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AN AGENT-BASED NETCENTRIC
FRAMEWORK FOR

MULTIDISCIPLINARY PROBLEM
SOLVING ENVIRONMENTS (MPSE)

S. Markus, E. N. Houstis, A. C. Catlin, J. R. Rice, P. Tsompanopouloll, E. Vavalis, D.
Gottfried, Ke Su, G. Balakrishnan

ABSTRACT

The process of prot0!JPillg is part of every scientific inquiry, product design, and learning
activity. The new economic realities require the rapid prototyping of manufactured artifacts
and rapid solutions to problems with numerous interrelated elements. 'This, in turn, requires
me fast, accueate simulation of physical processes and design optimization using knowledge
and computational models from !l1J(llip/e dircipliJJu (mllllj-p~sj(S OIld om/Ii-Hale IDO&/J) in science
and engineering. Thus, the realization of rapid multidisciplinary prototyping is the new
grrl/ld cballmge. In iliis application scenario the natural computational resource is a
"computational grid" rnat connects the needed distributed hardware and somv:ue resources
used w simulate the elements of the artifact. Our research goal is to address this application
scenario in Ult: conte.xt of parallel computing, cluster computing (LAN based computational
grids), and Intranet/Internet compurational grids. In this document, wc describe the initial
design of a generic MPSE framework based on a ne[Work of computational agents assuming
a net-centric nm-rimc support environment. Moreover, we prcsent thc realization of this
framework for designing a prototype MPSE (GasTurbnLab) for supporting simul:ltions
needed for the design of efficient gas turbine engines.
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SECTION 1: INTRODUCTION

It is predicted that in the next century, the available computational power will enable anyone with
access to a computer to find an answer to any question that has a known or effectively computable
answer. The recendy proposed concept of problem solving environments (PSEs) [51l8] promises to
contribute [Qward the realization of this prediction for physical modeling and to provide students,
scientists, and engineers with environments that allow them ro spend more time doing science and
engineering rather than computing.

The predicted growth of computational power and network bandwidth suggests that computational
modeling and experimentation will be one of the main tools in big and small science. In this scenario,
computational modeling will shift from the current single physical component design to the design of
a whole physical system with a large number of components that have different shapes, obey
different physical laws and manufacturing constraints, and interact with each other through
geometric and physical interfaces. For example, the analysis of an engine involves the domains of
thennodynamics (behavior of the gases in the piston-cylinder assemblies), mechanics (kinematics
and dynamic behaviors of pistons, links, cranks, etc.), structures (stresses and strains on the parts)
and geometry (shape of thc components and the structural constraints). The design of the engine
requires that these different domain-specific analyses interact in order to find the final solution. The
different domains share common parameters and interfaces but each has its own paramcters and
constraints. We refer to these multi-component based physical systems as multi-physics applications
(MPAs). TIle realization of the above scenario, which is expected to havc significant impact in
industry, education, and training, will require the development of new algorithmic strategies and
software for managing the comp1e.uty and harvesting the power of the expected HPCC resources; it
will require PSE technology to support programming-in-the-large and reduce the overhead of HPCC
computing. The main research thrust in this area should be to identify the framework for the
numerical simulation of multi-physics applications and to develop the enabling theories and
technologies needed to support and realize this framework in specific applications. The :MPSE is the
software implementation of this framework. It is assumcd that its elements are discipline-specific
problem solving environments. The :MPSE design objective is to allow the natural specification of
multi-physics applications and their simulation with interacting PSEs through mathematical and
software interfaces across networks of computational resources. In this document, we describe a
softwarc architecture for :MPSEs and its implementation for an:MFA related to the simulation of gas
turbine engines.

This document is organized as follows: Section 2 defines the concepts of PSE and MPSE and
reviews thc ~ssociatcd research issues. Section 3 presents the gas turbine engine :MPA. Section 4
discusses an :MPSE, referred to ~s G~sTurbnLab, for the simulation of gas turbine engines. In section
5, we describe the application software infrastructure in the GasTurbnLab prototype. In section 6,
we describe the architectural components for a generic l\1PSE framework, along with issues
pertaining to the GasTurbnLab instantiation of this :MPSE framework. In Section 7, a prototype
implementation of the GasTurbnLab l\1PSE is described. We conclude our discussion in Section 8,
with an analysis of the overall :MPSE framework architecture and the major challenges in validating
this architecture and its principle objectives through the implementation of the GasTurbnLab
prototype.

SECTION 2: MPSEs - DEFINITIONS AND RESEARCH ISSUES

In the following we definc the PSE and :MPSE concepts, and review the associated rcscarch issues.
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SECTION 2.1: PSEs AND MPSEs

Domain Specific PSEs: Even in the <:any 1960s, scientists had begun to envision problem-solving
computing environments not only powerful enough to solve complex problems, but also able to
interact with users on human terms. The rationale of OUI research is that the dream of the 1960s will
be the reality of the 21" century: High performance computers combined with better algorithms and
better undersranding of compurational science have put PSEs well within our reach.

What are PSEs? A PSE is a computer system that provides all the computational facilities needed to
solve a target class of problems. These facilities include advanced solucion methods, automatic
selection of appropriate methods, use of the application domain's hmguagc, use of powerful graphics,
symbolic and geometry based code generation for parallel machines, and programming-in-the-Iarge.
The scope of a PSE is the extent of the problem set it addresses. This scope can be very narrow,
making the PSE construction very simple. Nevertheless, even what appears to be a modest scope can
be a serious scienrific challenge. For e.....ample, we have created a PSE for bioseparacion analysis [1][9].
'Ibis has a narrow scope, but is still a comple..... challenge as we incorporate both a computational
model and an experimental process supported by physical laboratory instruments. \Y/e are also
creating a PSE called PDELab for parcial differential equations (PDEs) [24]. This is a far more
difficult area than bioseparation and the resulting PSE will be less powerful (less able to solve all the
problems posed to it), less reliable (less able to guarantee the correctness of results), but more generic
(more able to parse the specifications of many PDE models). Nevertheless, PDELab will provide a
quantum jump in the PDE solving powet delivered into the hands of the working scientist and
engtneer.

