed that its elements are discipline-specific
problem solving environments. The MPSE design objective is to allow the natural specification of
multl-physics applications and their simulaton with intemcting PSEs through mathematical and
software interfaces across networks of computational resources. In this document, we desctibe a
software architecture for MPSEs and its implementation for an MPA related to the simulation of gas
turbine engines.

This document is organized as follows: Section 2 defines the concepts of PSE and MPSE and
reviews the assoctated research issues. Section 3 presents the gas turbine engine MPA. Section 4
discusses an MPST, referred to as GasTurbnLab, for the simulation of gas turbine engines. In section
5, we describe the application software infrastructure in the GasTurbnLab prototype. In section 6,
we describe the architectural components for a generdc MPSE framework, along with issues
pertaining to the GasTurbnLab instantiation of this MPSE framewotk. In Section 7, a prototype
implementaton of the GasTurbnLab MPSE is described. We conclude our discussion in Scction 8,
with an analysis of the overall MPSE framework architecture and the major challenges in validating
this architecture and its prnciple objecaves through the implementation of the GasTurbnLab

prototype.

SECTION 2: MPSEs - DEFINITIONS AND RESEARCH ISSUES

In the following we define the PSE and MPSE concepts, and review the associated research issues.




SECTION 2.1: PSEs AND MPSEs

Domain Specific PSEs. Evcn in the carly 1960s, scientists had begun to envision problem-solving
computing environments not only powerful enough to solve complex problems, but also able to
interact with users on human terms. The rationale of our research is that the dream of the 1960s will
be the reality of the 21 century: High performance computers combined with better algorithms and
better understanding of compurtational science have put PSEs well within our reach.

WVhat are PSEs? A PSE is a computer system that provides all the computational facilives needed to
solve a rarget class of problems. These facilities incdlude advanced soludon methods, automatic
selection of appropriate methods, use of the application domain's language, use of powerful graphics,
symbolic and geometry based code generation for parallel machines, and programming-in-the-large.
The scope of a PSE is the extent of the problem sct it addresses. This scope can be very narrow,
making the PSE construction very simple. Nevertheless, even what appears to be 2 modest scope can
be a serious sciendfic challenge. For example, we have created a PSE for bioseparation analysis [1][9].
This has a narrow scope, but is still 2 complex challenge as we incorporate both a computational
model and an experimentzl process supported by physical laboratory instruments. We are also
creating a PSE called PDELab for partial differental equations (PDEs) [24]. This is a far more
difficult area than bioseparation and the resulting PSE will be less powerful (less able to solve all the
problems posed to i), less reliable (Jess able to guarantee the correctness of results), but more generic
{more able to parse the specifications of many PDE models). Nevertheless, PDELab will provide a
quantum jump in the PDE solving power delivered into the hands of the working scientist and

engineer.

What are the PSE refated research issues fo be addressed? A substantive rescarch cffort is needed to lay the
foundations for building PSEs. This effort should be directed towards 1) a PSE kernel for building
scientific PSEs [26], if} 2 knowledpe based framework to address computational intelligence issues for
PSEs [10][16] and for PDELab, iii) infrastructure for solving PDEs [11][12][13][23][25], and iv)
parallel PDE methodologies [2][17][18][27]{28][29] and virtual computatonal cnvironments

[41015]1[31].

MPSEs for prototyping of physical systems. If PSEs are so powerfiil, what rhen iy an MPSE? In simple
terms, an MPSE is a framework and software kernel for combining PSEs for tailored, flexible
multidisciplinary applications. A physical system in the real world normally consists of a large number
of components that have different shapes, obey different physical laws and manufacturing/design
constraints, and interact through geometric and physical interfaces. Mathematically, the physical
behavior of each component is modeled by a PDE or ODE system with vadous formulations for the
geometry, PDE, ODE, intecface/boundary/linkage and constraint conditions in many different
geometric regions. It is difficult to imagine creating a monolithic software system to accurately model
such a real problem with complicated actifacts such as the turbo engine, which has literally hundreds
of odd shaped parts and a dozen physical phenomena. Therefore, one needs an MPSE
mathematical/software framework which, fitst, is applicable to a wide variety of practical problems,
sccond, allows for software reuse in order to achieve lower costs and high quality, and, fnally, is
suitable for some reasonably fast numerical methods. Most physical systems and manufactured
artifacts can be modeled as a mathematical network whose nodes represent the physical components
in a system or artifact. Each node has a mathematical model of the physics of the component it
represents and a solver agent for its analysis. Individual components are chosen so that each node
corresponds to a simple PDE or ODE problem defined on a regular geometry.



SECTION 2.2: THE RESEARCH ISSUES

What are the mathematical netwark methodologies required? What are the research issnes? There exist many
standard, reliable PDE/ODE solvers that can be applied to these local node problems. In addition,
there are nodes that correspond to interfaces (e.g. ODEs, objective functions, relations, common
parameters and their constraints) that model the collaborating parts in the global model. Moreover,
the analysis of an artifact changes through time, thus some of the interfaces appear and disappear
during the analysis session. To solve the global problem, we let these local solvers collaborate with
each other to relax (i.e., resolve) the interface conditions. An interface controller or mediator agent
colleets boundary values, dynamic/shape coordinates, and parameters/constraints from neighboring
subdomains and adjusts boundary values and dynamic/shape coordinates to better satisfy the
interface conditions. Therefore, the network abstraction of a physical system or artifact allows us to
build a software system that is 2 network of collaborating well-defined numerical objects through a
set of interfaces. Some of the theoretical issues of this methodology have been addressed in [19],
[20], [21] and [22] for the case of coliaborating PDE models. The results obtained so far verify the
teasibility and potential of network-based prototyping.

