
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1999

Biological Metaphors in he Design of Complex Software Systems Biological Metaphors in he Design of Complex Software Systems

Dan C. Marinescu

Ladislau Bölöni

Report Number:
99-018

Marinescu, Dan C. and Bölöni, Ladislau, "Biological Metaphors in he Design of Complex Software
Systems" (1999). Department of Computer Science Technical Reports. Paper 1449.
https://docs.lib.purdue.edu/cstech/1449

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

BIOLOGICAL METAPHORS IN THE DESIGN
OF COMPLEX SOFrWARE SYSTEMS

Dan C. Marinescu
Ladislau Boloni

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD #99-018
May 1999

Biological Metaphors in the Design of
Complex Software Systems

Dan C. Marinescu and Ladislau B616ni

Computer Sciences Department
Purdue University

West Lafayette, IN 41901, USA
(dcm, boloni@cs.purdue.edu)

Abstract

In this paper we discuss metaphores inspired by structural biology, genetics, neu
rology and immunology for building complex software systems. Structural biology
offers hints for software composition. Genetics provides ideas to construct software
modules from descriptions. A network of software agents could emulate the nervous
system, coordinate various activities and mediate amongst interacting entities. Im
munology inspires the design of secure systems. As a case study we present Bond, a
distributed-object system providing agent support for network centric computing.

Contents

1 Overview 2

2 Complex software systems 3

3 A Case Study: An Infrastructure for Network Centric Computing 8

3.1 Structural Biology Metaphors Applied to the Design of a
distributed-object System 9

3.2 The Security Model and the Immune System

3.3 Mobile Agents and Genetic Information

3.4 Networks of Cooperating Agents and the Nervous System

4 Conclusions

5 Acknowledgments

References

Preprint submitted to Elsevier Preprint

13

16

19

22

22

23

1 Overview

A number of biological analogies have found their way into computer science.
Neural networks provide an alternative to von Neumann architecture [1-3],
genetic algorithms [4] are used to solve optimization problems, mutation anal
ysis was proposed for software engineering. The question we are concerned
with is if these analogies can be used for building complex systems out of
components, [6], and emulate genetic mechanisms and the immune system.

In this paper we present a design philosophy for an infrastructure for network
computing based upon software agents, within the larger context of build
ing complex systems out of ready-made components and discuss biological
metaphors that inspired the design of the system. Inherently, a complex com
puting system is heterogeneous and accommodating the heterogeneity of the
hardware and the diversity of the software is a major concern of such a de
sign. Though we accept the diversity of biological and social systems we have
a low threshold for tolerating the impact the diversity of computer systems
has upon us. Nature uses composition to build very complex forms of life
and as we understand the principles and mechanisms that form the founda
tion of life we should try to emulate them to build more dependable and
easy to use computing systems. The cornerstones of the architecture we pro
pose are (metao)bjects, describing network objects, and software agents that
perform operations on network objects. Examples of network objects are pro
grams, data, hardware components including hosts and communication links,
services, and so on.

The Bond project was triggered by a collaboration with structural biologists
who provided the problems, the motivation to design a Virtual Structural Bi
ology Laboratory, and simulated our desire to learn some basic facts about
the structure of biological macromolecules. The individual algorithms and pro
grams needed for data acquisition, data analysis and model building for x-ray
crystallography and electron microscopy are discussed elsewhere [28-31]. Here
we only note that processing of structural biology data involves large groups
and facilities scattered around the world, and complex programs that are mod
ified frequently. Most computations are data intensive, they require the use
of parallel and distributed systems. Thus the need for an infrastructure for a
Virtual Laboratory.

This paper is organized as foHows. Section 2 addresses generic concerns related
to the design and construction of complex systems and provides an overview
of the biological metaphors. Section 3 introduces Bond. First we discuss struc
tural biology metaphors applied to the design of a distributed-object system,
then we discuss the security model. In Section 3.3 we discuss mobile agents
and in Section 3.4 we introduce networks of cooperating agents.

2

2 Complex software systems

A number of new initiatives and ideas for high performance distributed com
puting have emerged in the last few years. Object-oriented design and pro
gramming languages like Java open up intriguing new perspectives for the
development of complex software systems. Java supports code mobility. This
brings us to another significant development, computing grids [5]. Informally,
a computing grid is a collection of autonomous computing platforms with dif
ferent architectures, interconnected by a high-speed communication network.
Computing grids are ideal for applications that have one or more of the fol
lowing characteristics:

• are naturally distributed, data collection points and programs for processing
the data are scattered over a wide area network,

• need a variety of services distributed over the network,
• have occasional or sustained needs for large amounts of computing resources

e.g. CPU cycles, large memory, vast amounts of disk space,
• benefit from heterogeneous computing environments consisting of platforms

with different architectures,
• require a collaborative effort from users scattered over a large geographic

area, Ill].

The software systems necessary to support computing on a grid are inherently
more complex than existing ones. Yet, there is no rigorous and universally
accepted definition of a complex system. Some elements that define the com
plexity of a software system are static others are dynamic. Static aspects, are
the number of components of the system, the programming paradigms, the
genealogy of the components. Dynamic aspects are concurrency, one versus
multiple treads of control, locality, the components may be co-located or may
be distributed and need to communicate via a non-reliable channel, and last
but not least, the presence or absence of timing constrains.

Clearly, the size of the system, measured in terms of the number of components
is an indication of its complexity. A system using many libraries and consisting
of a very large number of modules is more complex than one with few compo
nents. Our intuition indicates that software systems written in an imperative
programming language are more brittle than those written in declarative lan
guages as the interactions among components are subject to strict conventions.
For example the layout of an array of complex numbers in a module calling
a library function to perform a 3D Fourier transformation must correspond
exactly to the specification of the function. But virtually all existing scien
tific and engineering software is written in imperative languages and we have
to find ways to accommodate its brittleness. Many complex software systems
have a mixed genealogy. Some of the components may be legacy programs

3

using programming languages that do not enforce typing and do not check ar
ray boundaries. Other components may be written in strongly typed, modern
languages supporting introspection and reflections.