JlVhat are tbe PSE related mearcb iSS/tu 10 be addrmed? A substantive research effort is needed to lay the
foundations fat building PSEs. This effort should be directed towards 1) a PSE kernel for building
scientific PSEs [26], it) a knowledge based framework to address computational intelligence issues for
PSEs [10][16] and for PDELab, ill) infrastructure for solving FOEs Ill][12)[13][23][25], and iv)
parallel PDE methodologies [2][17][18][27][28][29] and virtual computationM environments
[4][15][31].

MPSEs for prototyping ofphysical systems. IjJ>SEs are sopol/mftt/, /vhallhm iJ 011 MPSE? In simple
tcnns, an :MPSE is a framework and software kernel for combining PSEs for tailored, flexible
multidisciplinary applications. A physical system in the real world normally consists of a large number
of components that have different shapes, obey different physical laws and manufacturing/design
constraints, and interact through geometric and physical interfaces. Mathematically, the physical
behavior of each component is modeled by a PDE or ODE system with various formulations for the
geometry, PDE, ODE, interface/boundary/linkage and constraint conditions in many different
geometric regions. It is difficult to imagine creating a monolithic software system to accurately model
such a real problem with complicated artifacts such as the turbo engine, which has literally hundreds
of odd shaped parts and a dozen physical phenomena. Therefore, one needs an MPSE
mathematical/software framework which, first, is applicable to a wide variety of practical problems,
second, allows for software reuse in order to achieve lower costs and high quality, and, finally, is
suitable for some reasonably fast numerical methods. Most physical systems and manufactured
artifacts can be modeled as a mathematical network whose nodes represent the physical components
in a system or artifact. Each node has a mathematical model of the physics of the component it
represents and a solver agent for its analysis. Individual components are chosen so that each node
corresponds to a simple PDE or ODE problem defined on a regular geometry.
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SECTION 2.2: THE RESEARCH ISSUES

IlYhot are the mathematical network methodologier required? What are the research i.mfej? There exist many
standard, reliable PDE/ODE solvers that can be applied to these local node problems. In addition,
there are nodes that correspond to interfaces (e.g. ODEs, objective functions, relations, common
parameters and their constraints) that model the collaborating parts in the global model. Moreover,
the analysis of an artifact changes through time, thus some of the interfaces appear and disappear
during the analysis session. To solve the global problem, we let these local solvers collaborate with
each other to rela..... (i.e., resolve) the interface conditions. An intetface controller or mediator agent
collects boundary values, dynamic/shape coordinates, and parameters/constraints from neighboring
subdomains and adjusts boundary values and dynamic/shape coordinates to better satisfy the
interface conditions. 'Therefore, the network abstraction of a physical system or artifact allows us to
build a software system that is a network of collaborating well-defined numerical objects through a
set of interfaces. Some of the theoretical issues of this methodology have been addressed in [19],
[20], [21] and [22] for the case of collaborating PDE models. The results obtained so far verify the
feasibility and potential of network-based prototyping.

IlYhat are the jo/lware methodologier for implementillg the 1lIathemafico/1IetJ/lork? IPhat are the rejearch isjJtej? A
successful architecture for PSEs requires heavy reuse of existing software within a modular, object
oriented framework consisting of myers of objects. The kernel layer integrates those components
common to most PSEs or :MPSEs for physical systems. We observe that this architecture can be
combined with an agent-oriented paradigm and collaborating solvers [3] to create :MPSE as a
powerful prototyping tool. MPSEs must e."i:ploit and build on the new technologies of computing. By
the time MPSEs are operational, the advances in computing power and the communication
infrastructure will allow ubiquitous high perfonnance computing, i.e., every where by every one. The
designs for MPSE must be application and user driven. An MPSE must simultaneously rninitnize the
effort and ma.-cim.ize the solution power delivered to researchers, engineers and scientists, students,
and trainees. We should not restrict our design just to use the current technology of high
performance computers, powerful graphics, modular software engineering, and advanced algorithms.
We see :MPSE as delivering problem solving services over the Net. 'Ibis viewpoint leads naturally to
collaborating agent-based methodologies. TIlls, in tum, leads to very substantial advantages in both
software development and quality of service as follows. We envision that a user of a :MPSE 'will
receive at his location only the user interface. Thus, the MPSE server will export to the user's
machine an agent that provides an interactive user interface built on top of the standard services of
the Net. The bulk of the software and computing is done at the server's site using software tailored
to a known and controlled environment. The server site can, in turn, request services from
specialized resources it knows, e.g., a commercial PDE solver, a proprietary optimization package, a
1000 node supercomputer, an ad hoc collection of 122 workstations, a database of physical
properties of materials. Each of these resources is contacted by an agent from the :MPSE with a
specific request for problem solving or infonnation service. Again, all this collaboration is built on
standard network services. All of this can be managed without involving the user (if desired), without
moving software to arbitrary platforms, and without revealing source codes.

IlYbat are tbe desigll objecti/ler 0/ alJ MPSE for pl[yjicol !lItem desigll? IPhaf are the mearcb ismej? These
mathematical networks can be very big for major applications. For a realistic turbine simulation, there
are perhaps 100 million variables and many different time scales. This problem has very complex
geometry and is very non-homogeneous. The answer (a data set that allows one to display an
accurate approximate solution at any point) is 20 gigabytes in size and requires about 10 teraflops to
compute. This data set is much smaller than the computed numerical solution. The network of PDE
solvers might have 10,000 subdomains and 35,000 interfaces. A software network of this type is a
natural mapping of a physical system and simulates how the real world evolves. TIlls allows the use
of the software parts technology (object-oriented programming) that is the natural evolution of the
software library idea. It allows software reuse for easy software update and evolution, things that
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are extremely important in practice. The real world is so complicated and diverse that we believe it is
impractical to build monolirhic, universal solvers for such problems. Wirbout software reuse, it is
impractical for anyone to create on his own a large software system for a reasonably complicated
application. Each new automobile normally results in a new software system. Recreating such a
system could easily take several monrbs or years. In contrast, the execution time to perform the
required computation might only be a few days. Notice that a prticular design change usually
corresponds to replacing, adding, or deleting a few nodes in the network with a corresponding
change in interface conditions. These are simple manipulations on a network, which do not affect the
rest of the system and can rhus be easily done. In this application, each physical component can be
viewed both as a physical object and as a software object. In addition, lhis mathematical network
approach is naturally suitable for parallel computing as it exploits the parallelism in physical systems.
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'"", '151=:\, T,Y;br.:.!Dtl fWd/;

" f1Dd.~iti.hSPl1:Sl5uit:fic:Idi;..
.-",.,th.;&' nei:mo.ldi:ilci::Iioh:s

Fignn 1 View of0 gor IlIrbine showi11g sonu of ils dtlail, some ojils operafioll0/ fharoflensliu ond Ihe mgilum'1Jg
Il/dhodologiu invo/v~d in ils &sigl1, sinllflolio/l olld COIISlruclioll.