What are the software methodologeer for implementing the mathemaltical network? What are the research issues? A
successful architecture for PSEs requires heavy reuse of existing software within a modular, object
odented framework consisting of layers of objects. The kernel layer integrates those components
common to most PSEs or MPSEs for physical systems. We observe that this architecture can be
combined with an agent-oriented paradigm and collaborating solvers [3] to create MPSE as a
powerful prototyping tool. MPSEs must exploit and build on the new technologies of computing. By
the time MPSEs are operational, the advances in computing power and the communication
infrastructure will allow ubiquitous high performance computing, i.e., every where by every onc. The
designs for MPSE must be application and user ddven. An MPSE must simultaneously minimize the
effort and maximize the solution power delivered to researchers, engineers and scientists, students,
and trainees. We should not testrict our design just to use the current technology of high
performance computers, powerful graphics, modular software engineering, and advanced algorithms.
We see MPSE as delivering problem solving services over the Net. This viewpoint leads naturally to
collaborating agent-based methodologies. This, in tum, leads to very substantial advantages in both
software development and quality of service as follows. We envision that a user of a MPSE will
receive at his location only the user interface. Thus, the MPSE server will export to the user's
machine an agent that provides an interactive uscr interface built on top of the standard services of
the Net. The bulk of the software and computing is done at the server's site using software tailored
to a known and controlled environment. The server site can, in turn, request services from
specialized resources it knows, e.g., a commercial PDE solver, a proptietary optimization package, a
1000 node supercomputer, an ad hoc collection of 122 workstations, a databasc of physical
propertes of materials. Each of these resources is contacted by an agent from the MPSE with a
specific request for problem solving or information service. Again, all this collaboration is built on
standard network services. All of this can be managed without involving the user (if desired), without
moving software to arbitrary platforms, and without revealing source codes.

What are the design objectives of an MPSE for physical system design? What are the research issses? These
mathematical networks can be very big for major applications. For a realistic turbine simulaton, there
arc perhaps 100 million vadables and many different time scales. This problem has very complex
geometry and is very non-homogeneous. The answer (a data sct thar allows one to display an
accurate approximate solution at any point) is 20 gigabytes in size and requires about 10 teraflops to
compute. This data set is much smaller than the computed numerical solution. The network of PDE
solvers might have 10,000 subdomains and 35,000 interfaces. A software network of this type is a
natural mapping of a physical system and simulates how the real world evolves. This allows the use
of the software parts technolopy (object-oriented programming) that is the natural evolution of the
software library idea. It allows software reuse for easy softwarc update and evolution, things that




are extremely important in practice. The real wotld is so complicated and diverse that we believe it is
impracdcal to build monolithic, universal solvers for such problems. Without software reuse, it is
impractical for anyone to create on his own a large software system for a reasonably complicated
application. Each ncw automobile nomnally results in 2 new software system. Recrcating such 2
system could easily take several months or years. In contrast, the execution time to perform the
required computation might only be a few days. Notice that a prticular design change usually
corresponds to replacing, adding, or deleting a few nodes in the network with a corresponding
change in interface conditions. These are simple manipulations on a network, which do not affect the
rest of the system and can thus be easily done. In this application, each physical component can be
viewed both as a physical object and as a software object. In addition, this mathematical network
approach 1s naturally suitable for parallel computing as it exploits the parallelism in physical systems.
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Figure 1 View of a gar turbine showing sonte of its detail, somse of its operational characteristics and the engineering
methadolagies invalved in its design, simulation and construction.

One can handle issucs like data partition, assignment, and load balancing on the physics level using
the structure of a given physical system. Synchronization and communication are controlled by the
mathematical nerwork specifications and are restricted to interfaces of subdomains, which results in a
coarse-grained computational problem. This is especially suitable for today's most advanced parallel
supercomputer architectures. ‘The network approach also allows high scalability. Realizing this MPSE
technology requires research advances both in the general structure and implementation area and in
more specific areas from the target applications. For example, we must design and create the tools
that allow the MPSE agents to collaborate over the Net. We must create a flexible and general
methodology for interfacing large and heterogeneous software systems. Following we propose a
software framework for MPSEs supporting PDE based applications and realize it for a multi-physics
application related to the simulation of gas turbine engines.




SECTION 3: THE GAS TURBINE ENGINE MULTIDISCIPLINARY APPLICATION

The gas tutbine engine is an engineering tdumph. It has more than 1,300 parts with rotational speeds
to 16,000 pm for axial and 50,000 tpm for radial flow components. For aircraft applicatons, it
operates with maneuver loads of up to 10g, with flow path pressures and temperatures to 40
atmospheres and 1400 F. The extreme complexity and high-performance requircments of aircraft
gas turbines are illustrated in Figure 1. The important physical phenomena take place on scales from
10-1000 microns to meters. A complete and accurate simulation of an entire engine is enommously
demanding; it is unlikely that the required computing power, simulation technology or software
systems will be available in the next decade. The primary goal of the GasTurbaLab reseatch project is
to advance the state-of-the-art in very complex sciendfic sirulations and their validaton.
Specifically, we consider simulating the compressor-combustor-turbine coupling in a gas turbine
engine [6]. For this we plan to design and implement a MPSE, refetred as GasTurbnLab, to study
complex physical phenomena such as stall, surge and turbine blade fatigue. Figure 2 presents an
abstraction of a MPA and the comesponding software infrastructure. The hardware infrastructure
assumed for these simulations and the implementation of MPSE consists of a computational grid
involving a SP-2, 128 PC cluster running Solaris, and SGI Origin 2000 with 32 CPUs. In this study
we will utilize the agent system Grasshopper that is MASIF (Mobile Agent System Interoperability
Facilities Specification) standard compliant and runs on the top of CORBA [32]. Details of this
implementation follow.