Concurrency increases the complexity of a software system because multi
ple threads of control interact with one another often in a non-deterministic
manner. But it is difficult to quantify this intuition based upon the interplay
between the number of threads of control and the interaction patterns amongst
them. For example the behavior of a system with only two threads of control
interacting in some arbitrary fashion is more difficult to understand than that
of a system with n > 2 threads of control interacting on a predefined pattern
after a barrier synchronization. It is equally difficult to quantify the difference
between shared-memory and message passing concurrent systems. Intuitively,
we know that shared memory systems are more complex than message pass
ing systems because it is more difficult to determine the history of a shared
variable. It is impossible for the consumer of a shared variable to know if
the variable has been updated or not by the producer, without maintaining
the history of that variable. Distributed computing, spreading the threads of
control on the nodes of a system adds a new dimension to system complexity.
Communication is unreliable, data on communication channels can be affected
by errors, duplicated, or lost. Distributed programs are more difficult to con
struct, debug and maintain. Finally, as sensor technology matures, the relative
importance of systems with time-constrains increases. Embedded as well as
mixed-mode systems including some components with real-time constrains
will be pervasive. This adds an additional dimension to system complexity.
In summary, concurrency, distributed computing, and timing constrains are
dynamic aspects of system complexity that define new challenges for complex
system design and can be mapped to biological metaphors.

The metaphors we propose for the design of complex system are inspired from
structural biology, [22], genetics, neurology and immunology. Structural biol
ogy offers important hints for software composition, genetics provides useful
information on how to actually construct software modules from descriptions,
how to exploit the genetic economy principle, namely to build systems out of
similar or identical components. The study of the neural systems may give
us some hints on how to mix legacy components with more intelligent ones,
capable to control various aspects of the system. Immunology can help the
design of secure systems.

Nature uses composition to build extremely complex structures. There are
20 aminoacids, the basic building blocks of life. The aminoacids sequence of
a protein's peptide chain is called a primary structure. Different regions of
the structure form local regular secondary structure such as alpha helices and
beta strands. The tertiary structure is formed by packing such structural
elements onto globular units called domains. The final protein may contain

4

several polypeptide chains arranged in a quaternar1j structure. By formation of
such tertiary and quaternary structures aminoacids far apart in the sequence
are brought together in three dimensions to form a functional region, an active
site [7]. The three dimensional structure of a protein determines its function,
the disposition in space and the type of the atoms in a region of the protein
provide a lock that can be recognized by other proteins that may bind to it,
provided that they have the proper key. Living organisms mutate, the atomic
structure of their cells changes and a selection mechanisms ensures the survival
of those able to perform best their function.

Structurally, a complex system consists of components that must interact with
one another. Our first observation is that an object-oriented system has dis
tinct advantages compared to other approaches, it exposes to other comper
nents only the active site, the methods and the state variables the other com
ponents need to be aware of. In a complex system the more concise is the state
of each component, and the better defined are the channels used by compo
nents to interact with one another the simpler is the description of the system,
and the more likely it is that the system will have a predictable behavior.

Biological systems are composed of structures of increasing complexity, yet
the 20 aminoacids are the building blocks of all biomolecules. A direct anal
ogy of software and biological systems is difficult to justify by identifying a
small number of primitive software components. But instead of looking for
a small number of primitive components we should probably concentrate on
design patterns. A number of design patterns for object-oriented systems have
emerged, e.g. the proxy, the factory method, the decorator, the mediator, the
strategy, and so on, [10].

Structurally, the list of the components of a system is equivalent to the pri
mary structure of a protein, it gives some idea of the system complexity but
cannot possibly describe the function of the system. Multithreading provides
more insight into the dynamics of the system and it is analogous to the sec
ondary structure of a protein. Different communication patterns e.g. global
synchronization, pair-wise communication, etc. correspond to types of sec
ondary structures e.g. alpha helices, and beta strands. Object distribution
corresponds to tertiary structure, and timing constrains to the quaternary
structure. We may infer from these analogies that a good strategy is to treat
each aspect of a complex system design, concurrency, distribution, timing con
strains separately and then combine them together into a unitary system by
superposition. Ideally, the dynamic aspects of complex system design should
be hidden by the middleware layer of the system.

A second observation reflects our belief that software agents are a critical
component of any complex system. The agents represent the analog of the
nervouS system, they perform various coordination and control functions. An

5

useful step would be to define attraction and repulsion forces among compo
nents and couple the components based upon laws similar to molecular dy
namics laws. Some components of the system need to exhibit an autonomous
behavior very much like the behavior of a complex organism. For example a
complex application may include a scheduler responsible to coordinate indi
vidual activities carried out by the other components of the application, on a
system consisting of platforms with different architectures interconnected by
a wide-area network. The scheduler must be provided with a set of rules to
decide how to map the components to the nodes of the system, based upon:
(a) information regarding the current load of a node, (b) the ability to bind
a component to a node, (c) some optimization criteria for mapping, e.g. the
need to minimize the network load for data staging from a producer site to a
consumer site.

The critical aspect of a complex system design is the interoperability of its
components thus we need to turn our attention to software composition. The
idea of building a program out of ready made components has been around
since the dawn of the computing age, backworldsmen have practiced it very
successfully. Most scientific programs we are familiar with, use mathematical
libraries, parallel programs use communication libraries, graphics programs
rely on graphics libraries, and so on.

Modern programming languages like Java take the composition process one
step further. A software component, be it a package, or a function, carries with
itself a number of properties that can be queried and/or set to specific values
to customize the component according to the needs of an application which
wishes to embed the component. The mechanism supporting these functions
is called introspection. Properties can even be queried at execution time. Re
flection mechanisms allow us to determine run time conditions, for example
the source of an event generated during the computation, [8]. The reader may
recognize the reference to the Java Beans but other component architectures
exists, Active X based on Microsoft's COM and LiveConnect from Netscape
to name a few.

Can these ideas be extended to other types of computational objects besides
software components, for example, to data, services, and hardware compo
nents? What can be achieved by creating (meta)objects describing network
objects like programs, data or hardware?