One can handle issues like data partition, assignment, and load balancing on the physics level using
the structure of a given physical system. Synchronization and communication are controlled by the
mathematical network specifications and are restricted to interfaces of subdomains, which results in a
coarse-grained computational problem. This is especially suitable for today's most advanced parallel
supercomputer architectures. The network approach also allows high scalability. Realizing rhis MPSE
technology requires research advances both in rbe general structurc and implementation area and in
more specific areas from the targct applications. For example, we must design and create the tools
that allow the MPSE agents to collaborate over the Net. We must create a flexible and general
methodology for interfacing large and heterogeneous software systems. FoUowing we propose a
software framework for MPSEs supporting PDE based applications and realize it for a multi-physics
application related to the simulation ofgas turbine engines.
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SECTION 3: THE GAS TURBINE ENGINE MULTIDISCIPLINARY APPLICATION

The gas turbine enginc is an engineering triumph. It has more than 1,300 parts with rotational speeds
to 16,000 rpm for axial and 50,000 rpm for radial flow components. For aircraft applications, it
operates with maneuver loads of up to 109, with flow path pressures and temperatures to 40
atmospheres and 1400 F. The cxtreme complexity and high-performance requirements of aircraft
gas turbines are illustrated in Figure 1. The important physical phenomena take place on scales from
10-1000 microns to meters. A complete and accurate simulation of an entire engine is enormously
demanding; it is unlikely that the required computing powcr, simulation technology or software
systems will be available in the next decade. The primary goal of the GasTurbnLab research project is
to advance the state-of-the-art in very complex scientific simulations and their validation.
Specifically, we consider simulating the compressor-combustor-turbine coupling in a gas turbine
engine [6]. For this we plan to design and implement a :MPSE, referred as GasTurbnLab, to study
comple.... physical phenomena such as stall, surge and turbine blade fatigue. Figure 2 presents an
abstraction of a MFA and the corresponding software infrastructure. The hardware infrastructure
assumed for these simulations and the implementation of .MPSE consists of a computational grid
involving a SP-2. 128 PC cluster running Solaris, and SGI Origin 2000 with 32 CPUs. In this study
we will utilize the agent system Grasshopper that is :MASIF (Mobile Agent System Interoperability
Facilities Specification) standard compliant and runs on the top of CORBA [32]. Details of this
implementation follow.

SECTION 4: GASTURBNLAB: A PROTOTYPE MPSE FRAMEWORK FOR GAS TURBINE
ENGINE SIMULATIONS

In this section we describe the design of a :MPSE framework that can be used to simulate complex
multi-physics phenomena governed by PDE network models in general and the requirements of the
GasTurbnLab :MPSE in particular [5]. A network of distributed machines is assumed as the hardware
infrastructure. The PDE simulations are often defined on geometric domains. Thus, the natural
geometric boundaries or artificial geometric boundaries can be used to split the problem and the
underlying simulation into many smaller sub-problems. Each sub-problem is then solved
independently, 'With mediator interactions along the boundaries for interface relaxation [19], [20] and
[22]. Thus, the .MPSE framework for PDE simulations must support domain decomposition with
geometric objects, usage of a network ofPDE solver agents, and interface relaxation. Figure 3 gives a
brief overview of this simulation paradigm. Our dcsign goal in GasTurbnLab :MPSE is to identify
cxisting software solvers that can support this paradigm assuming that the application computationl\!
resources consist primarily of '1egacy" code.

SECTION 4.1: FUNCTIONAL SPECIFICATIONS OF GASTURBNLAB

In the case of PDE simulations, the :MPSE framework uscr interface is driven by the underlying
geometric modularity of the problem. The geometry is assumed to have a root node for the target
object and the user is allowcd to subdivide it in multiple ways, resulting in a hierarchy of geomctrical
objects. The interface would allow user-access to relevant data associated with the geometric objects
at every level.
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Figure 2: FlIl/cHo/lal vielJl ofDnllllfidiuiplillary PSE. The compl/fafio/1f (a//d fhe mqjor dafa excha//ge) are co//cel/frafed
ill /he lIeflJlork ofsolver (PSE) alld media/or agmls. The solver agel/Is communicale wilh Ihe recommellder oms through
q"m·es fo obtain ''advice'' 011 computationalparameters. The Imr i/lteracts with Ihe JYstem through the global ami local
user illletjaces, which smd queries Dlld ncdve replies from fhe vanolu agel/fs.

This geometric domain decomposition of the target simulation object defines a network of PDE
problems. On each subdomain, a POE problem models the physics on that geometric object
(domain). Each subdomain has some neighbors and, possibly, some fi:Il:ed boundaries. If each
neighborhood connection is represented by an arrow, we get an abstraction of a network of PDE
problems. Since the POEs on each domain arc usually not the same, these represent a composite
POE problem. The :MPSE framework maps the network of POE problems resulting from a user­
specified partitioning onto a set of computational agents on a pre-specified collection of machines.
This resource allocation will be done in an optimal manner to minimize the communication
overheard between computational agents of neighboring subdomams. However, the :MPSE
framework interface would allow the user to manipulate this mapping to achieve a custom resource
allocation.

Under the assumption that any single POE problem of the composite problem can be solved exactly,
the interface relaxation mathematical technique will be used to solve the composite PDE problem.
The interface relaxation methodology is based on the iteration shown in Figure 3. In the
GasTurbnLab :MPSE, the initial target object is the entire gas turbine engine. A GasTurbnLab
simulation consists of a user-specified set of geometrical objects that partition the engine and a
corresponding network of PDE solver agents that collaborate to find a solution for the composite
POE problem. The geometrical objects that partition the engine may be hierarchical, resulting in a
corresponding set of hierarchical computations in an asynchronous simulation pcocess.
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Guess che solution values, de..tivacives, etc.• on all the imerf.ll:es

Solve each PDE ex~ctlvwith boundan' conditions selected from che l!uesses

Compare {he solution values across each interfare and improve chern using

a "klX"Iian (omJflIa to bener satisfy all che interface conditions.