SECTION 4: GASTURBNILAB: A PROTOTYPE MPSE FRAMEWORK FOR GAS TURBINE
ENGINE SIMULATIONS

In this section we describe the design of 2 MPSE framework that can be used to simulate complex
multi-physics phenomena governed by PDE network models in general and the requirements of the
GasTurbnLab MPSE in particular {5]. A network of distributed machines is assumed as the hardware
infrastructure. The PDE simulations are often defined on geometric domains. Thus, the natural
geometric boundaries or artificial geometrdc boundaries can be used to split the problem and the
undedlying simulation into many smaller sub-problems. FEach sub-problem is then solved
independently, with mediator interactions along the boundaries for interface relaxation [19], [20] and
[22]. Thus, the MPSE framework for PDE simulations must support domain decomposition with
geometric objects, usage of a network of PDE solver agents, and interface relaxaton. Figure 3 gives a
brief overview of this simulation paradigm. Our design goal in GasTurbnLab MPSE is to identify
cxisting software solvers that can support this paradigm assuming that the application computational
resources consist primarily of “legacy” code.

SECTION 4.1: FUNCTIONAL SPECIFICATIONS OF GASTURBNLAB

In the case of PDE simuladons, the MPSE framework user intecface is driven by the underlying
geometric modularity of the problem. The gcometry is assumed to have a root node for the target
object and the user is allowed to subdivide it in multiple ways, resulting in a hierarchy of geometrical
objects. The interface would allow user-access to relevant data associated with the geometric objects
at every level,
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Frigare 2: Functional view of a multidiseiplinary PSE. The compatations (and the major data exchange) are concenfraied
in the network of solver (PSE) and mediator agents. The solver agentr communicate with the recommender ones through
gueries fo obtain “advice” on computational parameters. The wier interacis with the sysiem through the global and focal
siser inierfaces, which send queries and rreeive replies from the varions agents.

This geometrdc domain decomposition of the target simulation object defines a network of PDE
problems. On each subdomain, a PDE problem models the physics on that geometric object
(domain). Each subdomain has some neighbors and, possibly, some fixed boundaries. If each
neighborhood connection is represented by an arrow, we get an abstraction of a network of PDE
problems. Since the PDEs on each domain are usually not the same, these represent a composite
PDE problem. The MPSE framework maps the network of PDE problems resulting from a user-
specified partiioning onto a sct of computational agents on a pre-specified collection of machines.
This resource allocation will be done in an optimal manner to minimize the communication
overheard between computational agents of neighboring subdomains, However, the MPSE
framework interface would allow the user to manipulate this mapping to achieve a custom resource
allocation.

Under the assumption that any single PDE problem of the composite problem can be solved exactly,
the interface relaxadon mathematical technique will be used to solve the composite PDE problem.
The interface rclaxation methodology is based on the iteration shown in Figure 3. In the
GasTwtbnLab MPSE, the inital target object is the entire gas tutbine engine. A GasTurbnLab
simulation consists of a user-specified set of geometrical objects that partition the engine and a
corresponding network of PDE solver agents that collaborate to find 2 solution for the composite
PDE problem. The geometrical objects that partition the engine may be hierarchical, resulting in a
cotresponding set of hierarchical computations in an asynchronous simulation process.
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Figure 3 Interface relaxation iteration.

SECTION 4.2: ENABLING TECHNOLOGIES AND SOFTWARE INFRASTRUCTURE

Utilizing existing technology and legacy software is an important goal in the design of this MPSE
framework and its protorype implementation, GasTurbnLab. The MPSE framework is built across
three main architecrural components - the user inferface layer, the middleware, and the compntational software
infrastructure layer. The IRIS Explorer application builder and visualizadon system [33] is used for the
MPSE framework user interface and the middleware component is based on the Grasshopper mobile
agent platform [32]. The computational infrastructure is dependent upon the MPSE’s target class of
simulation problems. This computational application software infrastructure is discussed in Seetion 5.
Figure 4 depicts these architectural layers and their major constituents for the GasTurbnLab PSE.

Figure 4 Majer componenis of the GasTurbnlab MPSE.




SECTION 4.3: GRAPHICAL USER INTERFACE

The IRIS Explorer system is a toolkit for building user intecfaces for data visualizaton, and uses a
data flow paradigm. The interface is built by creating the requisite modules and wiring them together
via Explorer’s map editor. The connections in an Explorer map depict the flow of data between
modules and act as module triggers. Modules have input ports and output ports, interactively
controllable parameters and the ability to execute on different machines on a network. A module is
activated when all its input ports are triggeted. IRIS Explorer allows modules written in C/C++ to
issue scripting commands. The SKM language with Lisp-like syntax is used to create these scrpts for
the Explorer command interface.

IFFY:

Dispatch Module

Problcn;& i[()jtl.-ﬂc:'-:ﬁcnl:iun ? F * T
=

Compute Module

., S

Visualizadon Module

Figure 4 IRIS Explorer tap Jevel user interface for the GasTurbnlab MPSE.

The Explorer interface provides access to all MPSE framework components that are user-steerable,
including problem specificaton, simuladon launch and control, and solution visualization. Users
define the target simulation object (domain) and its geometric domain decomposition with the
Prablers §pecification Modnte. User-sclected subdomains of the target object are passed to the TrueGrdd
software tool [34], which is incorporated into the module as a self-contained system. TrueGrid is
applied to each subdomain to generate a prid and define boundary conditons. The Problem
Specification Module provides tools for specifying interface conditions between the subdomains and
assigning solvers and their parameters to each subdomain. This information is the required input for
the Dispateh Module.