The set of properties embedded into a (meta)object provide a "lock and key"
mechanism similar with the one used by proteins to recognize one another.
In a workspace populated with objects, one can envision mechanisms to link
network objects together to form a metaprogram, a new object, capable of car
rying out a well defined computational task. Example: to link a data object
to a software object we need to search the workspace for an object describing

6

a crystallographic FFT program able to compute the 3D Fourier transform of
a symmetric object with a known symmetry, given a lattice of real numbers
describing the "unit cell", the building block of the object. At each step, the
selection process succeeds if the target object possesses a set of "keys" , corre
sponding to the desired properties needed for composition. This is a deliberate
example, anyone familiar with FFTs recognizes that creating the objects de
scribing the elements discussed above is a non trivial task.

We expect an object to contain genetic information, i.e. a description of all
relevant properties of a network object. This information must be in a form
suitable for machine processing. For example an object associated with a soft
ware component should include a description of the functions and interfaces of
that component using a descriptive language like IDL, Interface Description
Language. IDL reveals only the interfaces of an object and does not specify
how these properties are to be folded into an actual implementation. The ge
netic information associated with a data object should reveal its ancestry, the
characteristics of the sensor that has generated the data, or provide links to
the program that has produced the data and to its input data objects. The
genetic information would allow an autonomous agent to generate an actual
implementation of the code in case of a software component, or a human con
templating the results of a sequence of computations to trace back decisions
made at some point in the past.

Does the effort to build (meta)objects seem daunting? We should expect it
according to the biological analogy discussed above. The task of abstracting
the properties of network objects is monumental, one can only succeed if the
network resources, software, data, and hardware, are classified into disjoint
classes each with well-defined properties and inheritance mechanisms. We also
need to modify the set of properties of an object. For example when an agent
discovers that a processor executes incorrectly a sequence of instructions this
new property should be added to the object describing that particular class
of processors. A fundamental principle is that acquired traits take precedence
over inherited ones. Both hardware and software are created as a result of
an evolutionary process. Occasionally, new programs, or microprocessors, are
created from scratch, but often, new versions are upgrades of existing objects,
that inherit many characteristics of the older versions. Inheritance has the
potential to simplify the task of building (meta)objects and agents capable
to manipulate them intelligently. Care must be taken to expose in the object
only stable properties of the network resources. The amount of main memory
installed on a system is a stable property and though it may change, such
changes are likely to be infrequent, while the load placed upon the system
varies rapidly, it is a transient property and should not be exposed.

Once we recognize that creation of (meta)objects is a difficult task we have to
ask ourselves if objects and the network resources need to be tightly or loosely

7

coupled with each other. The tightly coupled approach would require that the
network object and the (meta)object be kept together to ensure consistency.
There are fundamental flaws with the tightly coupled argument. First, this
"ab-initio" approach would require re-creation of legacy components, soft
ware, hardware and data, to fit our scheme. Second, information would be
unnecessarily duplicated and confidential information compromised.

By virtue of the arguments discussed above a (meta)object should only have a
soft link to the network object it describes. Different properties of the network
object may be accessible on a need to know basis, e.g. the source code may
be available only to those who have the need for it. The (meta)object asso
ciated with a program may contain attributes describing the function of the
program, its input and output. It should also provide references or pointers to
the: source code, the executables for different platforms, the human readable
documentation of the program, the implementation notes, an error log, and
so on. Following the principle of genetic economy, components of the object
would be shared among all the users of the network object. The price to pay
for the distributed-object approach is that inconsistency between the objects
and the network objects are occasionally unavoidable. We argue that in a
network rich environment catastrophic consequences of such inconsistencies
are unlikely to occur. Moreover, whenever possible, discovery agents should
update the objects.

In summary, we propose to create (meta)objects describing properties of net
work objects. These properties should reveal how objects can be composed
together using a lock and key mechanism and support a selection mechanism
to eliminate components that do not perform their functions well. Linking ob
jects together can only be done based upon a universally accepted taxonomy
of objects and properties, and a given context. We acknowledge the fact that
a considerable amount of work in the area of knowledge sharing still remains
to be done, but we believe that a system built along the principles discussed
above will allow a larger segment of the population to use computers to solve
complex tasks.

3 A Case Study: An Infrastructure for Network Centric Comput
mg

Bond, [21], is a distributed-object, message-oriented system. Our original ob
jective was to support various functions needed for a Virtual Laboratory,
an environment supporting data annotation, user-level resource management,
workflows and scheduling of remote activities. Thus it became clear early on
that we needed to integrate software agents into our distributed-object sys
tem. Once this decision was made we concluded that our system will be a

8

pure message-passing system because remote method invocation is too restric
tive for software agents. Rather than designing our own language we adopted
KQML, [15], [16]. Important as it may be, the fact that every object "speaks"
KQML, in other words understands the syntax of a KQML message and is able
to parse it, does not guarantee that two objects can cooperate with each other.
An object should be able to "understand" semantically a message and respond
to it in a coherent manner. To solve the problem of semantic understanding of
a message we introduced the concept of subprotocols. A subprotocol is a closed
set of messages, an object understands semantically every single message in a
subprotocol and it is able to respond with a message in the same subprotocol.
This guarantees the ability of objects to cooperate. Another design objective
is to support objects with a wide range of granularity from simple objects like
an address, a date, or a message, to complex objects like a scheduling agent
or an authentication server. A server is an active object capable to provide
a well-defined set of services. Though it may be very complex, a server does
not have the autonomy an agent must exhibit. The ability of an object to
"understand" a message is also very different.

The brief description of communication in Bond leads us to another design
principle, namely minimize the need for server access. Bond objects communi
cate directly with each other. Objects use an interface discovery subprotocol,
to find out what subprotocols oth~r objects implement. An alternative is to
use an interface repository service to discover the methods supported by a
remote object as CORBA does. To reduce access to a directory server, each
resident supports an "awareness" mechanism, as explained in the next section.