No

Figure 3 1lItufac~ n/axalioll ituatio//.

SECTION 4.2: ENABLING TECHNOLOGIES AND SOFTWARE INFRASTRUCTURE

Utilizing existing technology and legacy software is an imponant goal in the design of this MPSE
framework and its prototype implementation, GasTurbnLab. 'Thc MPSE framework is built across
three main architecmral componcnts - the lifer i!Jt~1acc If!)'er, the middlcware, and the computatio//al sofllllare
i'!frostmcl"re layer. 'Thc IRIS Explorer application builder and visualization system [33] is used for the
MPSE framcwork user interface and the middleware component is based on the G.rasshopper mobile
agent platfornl [32]. The computational infrastructurc is dependent upon the MPSE's target class of
simulation problems. This computational application software infrastructure is discussed in Section 5.
Figure 4 depicts these architectural layers and their major constituents for thc GasTurbnLab PSE.

Figure 4 Mqjor campo//eIIl; ojIh~ GosTurb//Lob MPSE.
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SECTION 4.3: GRAPHICAL USER INTERFACE

The IRIS Explorer system is a wolkit for building user interfaces for data visualization. and uses a
data flow paradigm. The interface is built by creating the requisite modules and wiring them together
via Explorer's map editor. The connections in an Explorer map depict the flow of data between
modules and act as module triggers. Modules have input ports and oUlput ports, interactively
controllable parameters and the ability to execute on different machines on a network. A module is
activated when all its input ports are triggered. IRIS Explorer allows modules written in C/C++ to
issue scripting commands. The SKM language with Lisp-like synta.....: is used to create these scripts for
the Explorer command interface.

I-H-I
Problem Specification

Module

Dispatch Module

Compule Module
Vi5u,1lizanon Module

Figflft 4 IRIS Explorer lOp Iml flur illlufa(~ftr Ih~ GorTI/rbl/Lab MPSE.

The Explorer interface provides access to all MPSE framework components that are user-steerable,
including problem specification, simulation launch and control, and solution visualization. Users
define the target simulation object (domain) and its geometric domain decomposition with the
Problem Specificatioll Module. User-selected subdomains of the target object are passed to the TrueGrid
software tool [34], which is incorporated into the module as a self-contained system. TrueGrid is
applied to each subdomain to genernte a grid and define boundary conditions. The Problem
Specification Module provides tools for specifying interface conditions between the subdomains and
assigning solvers and their parnmeters to each subdomain. This information is the required input for
the Dispatcb Module.

Users launch the simulation via the DispatcIJ and Compute Modldes, which interact with the underlying
Grasshopper agent platform. Grasshopper's graphical monitoring tool is used within the Compute
module to view and monitor the underlying agent interactions in the simulation process for possible
computational steering. Once the Compute Module completes its simulation task, control is returned
to the Explorer interface for the solution visualization and analysis phases. Explorer's data
visualization module, &nder, is utilized by the Visualization Module for post-simulation solution
display and analysis. Render is a built-in Explorer module which displays a geometric object,
rendered from a 3D geometry structure sent to it by a compatible preprocessing module. Render
provides a wide selection ofvisual enhancement techniques for manipuhLting and examining a display
object. The GasTurbnLab Vimolizotioll Modille (Vislfolizel) is the first Explorer module [0 be
implemented. A brief description of its implementation and some solution images from the
prototype simulations (presented in Section 6) follow.
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The Visualizer displays the final solutions for the simulation of any number of subdomains by any of
the integrated legacy solvers. The ViSlfalizat;on ModJtle can be viewed as an integrated system of
preprocessing programs, preprocessing modules and Render. The Visualizer's preprocessor
recognizes a standardized file format for node and element data which has been defIned for the
solvers of the GasTurbnLab :MPSEj all solvers are expected to write their final results to a solution
file in this format. Solution files contain vertex and element connectivity information, along with
nodal and clement based solution values. The files are presented to the Visualizer, which invokes the
preprocessnr for

• Loading the solver-generated data,
• Building a pyramid data structure as required by Explorer,
• Selecting which solution values to display, and
• Passing the data structure and display parameters to Render.

Figure 5 A portion ofthe Vimalizer implementatioN, fhoJJlN af a //Iired map ofmodulu in IRIS Explonr. Ead)
modJfle haf all input pori, and Ol/tpl/t port alld a parameter dialog.

When data is loaded from the solver generated files, me preprocessor must normalize values from
different solvers so they can be presented as a single image. Additional image processing is necessary
to handle large differences in solution values between solvers, data values with an extremely small
range, solution representation differences, etc. The pyramid data structure created for the
GasTurbnLab simulation output data is a layered structure which contains the information required
for the image display; vertex (nodal) coordinates, verrex solutions, edges (connections between
nodes), edge based solutions, surfaces, surface based solutions, solids (3D clements), element based
solutions. \Vhen the pyramid structure is complete, internal Explorer modules arc used to transform
it to the Render geometry data structure. Finally, the Visualizer creates a user selection panel
allowing users to choose which solution to display. The prototype simulation discussed in Section 6
generates nodal based velocities (in the x, y and z directions) and element based density, energy and
pressure. Users choose which of these solutions to pass to Render. Figure 7 shows some Visualizer
images from the prototype simulation.

SECTION 4.4; MIDDLEWARE

The :MPSE framework uses the Grasshopper Distributed Agent Environment (DAE) as middleware
to facilitate the agent-based computational simulation paradigm. The Grasshopper mobile agent
platfonn is MASIF compliant (the first mobile agent standard of OMG), and is built on top of a
distributed processing environment. It is implemented in Java to achieve platform interoperability
and offers a range of communication prmocols for remote interaction (IIOP, RMI or plain socket
connections). The DAE is composed of f?!gions, places, agmcies and different types of agCl1/s that may be
either stationary or mobile. Agencies are the actual runtime environments for the l'I.gents and
hence at least one agency should be running on each host machine. A place provides a functional
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grouping within an agency. Regions facilitate the management of the distributed components with a
region registry used to maintain information about all components in a specific region.