Users launch the simulation via the Dispateh and Compute Modules, which interact with the underlying
Grasshopper agent platform. Grasshopper’s graphical monitordng tool is used within the Compute
module to view and monitor the underlying agent interactions in the simulation process for possible
computational steering. Once the Compute Module completes its simulation task, control is retumed
to the Explorer interface for the solution visnalization and analysis phases. Explorer’s data
visualization module, Rewdkr, is uiilized by the Vismalizaion Module for post-simulation solution
display and analysis. Render is a built-in Explorer module which displays a geometric object,
rendered from a 3D geometry structute sent to it by a compatible preprocessing module. Render
provides a wide selection of visual enhancement techniques for manipulating and examining a display
object. The GasTurbnlab Vimalization Module (Vimalizer) is the first Explorer module to be
implemented. A bref descrption of its implementation and some solution images from the
prototype simulations (presented in Scction 6) follow.
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The Visualizer displays the final solutions for the simulation of any number of subdomains by any of
the integrated legacy solvers. The Viswalization Module can be viewed as an integrated system of
preprocessing  programs, preprocessing modules and Render. The Visualizer's preprocessor
recognizes a standardized file format for node and element data which has been defined for the
solvers of the GasTurbnlab MPSE; all solvers are expected to write their final results to a soluton
file in this format. Solution files contain vertex and element connectivity information, along with
nodal and element based solution values. The files are presented to the Visualizer, which invokes the
preprocessor for

Loading the solver-generated data,

Building a pyramid data structure as required by Explorer,
Selecting which solution values to display, and

Passing the data structure and display parameters to Render.

Figure 5 A portion of the Viswalizer implementation, shown as a wired map of moduies in IRIS Explorer. Each
woduie bas an inpul pari, and entpat port and a paranieler diafog.

When data is loaded from the solver penerated files, the preprocessor must normalize values from
different solvers so they can be presented as a single image. Additional image processing is necessary
to handle large differences in soluton values between solvers, data values with an cxtremely small
range, solution rcpresentation differences, etc. The pyramid data structure created for the
GasTurbnlab simulation output data is a layered structure which contains the information required
for the image display. vertex (nodal) coordinates, vertex solutions, edges (connections between
nodes), edge based solutions, surfaces, surface based solutions, solids (3D elements), element based
solutions. When the pyramid structure is complete, intemal Explorer modules arc used to transform
it to the Render geometry data structure. Finally, the Visualizer creates a user selection panel
allowing users to choose which solution to display. The prototype simulation discussed in Section 6
generates nodal based velocities (in the x, y and z directions) and element based density, energy and
pressure. Users choose which of these solutions to pass to Render. Figure 7 shows some Visualizer
images from the prototype simulation.

SECTION 4.4: MIDDLEWARE

The MPSE framework uses the Grasshopper Distributed Agent Environment (DAE) as middleware
to facilitate the agent-based computational simuladon paradigm. The Grasshopper mobile agent
platform is MASIF compliant (the first mobile agent standard of OMG), and is built on top of a
distributed processing cnvironment. It is implemented in Java to achieve platform interoperability
and offers a range of communication protocols for remote interaction {(IIOP, RMI or plain socket
connections). The DAE is composed of regions, places, agencier and different types of ggents that may be
either stationary or mobile. Agencies are the actual runtime environments for the agents and
hence at least one agency should be running on each host machine. A place provides a functional

11




grouping within an agency. Regions facilitate the management of the distributed components with a
region tegistry used to maintain information about all components in a specific region.

Frgure 6 Images from the GasTribnlal MPSE for the rotor simulation. To the Jeft is the TrueGrid dorain
specification. The middle and rpht images are Visnalizer images, displaying the mediated ALE-3D solution.

During their lifecycle, Grasshopper agents may be in one of the following states: adive, swspended or
deaciivated. Grasshopper agents may be cither mobile or stationary. Unlike traditional mobile code that
usually features remote execution (where the program is sent Jgfore execution), mobile agents can
migrate during execution. Integrating mobile agent technology and client/setver or peer-to-peer
communication technology yields many possible agent interaction scenarios:

Remote communication

Client agent migration to a traditional server

Server agent migration to a traditional client

Dual peer agent migration to an intermediate location plus local communication
Single peer agent migratdon to a convenient intermediate location plus remote
communication

Due to the importance of legacy code usage and the problems inherent to legacy code migration, the
MPSE framework utilizes a combinaton of these interactons.

The Grasshopper communication service provides the means for locadon transparent, inter-agent
communication with multi-protocol facilities such as IIOP, RMI and TCP/IP sockets. However, it
does not specify the ways of communication with a specific agent language. RMI and socket
connections can be made secure with SSL (Secure Socket Layer) protecton. Addidonally,
Grasshopper makes uses X.509 certificates to ensure confidentiality, integrity and proper
authentication. For access control, Grasshopper uses the JDK 1.2 security mechanisms. Grasshopper
provides a persistence mechanism for agents and offers 2 standard array of communication modes —
synchronous, asynchronous, dynamic and multicast The MPSE framework initially uses RMI and
plain sockets for its agent interactions. A propretary language based on either XML or an existing
agent communication language is used for agent communicadon. Security issues in the MPSE
framework arc addressed at all levels and the realization of the MPSE security framework includes
the mechanisms available in Grasshopper.
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SECTION 4.5: APPLICATION SOFTWARE