3.1 Structural Biology Metaphors Applied to the Design of a distributed
object System

An infrastructure based upon a distributed-object system is necessary to hide
the intricacies of concurrency as well as distribution of data and computations
across the nodes of a wide-area network. The components of the system have
to interact with one another and use a universally understood "signaling"
mechanism very much like biological macromolecules do. Objects inherit their
methods including the ability to understand messages from their ancestors.
Design patterns resembling the protein structures, including the proxy, the
decorator, and the factory are discussed. Object composition by means of
probes resembles protein binding.

Bond uses KQML [16], as a meta-language for inter-object communication.
KQML offers a variety of message types (performatives) that express an at
titude regarding the content of the exchange. Performatives can also assist
agents in finding other agents that can process their requests. A performative

9


~~~== "~J;" -:rfFI'ZZ"2ZZZL1 Shadow of A I!-- '
1

Con~ainer

~ect-A
I,,

Shadow of B Ii~----i---~
,-----

---'o-nt..in~

Objm 'J
Fig. 1. Communication between remote objects using their shadows. A shadow is
a proxy for a remote object. To communicate with object B in container 2, object
A in container 1 creates a shadow of B using the find function. Once the shadow
of B is created, A applies the local sayO method to send messages to it; then the
shadow delivers the message to B. To send a message to A, B follows the same same
procedure, creates a shadow of A then sends messages for A to its shadow.

is expressed as an ASCII string, using a Common Lisp Polish-prefix notation.
The first word in the string is the name of the performative, followed by pa
rameters. Parameters in performatives are indexed by keywords and therefore
order-independent.

The infrastructure provided by Bond supports basic object manipulation,
inter-object communication, local directory and local configuration services, a
distributed awareness mechanisms, probes for security and monitoring func
tions, and graphics user interfaces and utilities.

Shadows are proxies for remote objects, see Figure 1. Realization of a shadow
provides for instantiation of remote objects. Collections of shadows form vir
tual networks of objects.

Residents are active Bond objects running at a Bond address. A resident is a
container for a collection of objects including communicator, directory, con
figuration, and awareness objects.

Subprotocols are closed subsets of KQML messages. Objects inherit subpro
tocols. Every Bond object understands the property access subprotocols and
every Bond agent understands the agent control subprotocol. The handling of
the commands in these subprotocols is implemented by the methods of the
corresponding objects. The messaging thread of a Bond executable delivers
every incoming message to the sayO function of the corresponding object.
If the message is not understood, it is than passed to the say 0 function
of the immediate ancestor in the object hierarchy. This way every Bond ob
ject inherits all the subprotocols implemented by the objects above it in the
Bond object hierarchy. For example, the scheduler agent object implements
the scheduling subprotocol and inherits the agent control subprotocol imple
mented by the bondAgent, and the property access subprotocol implemented

10



by the bondObject.

~ ..

,epty

bondSchedular a ....nl

Fig. 2. Message processing by a Bond scheduler agent. The incoming messages are
handled by the sayO function of each object, and if not understood passed to the
sayO function of the parent. In parenthesis we have the subprotocol implemented
by the corresponding sayO function. The processing sequence is then presented for
two messages: an agent control message, understood by every object which inherits
from bondAgent and a monitoring message, which is not understood by this instance
of the bondScheduler object.

Figure 2 shows two examples of messages delivered to a bondScheduler ob
ject, which extends a bondAgent, which in turn extends a bondExecutable,
which in turn extends a bondDbject. The subprotocols specified at each level
are specified in paranthesis. The bondScheduler object does not understand a
monitoring message (it does not inherit a monitoring subprotocol), so after be
ing passed all the way in the hierarchy, the sayO function of the bondDbject
class answers with sorry indicating that it does not understand it.

The transport mechanism between Bond residents is provided by a communi
cator object with four interchangeable communication engines based upon:

• UDF,
• Tep,
• Infospheres, (info.net) [9] , and
• IP Multicast protocols.

Probes are objects attached dynamically to Bond objects to augment their
ability to understand new subprotocols and support new functionality.

Examples of probes are the bondMonitoringProbe which, when attached to
an object, allows a remote monitor object to monitor the properties of the
object, or the bondSecurityProbe which, when attached to an object, allows
the object to understand encrypted messages. Monitoring probes implement a
subscription-based monitoring model. An autoprobe allows loading of probes
on demand.

11



· Monitoring

'1'~~~ulor.saYo! message

ISCb~~tn~~i~~ .ij

11=~:~_~I_J ;J

t
"""··,,,,,=f; ! l~ _
~:::;;;;;;;.::::~,~I }j;SOQJrilYProbe --..... ,\ (S.cw::ity) ./"

bondObJeclSayi)- \ ~ -=====~- Reply to monitoring
(Propn1::y ,oniloring prob~ massage
keo..) (~...LtodDO"J/ •

:J -------

bondSchedular agent :-)

Fig. 3. The effect of extending an object with probes. In this case a bondScheduler is
extended with a monitoring probe. The extended object understands the monitoring
sub-protocol and is capable of providing a meaningful reply to a monitoring message.

In the Figure 3 we have the same scheduler agent, this time extended with
two probes, a monitoring probe implementing the monitoring subprotocol,
and a security probe implementing the security subprotocol. An incoming
message which is part in the monitoring subprotocol is passed down in the
inheritance hierarchy without being processed. At the bondObject level, after
being checked that it is not part of the property access subprotocol, the object
checks its dynamic properties for probes which implement the subprotocol
of the message. In our case, the monitoring probe implements the required
subprotocol, so the message is delivered to it, and from there the probe will
take care of processing the message. If there is no probe implementing the
subprotocol, the object replies sorry.

This construction is roughly similar in scope to the Decorator design pattern
as presented in [10], allowing to dynamically extend the functionality of an ob
ject without subclassing. However the implementation is different - instead of
a wrapper which captures the function call, we have a dynamically appended
object which is consulted only in the case when the message does not make
sense for the object itself. The difference in implementation is due to the mes
sage oriented nature of the objects: the higher flexibility and looser coupling
between objects communicating by messages.

Another object-oriented structure which allows objects to acquire new func
tionality after "programming time" is the notion of a mixin [10], [12]' [13].