F;gfln 6 Ima,gu from Jh~ GasTntbl1lab MPSE for the rotor simfllatiON. To th~ lift is th~ Tnt~Grid domaill
sp~t:ijimtioll. The middle alld right imagu af? VisflaliZer imagu, dispJO)'il/g the nudiatedALE-3D !ol,ttio/l.

During their lifecycle, Grasshopper agents may be in one of the following states: adive, mspmded or
deadivafed Grasshopper agents may be either mobile or stationary. Unlike traditional mobile code that
usually features remote execution (where the program is sent before execution), mobile agents can
migrate durillg e."i:ecution. Integrating mobile agent technology and client/server or peer"to-peer
communication technology yields many possible agent interaction scenarios:

• Remote communication
• Client agent migration to a traditional server
• Server agent migration to a traditional client
• Dual peer agent migration to an intennediate location plus local corrununication
• Single peer agent migracion to a convenient intermediate locacion plus .remote

communication

Due to the importance of legacy code usage and the problems inherent to legacy code migration, the
WSE framework utilizes a combination of these interactions.

The Grasshopper communication service provides the mea"s for locacion transparent, inter-agent
communicacion with multi-protocol facilities such as nop, RMI and TCPjIP sockets. However, it
does not specify the IVrqS of communication with a specific agent language. RMI and socket
connections can be made secure with SSL (Secure Socket Layer) protection. Additionally,
G.rasshopper makes uses X,S09 certificates [Q ensure confidentiality, integrity and proper
authentication. For access control, Grasshopper uses the JDK 1.2 security mechanisms. Grasshopper
provides a persistence mechanism for agents and offers a standard array of communication modes ­
synchronous, asynchronous, dynamic and multicast The WSE framework initially uses RMI and
plain sockets for its agent interactions. A proprietary language based on either XML or an existing
agent communicacion language is used for agent communication. Security issues in the MPSE
framework are addressed at all levels and the realization of the :MPSE security framework includes
the mechanisms available in Grasshopper.
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SECTION 4.5: APPLICATION SOFTWARE

'The computatiomu infrastructure in the :MPSE detennmes its target class of problems. The proposed
framework provides the architecture and model infmstructure for an agent-based simulation :MPSE
l\lld facilitates a straightforward incorporation of computational code to GasTutbnLab. The
framework design takes into considemtion the possibility of legacy code in the computational
component, as in the case of GasTutbnLab. The introduction oElegacy code infuses a certain level of
intractability into the computational agent design since we cannot assume that legacy software can be
inserted within a mobile agent. The computational software infrasttuctute in GasTutbnLab consists of
ALE-3D, KIVA-3V, and PELLPACK code modules and interface rela.''{ation code implemented in
either C/C++ or Java. ALE-3D is an advanced crn software module suitable for gas turbine
simulation. It is large, with about 200,000 lines of code. KJVA-3V is an advanced combusrion­
simulation pack:Lge with about 50,000 lines of code. PELLPACK is a versatile PSE for PDE
problems, encapsulating many PDE solvers and graphical support tools. It has more than a million
lines of code.

JNI

C Wmpper

Legacy Fortran Code

Figure 7 Allalomy ofa legary code ~nJb~dded Jiaiiol/a'Y agel/I.

Legacy Fortran
Code

FigJlf? 8 Climl / J~rvtr approach.fOr Iegary code el/capJlt/aiioll.

ALE3D, KIVA-3V and most ofPELLPACK's PDE solvers arc implemented in Fortran. There are
two approaches to incorporate this legacy Fortran code into the PSE framework's Java-based agent
structure.
1. Insert the Fortran-based code within Java wrappers as stationary agents. This can be achieved

with ]NI aava Native Interface). Figure 8 illustrates the encapsulation technique within a
stationary agent.

2. Insert the Fortran-based code within C/C++ wrappers as servers. They can then be accessed as
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local servers by client :lgents. Figure 9 illustrates the legacy code embedded server and the client
agent interaction

The advantage of the first approach is that it fits elegantly into the proposed computational scenario.
However, the legacy code's inherent interface requirements may complicate the use ofJNI and result
in a very restricted wrapper. Furthermore, if the wrapper becomes very large and involves
complicated programming with many Fortran, C and Java code interactions, this would not be the
best approach. The second option would then be easier to implement, albeit introducing additional
necessities such as a communication protocol between the legacy-code-wrapped servers and client
agents. Hence, choosing a specific approach should be done on a case-by-case basis, depending on
the legacy software. Both approaches should optimize memory and bandwidth usage with attention
to perfonnance and robustness. The :MPSE framework design allows legacy code incorporation
based on either of these two approaches.

SECTION 5; ARCHITECTURAL OVERVIEW OF THE PROPOSED MPSE FRAMEWORK

In this section, we present an overview of the agents and other components contained in the :MPSE
framework. We discuss the overall generic architecture (Figure 10) and include details in the case of a
specific :MPSE (GasTurbnLab) implemented using this framework.

Grnphical
User
Interface

Computational
Layer

Enabling
Services
Layer

Problem Specification Module

Dispatcher Module

Compute Module

Fig''" 9The MPSE framework an;hifedflre.

The graphical user interface of the PSE framework mainly comprises the problem specification,
dispatcher and compute modules. These are implemented as nus Explorer modules. The dispatcher
and compute modules interact with specific :lgents in the underlying Grasshopper platfonn. These
agents enable the actual simulation computations in the PSE.
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Enabling Services Layer: The G.msshopper distributed agent environment runs on all the hosts of
the networked computational grid. Each host agency has an active DalaBafe AgeJlt (DBA) and an
active fuSOIlTCe Agent (RA). They are implemented as stationary Grasshopper agents. The DBA agent
contwls the local database on the host. It has sole responsibility of authenticating d'lta entry, update
and retrieval requests. In addition, this agent may have the capability to respond to properly
authenticated HTfP pwtocol requests, enabling Web-based data retrieval and visualization. The data
in these databases are stored in an XML fonnat based on a proprietary DID (Document Type
Definition). Such a specification is only applicable to meta-data. For instance, the linear system
elements would not be stored in XML-format. Instead, a pointer (URI - Universal Resource
Identifier) to the linear system data is specified in XML-format. Thus, the PSE framework does not
impose any requiJ:ements on the linear system data itself, and it may be stored in any format
determined by the underlying legacy computational software. The RA agent monitors execution
performance and gather local machine load and network congestion information. It maintains a local
resource database along with other requisite logs. The local RA synchronizes its resource information
with resource agents on other hosts. Thus, each RA has access to dynamic network infonnation such
as load, congestion and machine reachability. The local RA may be queried for the latest resource
data or it may be instructed to pwvide updates to specific remotc agents. The update frequency can
be periodic or triggered by the occurrence of certain RcsollTCe Characteristic evmU (RC events), such as
the local host pwcessor load reaching a particular level. The R.A may maintain the resource database
as part of the local database in conjunction \vith the DBA agent. Ths event model for resource
monitoring facilitates the incorporation of various resource management tools and techniques in the
upper layers of the architecture. For instance, the compute layer may use the resource characteristic
events to implement a range of load balancing models.