"The computational infrastructure in the MPSE detenmines its target class of problems. The proposed
framework provides the architecture and model infrastructure for an agent-based simulation MPSE
and facilitates a straightforward incorporation of computational code to GasTurbnlab. The
framework design takes into consideration the possibility of legacy code in the computational
component, as in the case of GasTurbnLab. The introduction of legacy code infuses a certain level of
intractability into the computational agent design since we cannot assume that legacy software can be
inserted within a zobife agent. The computational software infrastrucrure in GasTurbnLab consists of
ALE-3D, KIVA-3V, and PELLPACK code modules and interface relaxation code implemented in
either C/C++ or Java. ALE-3D is an advanced CFD software module suitable for gas turbine
simulation. It is large, with about 200,000 lines of code. KIVA-3V is an advanced combustion-
simulation package with about 50,000 lines of code. PELLPACK is a versatile PSE for PDE
problems, encapsulating many PDE solvers and graphical support toaols. It has morc than 2 million
lines of code.

Java Wrapper

NI

C Wrapper

Legacy Fortran Code

Fignre 7 Anatamy of a legacy code embedded stationary agent.

Fignre 8 Client [ server approach for legacy code encapsutation.

ALE3D, KIVA-3V and most of PELLPACIK's PDE sclvers are implemented in Fortran. There ate
two approaches to incorporate this legacy Fortran code into the PSE framework’s Java-bascd agent
structure.

1. Insert the Fortran-based code within Java wrappers as stadonary agents. This can be achieved
with JNI (Java Native Interface). Figure 8 illustrates the encapsulaton technique within a
stationary agent.

2. Insert the Fortran-based code within C/C++ wrappers as servers. They can then be accessed as
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local servers by client agents. Figure 9 illustrates the legacy code embedded server and the client
agent interaction

The advantage of the first approach is that it fits clegantly into the proposed computational scenario.
However, the legacy code’s inherent interface requirements may complicate the use of JNI and result
in a very resmicted wrapper. Furthermore, if the wrapper becomes very large and involves
complicated propramming with many Fortran, C and Java code interactions, this would not be the
best approach. The second option would then be easier to implement, albeit introducing additional
necessitdes such as a communication protocol between the legacy-code-wrapped servers and client
agents. Hence, choosing a specific approach should be done on a case-by-case basis, depending on
the legacy software. Both approaches should optimize memory and bandwidth usage with attention
to performance and robustness. The MPSE framework design allows legacy code incorporation
based on either of these two approaches.

SECTION 5: ARCHITECTURAL OVERVIEW OF THE PROPOSED MPSE FRAMEWORK

In this secton, we present an overview of the agents and other components contained in the MPSE
framework. We discuss the overall generic architecture {(Figure 10) and include details in the case of a
specific MPSE (GasTurbnLab) implemented using this framework.

(1
Graphical Dispatcher Module
User <
Interface Compute Module
> b
Computational E
Layer %
B
0
R
M

Enabling
Services
Layer

Fignre 9The MPSE framework archileciure.

The graphical user intecface of the PSE framework mainly comprises the problem specification,
dispatcher and compute modules. These are implemented as IRIS Explorer modules. The dispatcher
and compute modules interact with specific agents in the undetlying Grasshopper platform. These
agents enable the actual simulation computations in the PSE.
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Enabling Services Layer: The Grasshopper distnbuted agent environment runs on all the hosts of
the networked computational grid. Each host agency has an active DalaBase Agent (DBA) and an
active Resonrce Agent (RA). They are implemented as stationary Grasshopper agents. The DBA agent
controls the local database on the host. It has sole responsibility of authenticating data entry, update
and retreval requests. In addition, this agent may have the capability to respond to propetly
authenticated HTTP protocol requests, enabling Web-based data retrieval and visualization. The data
in these databases are stored in an XML format based on a proptietary DTD (Document Type
Definition). Such a specification is only applicable to meta-data. For instance, the linear system
elements would not be stored in XML-format. Instead, a pointer (URI — Universal Resource
Identifier) to the linear system darta is specified in XML-format. Thus, the PSE framework does not
impose any requirements on the linear system data itself, and it may bc stored in any format
determined by the underlying legacy computational software. The RA agent monitors execution
performance and gather local machine load and network congestion information. Tt maintains a local
resource database along with other requisite logs. The local RA synchronizes its resource information
with resource agents on other hosts. Thus, cach RA has access to dynamic network information such
as load, congestion and machine reachability. The local RA may be queded for the latest resource
data or it may be instructed to provide updates to specific remote agents. The update frequency can
be periodic or triggered by the occurrence of certain Resource Characteristic events RC events), such as
the local host processor load reaching a particular level. The RA may maintain the resource database
as part of the local database in conjuncton with the DBA agent. This event model for resource
monitoring facilitates the incorporation of vardous resource management tools and techniques in the
upper layers of the architecture. For instance, the compute layer may use the tesource characteristic
cvents to implement a range of load balancing models.