Mixins are generally implemented as abtract classes, with reserved functions
for future functionality. As such, the programmer needs at least a rough idea
about the nature of the functionality with which the object may be extended.
In our special case, the probes offer a larger flexibility, of course at the cost of
the additional processing time to syntactically and semantically interpret the
messages.

12



The distributed awareness mechanism provides information about other resi
dents and individual objects in the network. This information is piggy-backed
on regular messages exchanged among objects to reduce the overhead of sup
porting this mechanism. An object may be aware of objects it has never com
municated with. The distributed awareness mechanism and the discovery sub
protocol reflect our design decision to reduce the need for global services like
directory service and interface repositories.

9.2 The Security Model and the Immune System

Security is a critical aspect of the design of any system and in this section
we discuss analogies between computer security and the immune system. The
immune system creates antibodies that bind to the active site of a virus and
prevents it from binding to cells and infecting them. We propose to surround
objects with a defense perimeter using security probes. In a message passing
system the only manner to interact with an object is by sending and receiving
messages. A probe is an active object screening all incoming and outgoing
messages to an object and enforcing the authentication and access control
models the owner of the object desires. Probes, like antibodies, are generated
independent of the entities they are expected to bind to, but the analogy
breaks down when we consider the attachment site. Antibodies bind to the
agent causing the infection, the virus, while we propose to bind the probes to
the objects that are the potential targets of undesirable actions.

Applications of network centric computing have vastly different security re
quirements and the trade-off between security and performance are application
specific. It is unrealistic to consider one security model suitable for all appli
cations and all environments. Additional security challenges posed by network
computing are discussed below. The user population and the resource pool are
large and dynamic. A user may only be aware of a small fraction of the com
ponents involved in a computation. The relations among components may be
rather complex, a component may act both as a server and a client at the same
time. Traditional distributed systems use RPC or TCPlIP as their primary
communication mechanism. In contrast, a distributed computing environment
may use two-sided communication mechanism like message passing, streaming
protocols, multicast, and/or single-sided get/put operations, as well as RPC.
Components may communicate through a variety of mechanisms.

The boundaries of trust are more intricate because of dynamic characteristic
of components. The trust users have in components is threatened when com
ponents can be mobile between hosts and new components can be created on
the fly. Boundaries of trust are more complex because an activity typically
involves multiple domains with different security policies and security models.

13



Computation may be distributed to many more machines than any given user
has control over.

Security in a network environment includes authentication and access control
[23], [24]. Authentication refers to the process of identifying an individual,
usually based on a username and password. Access Control is the process
of granting or denying access to a network, based upon a two-step process,
authentication to ensures that a user is who he/she claims to be, and access
control proper which allows the user access to various resources based on the
user's identity.

Some of the authentication models presented in the literature are:

• PAP - Password Authentication Protocol. Provides the most basic form of
authentication. User's name and password are transmitted over the network
and compared to a table of name-password pairs. Typically, the stored pass
words are encrypted.

• CHAP - Challenge Handshake Authentication Protocol. The authentication
agent, typically a network server, sends the client a key to encrypt the
username and the password.

• Kerberos - ticketwbased authentication. The authentication server assigns
a unique key, called a ticket, to each user that logs on to the network.
The ticket is then embedded in every message to identify the sender of the
message.

• Certificate-based authentication. This model is based on public key cryp
tography. Each user holds a public and a private key. The user can get a
certificate that proves the binding between the user and its public key from
a third party. The private key is used to generate evidence that can be
sent with the certificate to server side. The server uses the certificate and
evidence to verify the identity of the user.

A credential is a secret code that proves the identity of an individual. Authen
tication models use different credentials, e.g. username/password in PAP and
CHAP, user identifier/ticket in ticket-based authentication, and user certifi
cate/private key in the certificate-based authentication.

In Bond we opted for an extensible core object that can support multiple
security models and can be added dynamically to existing object. This phi
losophy leads to several design principles. The first is to provide a framework
for security, not force an implementation. Bond leaves the decision of choosing
the format of credentials, the authentication policy, the access control policy,
and so on, to the system developer or the system administrator. The Bond
Security Framework, BSF, is implemented as an extensible core Bond object
called BondSecurityContext and a set of well-defined security interfaces. A
second design principle is that various aspects of a complex object design,

14



client object client's security
conlelCl

$alVeI's security
context server object

-''fi------
---------,

~~'i~i----
Service request

I
~-y--- i
" oondNameBased :

AccessConlrol
i ~

Service granted

r--------

,

I 1'·
i J'=r

Fig. 4. The security probes attached to a client and a server provide a defense
perimeter around each object. Service requests are authenticated and subject to
access control tests before being forwarded to the server.

including security, should be separated from one another. In the initial design
and implementation phase the creator of an object should only be concerned
with functionality. Once the object is fully functional, the creator needs to
investigate the security requirements and augment the object with the proper
security context by including a probe called BondSecurityContext. Another
design principle is to support multiple authentication and access control mod
els. This goal is achieved by defining a common interface for different security
functions, like credential, authentication and access control.

The security framework supports two authentication models, one based upon
usemame, plain password and one based upon CHAP. Two access control mod
els are supported, one based upon the IF address (firewall) and one based upon
an access control list. The following example illustrates how to construct se