User Interface Layer: As described in Section 4, the Problem Spec:Jieatioll (PS) Mod/tie with the
embedded TroeGrid tool .is used to specify the root domain and its decomposition. The formatted
output from this module is directed to the Dispatcher Mod/tie. "The dispatcher distributes the
partitioned data to the local databases of selected hosts on the available computational grid. It selects
the physical host locations for each subdomain computational agent, using information provided by
the resource agents and a set of allocation algorithms for optimizing network connectivity and
machine load. The dispatcher has a graphical interface to display its actions, allowing the user to
override its decisions or modify the allocation algorithm parameters. Upon successful completion of
the data distribution, thc dispatcher module generates a hosl ol/oeoliol/ lable as its output. The
dispatcher module may also be \vired in an Explorer map for other data distribution tasks such as a
distributed, collaborative solution analysis session. The oUlput from the dispatcher module is directed
to the Conpllie Mod/tie (CM). The CM chooses the appropriate mediator agents from the library of
:MPSE mediators, based on the solver interface data requirements of the selected simulators on each
domain. The CM launches the simulation and controls the execution of the compute and mediator
agents. It monitors the simulation process until the user·speciEied stopping condition is reached. The
output of the CM is the simulation problem solution. Figure 8 illustrates the top level user interface.

Computational Layer: The primary "workers" within the eM are the CompUle Agel/If (CA) and
Mediator Agel/Is (MAJ. The CA, when activated, reside on each target host with a single agent per
domain partition. It is feasible, although not desirable, for a host agency to have more than one
active compute agent during a simulation process (implying more than one domain partition having
been assigned to the host). The compute agents are implemented as mobile Grasshopper agents. The
mediator agents, when activated, may reside on a target host with a domain partition or on an
intermediate host in close proximity to two target hosts \vith neighboring domain partitions. The
mediator agents arc also implemented as mobile Grasshopper agents. After describing the CM in
detail, we discuss the architectural technique that makes the compute and mediator agent mobility
possible, even when the simulation computation has to be perfonned by legacy code.
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DBA = Database Agent
RA = Resource Agent
SCA = Simulation Controller

Agent
CA = Compute Agent
:MA = Mediator Agent
LC = Legacy Code Agent
IC = Interface Code Agent

Figllre 10: PSEjrameJPork agmt il/teraetio/ls.

The compute module accomplishes its task by launching a Sim/t/aliof} COf/lro/ler Agml (SCA). This
agent controls the entire computational simulation process by monitoring the distributed compute
agents and mediator agents on each host. The simulation controller interacts closely with the
resource agents on the target hosts to ensure the dynamic integrity of the selected computational
grid This interaction may be either via pe.ciodic updates or via RC event occurrences. For instance, if
a particular host connection detc.ciorntes, the simulation controller agent may instruct the
conesponding compute agent to continue its computation after migrating to another host. If
necessary, the simularion controller infonns the other relevant compute agents and mediator agents
of the migration. Howcver, since the Grasshopper envirorunent supports location transparent
communication for its mobile agents, depending on the agent communication implementation, such
notification may not be required. Furthermore, for highly compute intensive simulations, the
simulation controller may employ load-balancing techniques to redistribute the ongoing
computations amongst the processors on the computational grid. The compute and mediator agent
mobility makes this operation possible without disrupting or restarting the simulation computations.

We propose a two-tiered agent/wrapper architecture to facilitate compute and mediator agent
mobili!y within the PSE framework. The actual legacy codes for the compute agent arc encapsulated
within a Lcgory Code (I.C) AgCIJI. The actual legacy codes for the mediator agent are encapsulated
within an 11IIeifafC Code (IC) AgCllf. lbis second ner of wrappers exists transparently within the PSE
framework. Thus, all other agents in the framework internct solely with the compute and mediator
agents and not the LC and IC agents. The LC and IC agents communicate only with their
corresponding compute and mediator agents. The possible agent interactions within the PSE
frnmework are schematically depicted in Figure 10. Although we refer to these second tier
components as agents, their actual implementation may be in the fonn of legacy code embedded
servers (as described above). For clarity, we continue to refer to them as agents, irrespective of their
possible implementation technique.
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A compute agent may be required to migrate to another host for load balancing purposes. In this
event, the simulation controller directs it to use a different LC agent Since only the compute agent
can physically migrate, it requests the LC agent to stop computation of the current iteration. It then
migrates with the last conljJleted ileratioll data [Q its next location. The compute agent then starts the
next iteration computation with the new LC agent with its saved" last completed iteration" data. To
make such mobility possible, the compute agent is required to always save the last completed
iteration data. The mediator agent migration is also achieved in a similar manner.

The LC and IC agent availability on the computational grid hosts is recorded as part of the resource
information in the PSE framework. Thus, the LC and IC agent locations are considered by the
allocation algorithms of the dispatcher module when assigning the partitioned domains to the
computational grid hosts. This information also available to the load balancing algorithms in the
simulation controller agent. 'The LC and IC agents may not be available on all the hosts of the
computational grid. In such a situation, if a compute agent migration were triggered by load
balancing requirements or network congestion, the agent would be moved to a location with an
available LC agent in close proximity.

SECTION 6: SIMULATION RESULTS

This section reports on the results of two prototype simulations for a functioning gas rucbine engine.
The first pro[Qtype couples two principal sections of a compressor: the stator and the rotor. This
prototype problem is simulated by executing ALE-3D legacy code on both subdomains. The second
prototype couples the combustor and stator, applying different legacy codes (ALE-3D and I-GVA­
3V) [Q the two subdomains. In both prototypes, the common boundaries of the suhdomains are
treated with a mediator which communicates with the two executing simulators along the interface.