User Interface Layer: As described in Section 4, the Problem Specification (PS) Module with the
embedded TrueGnd tool is used to specify the root domain and its decomposition. The formatted
output from this module is directed to the Dispatcher Modwle. The dispatcher distdbutes the
partitioned data to the local databases of selected hosts on the available computational grid. It selects
the physical host locations for each subdomain computational agent, using information provided by
the resource agents and a set of allocation algorithms for optmizing network connectivity and
machine load. The dispatcher has a graphical interface to display its actons, allowing the user to
overtde its decisions or maodify the allocation algorthm parameters. Upon successful completion of
the data distobution, the dispatcher module generates a bow alfocation fable as its output. The
dispatcher module may also be wired in an Explorer map for other data distribution tasks such as a
distributed, collaborative soluton analysis session. The output from the dispatcher module is directed
to the Compute Module (CM). The CM chooses the appropriate mediator agents from the library of
MPSE mediators, based on the solver interface data requirements of the sclected simulators on each
domain. The CM launches the simulation and controls the execution of the computc and mediator
agents. It monitors the simulation process unhl the user-specified stopping condition is reached. The
output of the CM is the simulation problem solution. Figure 8 illustrates the top level user interface.

Computational Layer: The pomary “workers” within the CM are the Comprife Agents (CA) and
Mediator Agenis (MA). The CA, when activated, reside on each target host with a single agent per
domain partition. It is feasible, although not desirable, for a host agency to have more than one
active compute agent during a simulation process (implying more than one domain partition having
been assigned to the host). The compute agents are implemented as mobile Grasshopper agents. The
mediator agents, when activated, may reside on a target host with a domain partidon or on an
intermediate host in close proximity to two target hosts with neighboring domain partitions. The
mediator agents arc also implemented as mobile Grasshopper agents. After descrbing the CM in
detail, we discuss the architectural technique that makes the compute and mediator agent mobility
possible, even when the simulation computadon has to be performed by legacy code.
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DBA = Database Agent

RA = Resource Agent

SCA = Simulation Controller

Agent

CA = Compute Agent

MA = Mediator Agent

LC = Legacy Codc Agent
IC =Interface Code Agent

A A BA

Fignre 10: PYE framework agent interactions.

The compute module accomplishes its task by launching a Simufation Contrafller Agent (SCA). This
agent controls the entire computational simulation process by monitoring the distributed compute
agents and mediator agents on each host. The simulation controller interacts closely with the
resource agents on the target hosts to ensure the dynamic integrity of the selected computational
grid. This interaction may be either via pedodic updates or via RC event occurrences. For instance, if
a particular host connection detedorates, the simulation controller agent may instruct the
cotresponding compute agent to continue its computation after migradng to another host. If
necessary, the simulation controller informs the other relevant compute agents and mediator agents
of the migration. However, since the Grasshopper environment suppotts location transparent
communication for its mobile agents, depending on the agent communication implementation, such
notification may not be requited. Furthermore, for highly compute intensive simulatons, the
simulation controller may cmploy load-balancing techniques to redistribute the ongoing
computations amongst the processors on the computational grid. The compute and mediator agent
mobility makes this operation possible without disrupting or restarting the simulation computations.

We propose a two-ttered agent/wrapper architecture to facilitate compute and mediator agent
mobility within the PSE framework. The actual legacy codes for the compute agent are cncapsulated
within a Lggagy Code (LC) Agent. The actual legacy codes for the mediator agent are cncapsulated
within an Inferface Code (IC) Agent. This second ter of wrappers exists transparently within the PSE
framework. Thus, all other agents in the framework interact solely with the compute and mediator
agents and not the LC and IC agents. The LC and IC agents communicate only with their
corresponding compute and mediator agents. The possible agent interactions within the PSE
framework are schematically depicted in Figure 10. Although we refer to these second ter
components as agents, their actual implementation may be in the form of legacy code embedded
servers (as descdbed above). For clarity, we continue to refer to them as agents, irrespective of their
possible implementation technique.
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A compute agent may be required to migrate to another host for load balancing purposes. In this
eveat, the simulation controller directs it to use a different LC agent. Since only the compute agent
can physically migrate, it requests the LC agent to stop computation of the current iteration. It then
migrates with the /ast completed iteration data to its next location. The compute agent then starts the
next iteration computation with the new LC agent with its saved “ last completed iteration” data. To
make such mobility possible, the compute agent is required to always save the last completed
iteratton data. The mediator agent migration is also achieved in a similar manner.

The LC and IC agent availability on the computational grid hosts is recorded as part of the resource
information in the PSE framework. Thus, the LC and IC agent locations are considercd by the
allocadon algorithms of the dispatcher module when assigning the partitioned domains to the
computational grid hosts. This information also available to the load balancing algorithms in the
simulation controller agent. The LC and IC agents may not be available on all the hosts of the
computational grid. In such a situation, if a compute agent migration were triggered by load
balancing requirements or network congestion, the agent would be moved to 2 location with an
available LC agent in close proximity. '

SECTION 6: SIMULATION RESULTS

This secton reports on the results of two prototype simulations for a functioning gas turbine engine.
The first prototype couples two prncipal sections of a compressor: the stator and the rotor. This
prototype problem is simulated by executing ALE-3D legacy code on both subdomains. The second
prototype couples the combustor and stator, applying differcnt legacy codes (ALE-3D and KIVA-
3V) to the two subdomains. In both prototypes, the common boundaries of the subdomains are
treated with a mediator which communicates with the two executing simulators along the interface.