cure objects using BSF. Assume that we have one client, two servers, serverA
and serverB and an authentication server that provides account management
and authentication services.

Figure 4 illustrates the message exchange between a client and a server. The
client sends a service request, its security context does not modify the message
because it detects that a CHAP security model is used. On the other side, the
message is intercepted by the security context ofthe server. The authenticator
of the security context of the server sends a challenge back to the credential
component of the security context of the client and expects a response derived
from both the challenge and the information available in the client's credential.

15



Then the authenticator of the security context of the server uses the challenge
and the response from the client to authenticate the client. If the service
request is validated then the server object grants the service.

3.3 Mobile Agents and Genetic Information

Software agents seem to be at the center of attention in the computer science
community. Yet different groups have radically different views of what software
agents are, [18], [17] what applications could benefit from the agent technology.
The concept of an agent was introduced by the AI community a decade ago,
[14J. An AI agent exhibits an autonomous behavior and has inferential abilities
and can also be used to ensure interoperability, [19]. A considerable body of
work is devoted to agents able to meet the 'lUring test by emulating human
behavior [20J. Such agents are useful for a variety of applications in science
and engineering e.g. deep space explorations, robots, and so on. The object
oriented community views an agent as a mobile active object. Code mobility
confers to an agent its autonomy.

In our view [21], a software agent is an abstraction for building complex sys
tems. An agent is an active mobile object that mayor may not have inferential
abilities. Our approach to agent mobility is different too. We assemble agents
dynamically from a description called a blueprint using components called
strategies. Our agents consists of finite-state machines embedded into planes,
that share a model, the memory of the agent. We can freeze an agent just
after the completion of the strategy in one state and the transition to another
occurs. To migrate an agent from one Bond resident to another we simply
send the blueprint and the model to the new site. The model contains the cur
rent state of the agent. Thus the blueprint and the model provide the genetic
information necessary to recreate the agent at a different location.

Several distributed-object systems provide support for agents. Infospheres
(I/www. infospheres . caltech. edu/), and Bond are academic research
projects, while IBM Aglets (w'ii'w. trl. ibm. co. jp/aglets/index.html) and
Objectspace Voyager (I /www.objectspace.com) are commercial systems.

A first distinctive feature of the Bond architecture, described in more detail
in [21] is that agents are native components of the system. This guarantees
that agents and objects can communicate with one another and the same
communication fabric is used by the entire population of objects. Another
distinctive trait of our approach is that we provide middleware, a software
layer to facilitate the development of a hopefully wide range of applications of
network computing. We are thus forced to pay close attentions to the software
engineering aspects of agent development, in particular to software reuse. We

16



,

J

decided to provide a framework for assembly of agents out of components,
some of them reusable. This is possible due to the agent model we overview
now.

We view an agent as a finite-state machine, with a strategy associated with
every state, a model of the world, and an agenda as shown in Figure 5. Upon
entering a state the strategy or strategies associated with that state are ac
tivated and various actions are triggered. The model is the 11 memory" of the
agent, it reflects the knowledge the agent has access to, as well as the state
of the agent. Transitions from one state to another are triggered by internal
conditions determined by the completion code of the strategy, e.g. success or
failure, or by messages from other agents or objects.

r'PEy·---···,······..8:·····~:: ""·i ::::::: -ic:;n
Agenl Plane 1. Lr II•1 ~!I

~
.-_. Slnllegyl.l 'I

,...- ••••••• I

! ", [ I
'"" i-.-...._. .._...•_. ...•_.. f····[ '",_1J e I

FInite Slaw machine -. "-1 StrBtegy 1.~ __J .l

,~.--------

·:_-:;-~t:11$f~J~1!=====----'=-~I
Model

___c_o~._-.~._

I~IIM~_I

In~=J8

Fig. 5. The abstract model of a Bond Agent

The finite-state machine description of an agent can be provided at multiple
granularity levels, a course-grain description contains a few states with com
plex strategies, a fine-grain description consists of a large number of states
with simple strategies. The strategies are the reusable elements in our soft
ware architecture and granularity of the finite state machine of an agent should
be determined to maximize the number of ready made strategies used for the
agent. We have identified a number of common actions and we started building
a strategy repository. Examples of actions packed into strategies are: starting
up one or more agents, writing into the model of another agent, starting up
a legacy application, data staging and so on. Ideally, we would like to assem
ble an agent without the need to program, using ready-made strategies from

17



repositories.

Another feature of our software agent model is the ability to assemble an
agent dynamically from a "blueprint", a text file describing the states, the
transitions, and the model of the agent. Every Bond-enabled site has an "agent
factory" capable to create an agent from its blueprint. The blueprint can be
embedded into a message, or the URL of the blueprint can be provided to the
agent factory. Once an agent was created, the agent control subprotocol can
be used to control it from a remote site.

In addition to favoring reusability, the software agent model we propose has
other useful features. First, it allows a smooth integration of increasingly com
plex behavior into agents. For example, consider a scheduling agent with a
mapping state and a mapping strategy. Given a task and a set of target hosts
capable to execute the task, the agent will map the task to one of the hosts sub
ject to some optimization criteria. We may start with a simple strategy, select
randomly one of the target hosts. Once we are convinced that the schedul
ing agent works well, we may replace the mapping strategy with one based
upon an inference engine with access to a database of past performance. The
scheduling agent will perform a more intelligent mapping with the new strat
egy. Second, the model supports agent mobility. A blueprint can be modified
dynamically and an additional state can be inserted before a transition takes
place. For example a "suspend" new state can be added and the "suspend"
strategy be concatenated with the strategy associated with any state. Upon
entering the "suspend" state the agent can be migrated elsewhere. All we need
to do is send the blueprint and the model to the new site and make sure that
the new site has access to the strategies associated with the states the agent