Stator

Different parts ofthe interface
annulus with grid data.

Figlln 1/ The medialor work area il Ihe annJlltls on Ihe bOlmdaries of Ihe slolor and rolor domaiJls. The medialor
resolves grid and 10lrtlion /llIlfle diffirmces belween Ihe two siml/lolors
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SECTION 6.1: THE COMPRESSOR PROTOTYPE

Initially, the implicit version of the ALE-3D legacy code is used to simulate both subdomains of the
compressor prototype. Figure 12 shows the (stationary) stator and the (rotating) .rotor, with the
wo.rking area of the mediator marked on the interface annulus. The mediator .rcquires specialized
code to handle the simple but necessary computations involving interface data received from both
simulations. Outflow data from the stator and inflow data from the rotor are processed by the
mediator and the computed values are passed back to the two simuhLtors. The processing is done
once for each time step of the engine simulation. At simulation startup, an initial guess for the flow
field variables is specified. This guess is not compatible with the boundary conditions of the
problem (e.g. the pressure at the domain exit, solid surfaces within the domain). As the simulation
marches foC\vard in time and as the flow moves through the domain, the £low variables adjust
themselves to the boundary conditions so that eventually the £low field .reaches a valid solution. This
solution could include some periodic unsteadiness due to the relative rotation of one blade row with
respect to another. Thus, the solution is usually .referred to as an finsleady sleady slale. During the
simulation, the mass £low rate through each domain is calculated and stored at .reguhr time intervals.
Tbis mass £low rate is averaged over time T and 2T, where T is the period of unsteadiness in the flow
(e.g. due to rotation of blade rows). If the average mass flow rate averaged over T is the same as that
averaged ovcr 2T, then the simulation has converged. The amount of rime required to obtain an
unsteady steady state is generally not knOWIl a-priori, but a good guess for this time can be made by
an experienced user. In the prototype, the time required for the simulation to reach an unsteady
steady state is input directly by the user into each legacy code; this time is the same for all codes
involved. Legacy codes' iterations stop when this time is reached.

Implicit
Mediator

Explicit
Mediator

Figllre 12 Presmr~ con'1J11/~d on ""0 mbdomains bj' AlE-3D, wilh medialor in/~ifuce rduxulion on Ihe com",on
boundary. The explicit venion 0/AlE-3D in co,!jrmclion wilh Ihe explicit mediatorprodlfcedgood remlls.

The goal of the first prototype is to achieve solution results across both subdomains with the desired
level of accuracy, in particular along the interface boundary. Passing the correct interface infonnation
between the simulations required significant changes to the original mediator code, resulting in a
decision to construct mediators specialized for the :MPSE and for the solvers, Section 6.4 discusses
the resolution of the issue of building custom mediators. The remainder of this section assumes that
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customized code is added to the kernel mediator code when required by the solvers of the
subdomains involved in the mediation process.
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Since the inplicit mediator (used with the implicit version of the ALE-3D code for the combustor
prototype) processes data from two different simulations, it must resolve all issues related to
differences in their solution methods and data requirements. The mediator receives an initial grid
definition for the common boundary from both simulations, and must handle different grids on
some portion of the shared surface, as shown in Figure 12. In addition, ahhough the s[ator grid
remains unchanged iliroughout the simulation, the rotor grid is redefined at each rime step according
to the given raration speed. This results in added computations for the mediator, since interpolation
poinLS arc different at each time step and must be redefined. The solvers use values both at the grid
nodes and at the centers of the finite element faces and, in general, the types of nodal and element­
based values passed to me mediator may be different for different simulators. In me prototype, nodal
values for the stationary domain are velocities in each direction. Element-based values are pressure
(from the rotor), and density and energy (from the stator). Using periodicity and interpolation, the
mediator computes velocity at the rotor nodes, density and energy at the centers of the clement faces
for the rotor, and pressure at the center of the stator element faces. The computed values are sent to
the appropr:hLte simulations. For the interpolation, the four closest poinLS on the opposite section
(defined by periodocity) are used for the multivariant interpolating polynomial defined by de Boor
and Ron's Least Polynomial Method [35]. For this interface, no relaxation method is needed since the
two domains exeh:mge values for different quantities.

Since the resulting solutions are not sufficiently accurate (see the implicit mediator solution in Figure
13), a new mediator is designed m provide greater accurncy. The new mediator operates with the
exph'dt versioll of ALE-3D, and differs from the implicit mediator in the types of data values that are
communicated (input and output) and in the computations. The explicit mediator processes velocity at
the stator nodes, force and mass on both stator and romr nodes, and density and energy at the
clement face centets of the stamr and rotor. Element volumes are also provided to the explicit
mediator, since they are needed to compute weighted sums of values from both subdomains. The
mediator computes density and energy on element faces, and acceleration (as a function of
force and mass) on the nodes for both subdomains. Velocity is also computed for the
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rotor nodes. Periodicity is considered, and interpolation is used to obtain the desired results. The
significamly improved results for pressure are shown in Figure 13 (right part), while the mass flown
convergence is presented in Figure 14 (T here is 166.67 J1sec, since there are 18 blades on each part
of the compressor and the rotation rate is 20,000 rpm).

The ALE-3D code was modified by adding several Fortran routines to output key data to the
mediator three times for each time step, and to read in the mediator supplied dat.'l at these times.

inlet
STATOR

COMBUSTOR

Figtlre 15 Comptllalional remlls for l~nJp~rotJmprodlfcedfrom t1 mdio/~d simlt/olio" l!J fh~ so/vus AlE-3D o//d
KJVA-3V, (onJnJlllli(Qlillg through th~ m~diolor of th~ ((}mb,ufor itl/~/. To Ih~ /efl is ve/oary, 10 Ih~ righI, tJI~rgy.