Different paris ofthe interface
annulus with grid data,

Figure 11 The mediator work area is the annulus on the boundaries of the stator and rotor demains. The mediator
resolves grid and solution value differences between the two simulators
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SECTION 6.1: THE COMPRESSOR PROTOTYPE

Initially, the implicit version of the ALE-3D legacy code is used to simulate both subdomains of the
compressor prototype. Figure 12 shows the (statonary) stator and the (rotating) rotor, with the
working area of the mediator marked on the interface annulus. The mediator requires specialized
code to handle the simple but necessary computations involving interface data received from both
simulaions. Qutflow data from the stator and inflow data from the rotor are processed by the
mediator and the computed values are passed back to the two simulators. The processing is done
once for each time step of the engine simulation. At simulaton startup, an inital guess for the flow
field variables is specified. This guess is not compatible with the boundary conditions of the
problem {c.g. the pressure at the domain exir, solid surfaces within the domain). As the simulation
marches forward in time and as the flow moves through the domain, the flow variables adjust
themselves to the boundary conditions so that eventually the flow feld reaches a valid solution. This
solutdon could include some periodic unsteadiness due to the relatdve rotatdon of one blade row with
respect to another. Thus, the soluton is usually referred to as an amsteady sfeady state Dudng the
simuladon, the mass flow rate through each domain is calculated and stored at regular time intervals.
This mass flow rate is averaged over time T and 27T, where T is the period of unsteadiness in the flow
{e.g. due to rotation of blade rows). If the average mass flow rate averaged over T is the same as that
averaged over 27, then the simulation has converged. The amount of time required to obtain an
unsteady steady state is generally not known a-pdori, but a good guess for this time can be made by
an experienced user. In the prototype, the time required for the simulation to reach an unsteady
steady stare is input directly by the user into each legacy code; this tme is the same for all codes
involved. Lepacy codes’ iterations stop when this dme is reached.

Implicit
Mediator

Explicit
Mediator

Figre 12 Pressure compried on two subdomains by ALE-3D, with mediator inlerfuce relaxation on the comuion
boundary. The explicit version of AL E-3D in conjunction with the explicit mediator produced good resuits.

The goal of the first prototype is to achieve solution results across both subdomains with the desired
level of accuracy, in particular along the interface boundary. Passing the correct interface information
between the simulatons required significant changes to the original mediator code, resulting in a
decision to construct mediators specialized for the MPSE and for the solvers, Section 6.4 discusses
the resolution of the 1ssue of building custom mediators. The remainder of this section assumes that
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customized code is added to the kemel mediator code when requited by the solvers of the
subdomains involved in the mediation process.
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Figure 14 Convergence bistory of mass flow for the compressor (left) and the combnstor-siator (right) prototype.

Since the implicit mediator {used with the implicit version of the ALE-3D code for the combustor
prototype) proccsses data from two different simulations, it must resolve all issucs related to
differences in their solution methods and data requirements. The mediator receives an initial grid
definition for the common boundary from both simuladons, and must handle different grids on
some pottion of the shared sutface, as shown in Figure 12. In addition, although the stator grid
remains unchanged throughout the simulation, the rotor grid is redefined at each time step according
to the given rotadon speed. This results in added computations for the mediator, since interpolation
points are different at each time step and must be redefined. The solvers use values both at the grd
nodes and at the centers of the finite element faces and, in general, the types of nodal and element-
based values passed to the mediator may be different for different simulators. In the prototype, nodal
values for the stationary domain are velocities in cach direction. Element-based values ate pressure
(from the rotor}, and density and energy (from the stator). Using pedodicity and interpolation, the
mediator computes velocity at the rotor nodes, density and encrgy at the centers of the clement faces
for the rotor, and pressure at the center of the stator element faces. The computed values are sent to
the approprdate simulations. For the interpolation, the four closest points on the opposite section
{defined by periodocity) ate used for the multivarant interpolating polynomial defined by de Boor
and Ron's Least Polynomial Method [35]. For this interface, no relaxation method is needed since the
two domains exchange values for different quantities.

Since the resulting solutions are not sufficiently accurate (see the implicit mediator soludon in Figure
13), a new mediator is designed to provide greater accuracy. The new mediator operates with the
explicit version of ALE-3D, and differs from the implicit mediator in the types of data values that are
communicated (input and output) and in the computations. The expfiit mediator processes velocity at
the stator nodes, force and mass on both stator and rotor nodes, and density and energy at the
clement face centers of the stator and rotor. Element volumes are also provided to the explicit
mediator, since they are needed to compute weighted sums of values from both subdomains. The
mediator computes density and energy on element faces, and acceleration {as a function of
force and mass) on the nodes for both subdomains. Velocity is also computed for the
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rotor nodes. Perodicity is considered, and interpolation is used to obtain the desired results. The
significantly improved results for pressure are shown in Figure 13 (right part), while the mass flown
convergence is presented in Figure 14 ( T here is 166.67 ysec, since there are 18 blades on each part
of the compressor and the rotation rate is 20,000 rpmy.

The ALE-3D code was modified by adding several Fortran routines to output key data to the
mediator three dmes for each time step, and to read in the mediator supplied data at these times.

inlet

STATOR

\

inlet

COMBUSTOR

Figure 15 Compntalional resuits for tepiperature produced from a mediaied simulation by the solvers ALE-3D and
KIV.A-3V, commaunicating throngh the mediator at the combustor inlet. Ta the left is velocity, 1o the right, energy.