may traverse in the future. The dynamic alteration of the finite state machine
of an agent can be used to create a "snapshot" of a group of collaborating
agents and help debug a complex system.

We have integrated into Bond the JESS expert shell developed at Sandia
National Laboratory as a distinct strategy able to support reasoning. Bond
messages allow for embedded programs written in JPython and KIF.

Agent security is a critical issue for the system because the ability to assemble
and control agents remotely as well as agent mobility, provide unlimited op
portunities for system penetration. Once again the fact that agents are native
Bond objects leads to an elegant solution to the security aspect of agent de
sign. Any Bond object, agents included, can be augmented dynamically with
a security probe providing a defense perimeter and screening all incoming and
outgoing messages.

The components of a Bond agent shown in Figure 5 are:

• The model of the world is a container object which contains the infor-

18



mation the agent has about its environment. This information is stored in
the form of dynamic properties of the model object. There is no restriction
of the format of this information: it can be a knowledge base or an ontology
composed of logical facts and predicates, a pre-trained neural network, a
collection of meta-objects or different forms of handles of external objects
(file handles, sockets, etc).

• The agenda of the agent, which defines the goal of the agent. The agenda is
in itself an object, which implements a boolean and a distance function on
the model. The boolean function shows if the agent accomplished its goal
or not. The distance function may be used by the strategies to choose their
actions.

• The finite state machine of the agent. Each state has an assigned strategy
which defines the behavior of the agent in that state. An agent can change
its state by performing transitions. Transitions are triggered by internal
or external events. External events are messages sent by other agents or
objects. The set of external messages which trigger transitions in the finite
state machine of the agent defines the control subprotocol of the agent.

• Each state on an agent has a strategy defining the behavior of the agent in
that state. Each strategy performs actions in an infinite cycle until the
agenda is accomplished or the state is changed. Actions are considered
atomic from the agent's point of view, external or internal events inter
rupt the agent only between actions. Each action is defined exclusively by
the agenda of the agent and the current model. A strategy can terminate
by triggering a transition by generating an internal event. After the transi
tion the agent moves in a new state where a different strategy defines the
behavior.

All components of the Bond system are objects, thus Bond agents can be
assembled dynamically and even modified at runtime. The behavior of an
agent is uniquely determined by its model (the model also contains the state
which defines the current strategy). The model can be saved, transferred over
the network.

A bondAgent can be created statically, or dynamically by a factory object
bondAgentFactory using a blueprint. The factory object generates the com
ponents of the agent either by creating them, either by loading them from
persistent storage. The agent creation process is summarized in Figure 6

3.4 NetworkB of Cooperating Agents and the Nervous System

A complex system consists of a variety of software components created in
dependently, a heterogeneous computing environment, and vast amounts of
data. Software agents can lJ glue" together these elements and act as a nervous

19



1'- Blueprinl

I repository

"

Agent

'_:.. "

Fig. 6. Creating an agent remotely using an agent factory. (1) The beneficiary object
sends a create-agent message to the agent factory (2) The blueprint is fetched by the
agent factory from a repository or extracted from the message (3) The strategies are
loaded from the strategy database (4) The agent is created (5) The id of the agent
is communicated back to the beneficiary, and (6) The beneficiary object controls
the new agent

system performing command and control functions. Thus the ultimate goal of
Bond is to support a network of cooperating agents distributed across many
sites.

The group of agents at each site form an agent stack tailored to a specific
function as shown in Figure 7. An application site is concerned with the exe
cution of tasks posed by an end user who is the beneficiary of all the actions
triggered by local agents. The agent stack at an application site consists of
an assortment of application support agents including a personal assistant,
a software maintenance agent, and a user resource manager. Other agents in
the stack include coordinator agents, monitoring agents, scheduler agents and
possibly other agents. These agents may be independent or they may be planes
of a complex agent. The difference is that independent agents communicate
only through message-passing while individual planes communicate through
shared-memory.

The personal assistant agent maintains the knowledge pertinent to user's pref
erences, personal data, and acts as an intelligent assistant. When necessary
it activates local and remote agents. It supports strategies to ensure data
privacy, to migrate data, to start, control and stop other agents, to initiate
remote execution of programs, to maintain a history of user's transactions.

A maintenance agent is another application support agent. It builds a knowl
edge base covering a set of programs, reports errors to a remote peer agent,

20



monitors a number of sites for new products, and responds to help requests.

A user resource managing agent maintains information about hardware and
software resources distributed across the network.

A coordinator agent is responsible with the collaborative aspects of end user's
activity. It maintains a set of projects and goals related to each project, dead
lines, collaborators.

A scheduling agent is responsible to execute an activity flow graph whose indi
vidual nodes are legacy applications. It involves several planes, one responsible
to relate activities with programs, a plane to map programs to individual sites,
one to coordinate the execution at each site and one plane for each wrapper,
an agent supervising the execution of a legacy program.

Fig. 7. Bond agent architecture. The agent stacks at a user, service, and network
site.

The agent stack at a service or resource site is different than the one at the
application site. The agents are started in behalf of the provider of service
or the local resource manager. The resource or service management agent
enforces policies imposed by the service provider and ensures the quality of
service. It advertises the service to network brokers, replicates the service to
other sites under its control to guarantee an agreed upon level of service, and
monitors satellite services.

21



Typical senJice support agents include software maintenance agents, the ones
responsible to gather error reports, answer questions about the service or
resource, and inform the client side whenever a new software release takes
place or a new service is provided. Other support agents provide accounting
and access control. Last but least the agents stack at network sites provide