SECTION 6.2: THE COMBUSTOR-STATOR PROTOTYPE

The combustor-stator prototype couples two different legacy code solvers. ALE-3D simulates the
stator and KJVA-3V simulates the combustor. The imp/iat medialor originally designed for the
compressor prototype is applied successfully to mediate the interface boundary, although some
modifications are required to normalize dara values since the unit systems of the two solvers are not
the same. As with ALE-3D, the KIVA-3V legacy code is modified by adding two (Fortran) routines
to write the common boundary data {pressure at the center of element faces) lO a file for medialOr
input at each time step, and to read the values of velocity, density and energy which are computed
and output by the mediator. Periodicity and space interpolation are used as before, and interpolation
for time is not necessary since the two domains release their data at equal time steps. The criteria to
get the solution (as in the compressor simulation) is the mass flow to reach a steady state. The history
of convergence for this prolOtype is shown in Figure 14(right part) while the results of this
prototype simulation arc shown in Figure 15. The GasTurbnlab Visualizer is used to produce the
images shown.
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SECTION 6.3: PROTOTYPE IMPLEMENTATION

Both of the legacy codes are written in Fortran, and the implicit and explicit mediators are
implemented in C. The solvers ~md the mediator are compiled and executed on an SGI .running
IRIX64 version 6.5. For both prototypes, the three separate processes are coordinated by a Uni..",
script, which stops the solver process at the cnd of each time step, calls the mediator, and resumes
the solver execution when the mediator computations are finished. The "communication" between
the three processes is

P.roblem

~ Definition SeA
D,rn Simulation Control Agent

om
Solution I

D,rn to/from
from/to

to/from
mecli:ltor mccli:ltor

solvers
/' ~

Control Agent 1 Mecli:ltor Agent 1 Control Agent 2

ALE-3D Solver Explicit Mediator ALE-3D Solver

~ 11m ~ IlII
HOST! HOST 2 HOST 3

Fig"!? 16 SolverJ alld medialor ililera(lioll i// Ihe (ompresJor prolo!Ype Ji",ll!alioll. The i,ifonnQlioll pauil"g belwem Ihe
(Ol/Iro! olld mediator agmls li' the ililerfau dala for forte, mau, /lelod!) alld elenlml /loh/me!.

achiL"Ved by writing/reading data to specific files The legacy code requires minimal changes, with two
additional Fortran routine inserted for mediator input and output values, and a one line insertion for
the call to the Unix script. Figure 16 shows the agent implementation of the compressor simulation.
In the prototype implementation, the Simulation Control Agent is replaced by the Uni..... script, and
the Control and Mediator Agents are empty wrappers for the legacy and mediator codes. The
Grasshopper agent implementation is currently underway..

SECTION 6.4: PROTOTYPE ISSUES

A major issue was raised during the prototype implementation regarding legacy code modification
(for mediator interface processing) vs. :MPSE-specific, solver-specific customization of each
mecli:ltor. The interface processing required to compute mediated values may be complicated and
messy. In addition, the types of data values and the types of computations are specific to the
simulation codes which are mediatcd. During the building of the first prototype, the issue of which
code Oegacy vs. mecfuLtoe) is responsible for the computations was raised. Since one of the objectives
of MPSE legacy code integration is tlmc the legacy code should not be modified in any significant
way, this faeces the mediators to be both 1rfPSE and solver specific, resulting in a case-by-case
determination of customized code to be added to the mediator kernel code. Thus, 1rfPSEs will have a
library of custom mediators, and the specific mediator used to mediate two solver agents will
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be determined by the Simulation Control Agent based on the two legacy solvers involved and the
kind of calculations required for the specific instance of domain-to-domain communication.

JAVA Wrapper
InitializllIion tasks forinte.rfacingwith thetwo selected solvers

CWrapper
read!write solver-sp ecilic data 8IIl.d oompu'tB
solver sp eci.1ic velue.s requiredby thekernel.

Mediator Kernel
ge.nerelintapolation 6JIli

inte.rfacerelaxatian
processing

Figure 13 Layered architectllre fOr the mediator agUit

In order to allow the mediator kernel to be general, a Java/C-agent wrapper for the mediator can be
implemented to handle case-specific data and computations. This defines a clean, layered
architecture for the mediator agents. The innermost core consists of general mediator code, and each
layet around it introduces additional specialization.

SECTION 7: CONCLUSION

In summary, we present an agent-based framework to build problem-solving environments for large­
scale simulation tasks. 'Ibis framework design is based on the geometric modularity approach for the
simulation computations.

The :MPSE framework uses the IRIS Explorer system as its front-end and the Grasshopper agent
platform as its middleware infrastructure. We use a layered architecture for the framework to
incorporate the extensibility features of the Explorer system and the mobile agent features of the
Grasshopper platform. The :MPSE framework may be extended at the user interface level by wiring
additional modules based on the Explorer model. Furthermore, the framework may be extended at
the enabling services and computational levels by inserting new mobile or stationary agents to
pecfonn additional services or computations. To facilitate legacy code incorporation, we propose a
two-tiered agent/wrapper architecture for the computational agents in the PSE framework. This
design allows the use of mobile agents with legacy computational code, promoting robustness and
better performance for this class of simulation problems.

Oprimwn resource usage and management are important goals for a distributed PSE. We facilitate
these tasks '\vith the Resource Characteristic event model in the enabling services layer. This design
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feature enables the implementation of load balancing techniques and optimization algorithms for
memory and bandwidth usage.

The IvIPSE framework design does not specify the underlying database technology. Thus, the
implementation may include an off-me-shelf database system or a custom-designed database. In
either case, the database system needs to have an interface that allows intcraction with the MPSE
framework's database agents.

Inc GasTurbnLab MPSE is a realization of me agent based MPSE framework for the simulation of
gas tucbines. The large body of legacy code needed for this simulation can be easily incorporated
within the MPSE framework using the two techniques outlined in Section 4. A suitable load
balancing algorithm can be implemented within the simulation controller agent for better distributed
performance of the highly compute intensive simulations. The graphical user intcrface can be tailored
appropriately with suitable problem specification modules that include tools such as TrueGrid and
MeshTV. The GasTurbnLab MPSE implementation may contain a library of Explorer modules for
such problem specification tools, or for diffcrent solution visualizlloon tools. This would enable the
scientist to customize the GasTurbnLab ust:.r interface with suitable pre- and post-processing
modules for each target gas tucbine simulation problem.

The proposed 1tD:'SE framework architectuce is scalable, enabling it to be used to build very large
scale, distributed problem solving environments for scientific simulations. It is also versatile and
simple enough to be used to rapidly build prototype problem solving environments to analyze and
validate mathematical techniques for interface relaxation. Thus, it would be a useful environment
towards advll.ncing the stll.te-of-thc-art in simulating comple."i: physical phenomena.
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