SECTION 6.2: THE COMBUSTOR-STATOR PROTOTYPE

The combustor-stator prototype couples two diffetent legacy code solvers. ALE-3D simulates the
stator and KIVA-3V simulates the combustor. The fmpliat mediafor originally designed for the
compressor prototype is applied successfully to mediate the interface boundary, although some
modifications are required to normalize data values since the unit systems of the two solvers are not
the same. As with ALE-3D, the KIVA-3V legacy code is modified by adding two (Fortan) routines
to write the common boundary data (pressure at the center of element faces) to a file for mediator
input at each time step, and to read the values of velocity, density and energy which are computed
and output by the mediator. Periodicity and space interpolation are used as before, and interpolation
for dme is not necessary since the two domains release their data at equal time steps. The criteria to
get the solution (as in the compressor simulation) is the mass flow to reach a steady state. The history
of convergence for this prototype is shown in Figure 14(dght part) while the results of this
prototype simulation are shown in Figure 15. The GasTurbnlab Visualizer is used to produce the
images shown.
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SECTION 6.3: PROTOTYPE IMPLEMENTATION

Both of the legacy codes are written in Fortran, and the implicit and cxplicit mediators are
implemented in C. The solvers and the mediator are compiled 2nd executed on an SGI running
IRTX64 version 6.5. For both prototypes, the three separate processes are coordinated by a Unix
scrpt, which stops the solver process at the end of each time step, calls the mediator, and resumes
the solver execution when the mediator computations are finished. The "communication” between
the three processes is

Problem
Decfinition ) SCA
= Data Simulation Control Agent
m Soludon to/ £ /g
Data o/from to/ from
mediator from/to mediator
solvers
el X S
Control Agent 1 Mediator Agent 1 Control Agent 2
ALE-3D Solver Explicit Mediator ALE-3D Solver
i .
S M m
HOST 1 HOST 2 HOST 3

Figure 16 Solvers and mediator interaction in the compressor protolype simafation. The information passing between the
controf and mediator agenls ir the inferface data for force, mars, velocity and element volumes.

achicved by writing/reading data to specific files The legacy code requires minimal changes, with two
addidonal Fortran routine inserted for mediator input and output values, and a one line insertion for
the call to the Unix seript. Figure 16 shows the agent implementation of the compressor simulation.
In the prototype implementation, the Simulation Control Agent is replaced by the Unix script, and
the Control and Mediator Agents are empty wrappers for the legacy and mediator codes. The
Grasshopper agent implementation is currently underway..

SECTION 6.4: PROTOTYPE ISSUES

A major issuc was raised during the prototype implementation regarding legacy code modification
{for mediator interface processing) vs. MPSE-specific, solver-specific customizatdon of cach
mediator. The interface processing required to compute mediated values may be complicated and
messy. In addidon, the types of data values and the types of computations are specific to the
simulation codes which are mediated. During the building of the first prototype, the issue of which
code (legacy vs. mediator) is responsible for the computations was raised. Since one of the objectives
of MPSE legacy code integration is that the legacy code should not be modified in any significant
way, this forces the mediators to be both MPSE and solver specific, resulting in a case-by-case
determination of customized code to be added to the mediator kemel code. Thus, MPSEs will have a
library of custom mediators, and the specific mediator used to mediate two solver agents will
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be determined by the Simulation Control Agent based on the two legacy solvers involved and the
kind of calculations required for the specific instance of domain-to-domain communicaton.

JAVA Wrapper

Initialization tasks forinterfacing with the two selected solvers

C Wrapper

readfurite solver-spedfic data amd compute
solver specificvelues required by the kernel

Mediator Kernel

generalinterpolation and
interface relaxatian
processing

Figure 13 Layered architecinre for the mediator agent

In oxder to allow the mediator kernel to be general, a Java/C-agent wrapper for the mediator can be
implemented to handle case-specific data and computations. This defines a clean, layered
architecture for the mediator agents. The innermost core consists of general mediator code, and each
layer around it introduces additional specialization.

SECTION 7: CONCLUSION

In summary, we present an agent-based framework to build problem-solving environments for large-
scale simulation tasks. This framework design is based on the geometric modularity approach for the
simulation computatons.

The MPSE framework uses the IRIS Explorer system as its front-end and the Grasshopper agent
platform as its middleware infrastructure. We use a layered architecture for the framework to
incorporate the extensibility features of the Explorer system and the mobile agent featres of the
Grasshopper platform. The MPSE framework may be extended at the user interface level by wiring
additional modules based on the Explorer model. Furthermore, the framework may be extended at
the enabling services and computational levels by inserting new mobile or stationary agents to
perform addidonal services or computations. To facilitate legacy code incorporation, we propose a
two-tiered agent/wrapper architecture for the computatonal agents in the PSE framework. This
design allows the use of mobile agents with legacy computational code, promoting robustness and
better performance for this class of simulation problems.

Optimum resource usage and management are important goals for a distributed PSE. We facilitate
these tasks with the Resource Characteristic event model in the enabling services layer. This design
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feature enables the implementation of load balancing techniques and optimizadon algorithms for
memory and bandwidth usage.

The MPSE framework design does not specify the underlying database technology. Thus, the
implementation may include an off-the-shelf database system or a custom-designed database. In
either case, the database system needs to have an interface that allows interaction with the MPSE
framework’s database agents.

The GasTurbnLab MPSE is a realization of the agent based MPSE framework for the simulaton of
gas turbines. The large body of legacy code needed for this simulation can be easily incorporated
within the MPSE framework using the two techniques outlined in Section 4. A suitable load
balancing algedthm can be implemented within the simuladon controller agent for better distributed
performance of the highly compute intensive simulations. The graphical user interface can be tailored
appropriately with suitable problem specification modules that include tools such as TrueGrd and
MeshTV. The GasTurbnLab MPSE implementadon may contain a library of Explorer modules for
such problem specification tools, or for different solution visualization tools. This would enable the
scientist to customize the GasTurbnLab user interface with suitable pre- and post-processing
modules for each target gas turbine simulation problem.

The proposed MPSE framework architecture is scalable, enabling it to be used to build very latge
scale, distdbuted problem solving environments for scientific simulations, It is also versatle and
simple enough to be used to rapidly build prototype problem solving environments to analyze and
validate mathematical techniques for interface relaxation. Thus, it would be a useful environment
towards advancing the state-of-the-art in simulating complex physical phenomena.
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