brokerage and matchmaking services.

To illustrate the use of Bond, we describe in [25] a network of PDE solvers. A
coordinator agent and a network of mediator and solver agents control a set
of legacy PDE solvers running on a wide-area network. The coordinator agent
controls the decomposition of a data domain into sub-domains and the activa
tion of all other agents. The mediator agents implement interface relaxation
policies and the solver agents act as wrappers around the legacy application.
In [26] and [27] we describe the use of Bond as an infrastructure for Problem
Solving Environments.

4 Conclusions

In this paper we argue that increasingly complex systems like computing grids
require novel approaches to software composition and the development of an
infrastructure to hide the more intricate aspects of concurrency, distribution of
code and data, and timing constrains. We believe that analogies with biological
phenomena are very useful in designing and implementing complex software
system.

To illustrate these ideas we present a distributed-object, agent-based infras
tructure and discuss various metaphors from structural biology, genetics, im
munology, and neurology used in the design of Bond.

The Bond system consists of four packages, core, agents, services, and appli
cations. A beta version of the Bond system was released in mid March 1999
under an open source license, LPGL, and can be downloaded from our web
site, http://bond.cs.purdue.edu.

5 Acknowledgments

The work reported in this paper is partially supported by the National Science
Foundation grants BIR-9301210 and MCB-9527131, by the California Insti
tute of Technology, under the Scalable I/O Initiative, by a grant from Intel
Corporation, and by the Computational Science Alliance and the NCSA at
the University of Illinois.

22



References

[1] Rosenblatt, F. "The perceptmn: A perceiving and recognizing automaton", 85
460-1, Project PARA Cornell Aeronautical Laboratory Ithaca, NY, 1957.

[2] Hopfield, J. Neural Networks and Physical Systems with Emergent "Collective
Computational Abilities" Proceedings of the National Academy of Sciences, 1982
vo1.79, pp. 2554.

[3] McClelland, J.L. and D. E. Rumelhart, "Parallel Distributed Processing:
Explorations in the Microstructures of Cognition, Volume 2: Psychological and
Biological Models", MIT Press Cambridge, Mass. 1986

[4] Koza, J.R. "Genetic Programming: On the Programming of Computers by
Means of Natural Selection", MIT Press 1992.

[5] The Grid, Blueprint for a New Computing Infrastructure, Foster, 1. and C.
Kesselman, Eds., Morgan Kaufmann, (1998).

[6J Fabre, J.C. and T. Perennou. "A Metaobjeet Architecture for Fault Tolerant
Distributed Systems: The FRIENDS Approach ", IEEE funs. on Computers,
Vol 47, No 1, pp 78-95, 1998.

[7] Branden, C., and J. Toose. "Introduction to Protein Structure" Garland
Publishing 1991.

[8] Stroud, R.J. ('Transparency and Reflection in Distributed Systems", ACM
Operating Systems vol. 22, no. 2 pp. 99-103, 1993.

[9] Chandy, Mani, K. "Caltech Infospheres Projed Overview: Information
Infrastructures for Task Forces. "

[10] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Addison
Wessley, (1994).

[11] Johnson W.E. Real-time widely distributed instrumentation systems. In The
Grid. Blueprint for a New Comput. Infrastructure, (1. Foster and C. Kesselman,
eds.), Morgan Kaufmann Publishers, 74-104,1998.

[12] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.-M. Loingtier,
J. Irwing Aspect oriented programming Pmc. European Conference of Object
Oriented Programming (ECOOP), 1997.

[13] Kiczales, G., J. M. AsWey, L. Rodriguez, A. Vahdat and D. G. Bobrow
Metaobject Protocols - Why We Want Them and What Else They Can Do
in Object-Oriented Programming - The CLOS Perspective, MIT Press, 1993.

[14] Bradshaw, J. M., An Introduction to Software Agents, in Software Agents, J.M.
Bradshaw, Ed., MIT Press, pp. 3-46, 1997.

[15] Finin, T., et aI. "Specification of the KQML Agent-Communication Languagen

DARPA Knowledge Sharing Initiative draft, June 1993.

23



[16] Finn, T., Y. Labrou, and J. Mayfield KQML as an Agent Communication
Language, in Software Agents, J.M. Bradshaw1 Ed., MIT Press, pp. 291-316,
1997.

[17] Foner, L.N. What's an Agent, Anyway? A sociological Case Study Agents Memo
93·01, Agents Group, MIT Media Lab, 1993.

[18] Franklin, S. and A. Graesser, Is it an Agent, or just a Program?, Proceedings
of the Third International Workshop on Agent Theories, Architectures and
Languages, Springer Verlag, 1996.

[19] Genesereth, M. R, An Agent-Based Framework for Interoperability, in Software
Agents, J.M. Bradshaw, Ed.,MIT Press1 pp. 317-345, 1997.

[20] Jennings, N. R, K Sycara, M. Woolridge, A Roadmap of Agent Research and
Development, in Autonomous Agents and Multi-Agent Systems1 1, pp. 275-306,
1998.

[21] B6l6ni, L., and D.C. Marinescu, An Object-Oriented Framework for Building
Collaborative Network Agents. Intelligent Systems and Interfaces, (A. Kandel,
K Hoffmann, D. Mlynek, and N.H. Teodorescu, eds). Kluewer Publising House,
(1999), (in press).

[22] B616ni, L., R. Hao, KK Jun, and D.C. Marinescu, Structural Biolgy Metaphors
Applied to the Design of a Distributed Object System, Proc. Second Workshop
on Bio-Inspired Solutions to Parallel Processing Problems, in LNCS, vol 1586,
Springer Verlag, pp. 275-283, 1999.

[23] Hao1 R, KK Jun, and D.C. Marinescu, Bond System Security and
Access Control Model, Proc. lASTED Conference on Parallel and Distributed
Computing and Networks, pp. 520·524, 1998.

[24] Hao, R., L. B616ni, KK. Jun, and D.C. Marinescu, An Aspect-Oriented
Approach to Distributed Object Security, Proc. 4-th IEEE Symp. on Computers
and Communications, IEEE Press1 1999, (in print).

[25] Tsompanopouloll, P., 1. B6l6ni, D.C. Marinescu, and J .R. Rice, The Design
of Software Agents for a Network of PDE Solvers, Proc. Workshop on Agent
Technologies for High Perfonnance Computing, at Agents 99, pp. 57-68, 1999.

[26] Marinescu, D.C., An Agent-Based Design for Problem Solving Environment,
Proc. Workshop on PrallelfHigh Performance Scientific Computing, POOSe'gB
1999, (in press).

(27] Marinescll, D.C., and B616ni L., A Component-Based Architecture for Problem
Solving Environments, 1999, (in preparation).

[28] Cornea-Hasegan, M,Cn Z. Zhang, R.E. Lynch, D. C. Marinescu, A. Hadfield,
J.K. Muckelbauer, S. Munshi, L. Tong and M.G. Rossmann. "Phase Refinement
and Extension by Means of Non-cTiJstallographic Symmetry Averaging using
Parallel Computers." Acta Cryst D51, pp 749·759, 1995

24



[29J Martin, 1. , D.C. Marinescu, R. E. Lynch, and T. S. Baker. "Identification of
Spherical Virus Particles in Digitized Images of Entire Micrographs" Journal
of Structural Biology, 120, pp. 146-157, 1997.

[30) Martin, 1. and D.C. Marinescu ('Concurrent Computations and Data
Visualization for Structure Determination of Spherical Viruses" IEEE
Computational Science and Engineering, October-December, pp. 40-51, 1998.

[31] Lynch, R.E., D.C. Marinescll, H. Lin, and T. S. Baker. "Parallel Algorithms for
3D Reconstruction of Asymmetric Objects from Electron Micrographs" Pmc.
13th International Parallel Processing Symposium, IEEE Press, pp. 632-637,
1999.

25


	Biological Metaphors in he Design of Complex Software Systems
	Report Number:
	

	tmp.1307986960.pdf.abE1X

