Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1999

Automated Estimation of Relaxation Parameters for Interface
Relaxation

John R. Rice
Purdue University, jrr@cs.purdue.edu

P. Tsompanopoulou

E. Vavalis

Report Number:
99-015

Rice, John R.; Tsompanopoulou, P; and Vavalis, E., "Automated Estimation of Relaxation Parameters for
Interface Relaxation" (1999). Department of Computer Science Technical Reports. Paper 1446.
https://docs.lib.purdue.edu/cstech/1446

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

AUTOMATED ESTIMATION OF RELAXATION
PARAMETERS FOR INTERFACE RELAXATION

John R. Rice
P. Tsompanopoulou
E. Vavalis

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

CSD-TR #99-015
April 1999



Automated estimation of relaxation parameters
for interface relaxation !

J.R. Rice P. Tsompanopoulou? and E. Vavalis 2

Purdue University, Computer Science Deparitmeni, West Lafayette, IN 47907

Abstract

An adaptive procedure, based on Automatic Differentiation, for estimating ” good™
values for the relaxation paramaters for general multi-dimensional problems is pro-
posed.

1 Introduction

Interface Relaxation (IR} methods [11]) have been recently attracted a lot of
attention. This is due to their increased capability in splitting Muiti-Physics
Multi-Domain (MPMD) PDE problems into a collaborative pool of simple
problems [8]. This splitting is done in a natural way and leads to effective
numerical methods which fully utilize existing PDE solvers through software
reuse practices. The resulting PDE sub-problems are coupled together thought
rclaxation mechanisms that try to mimic the physical world. There already
exist several such interface relaxation techniques in the literature [11]. Most of
them involve relaxation parameters that can significantly improve the conver-
gence propertics of the various IR methods if their values are properly chosen.
These parameters depend on many components (PDE operator, PDE domain,
splitting, ... ) of the original problem. This, unfortunately makes the selection
of "optimum” values for the relaxation paramcters a hard and challenging
problem. On the other hand the local subdomain discretization schemae do
not affect the convergence properties of the IR schemae giving them the great
versatility to let one select the most appropriate discretization parameters or
method for the differential problem define on cach subdomain.
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Several papers have been devoted in theoretically obtaining optimum values
for the interface relaxation parameters [14,16]. Nevertheless the analysis is
done for model problems and subdomain splittings and although they provide
important information fail to assist a non-expert uscr to select values for those
parameters for problems with moderate complexion. When this complication
is increased even experts can not effectively select parameters.

The main objective of our study is to provide an adaptive heuristic mecha-
nism for automatically selecting " good” relaxation parameters for general dif-
ferential equations and domain decompositions. These proposed mechanism
uses Automatic Differentiation {AD) and utilizes the existing analytically es-
timated values

The rest of this paper is organized as following. In the next section we briefly
present the general methodology of IR. An adaptive procedure for estimating
"good” values for the relaxation parameters is proposed in section 3.

2 Domain decomposition with iterated interface relaxation

Currently the domain decomposition world consists of two parts ~overlapping
and non—overlapping— both living in prosperity. Overlapping, known also as
Schwartz, methods were the first considered and have already proved them-
sclves as very efficient numerical procedures enjoying certain very desirable
convergence properties. Nevertheless it has been also observed that they might
have several serious drawbacks which will prohibit their use for certain appli-
cations. For example, almost all of the many proposed domain decomposition
methods for solving wave propagation models (that consist of the Helmholtz
equation coupled with various absorbing or reflecting boundary conditions)
are non-overlapping and of interface relaxation type [1,3,7,10].

Non-overlapping methods exhibit certain advantages compared to overlapping
ones. Specifically:

— They are not sensitive to jumps on the operator coefficients. Their conver-
gence behavior and theoretical error estimates remain the same even if the
differential operator includes discontinuous coefficients provided that the
jumps occur along the interface lines [15].

— They have smaller communication overhead in a parallel implementation on
distributed memory multiprocessor systems. Their communication overhead
is proportional to the length of the interface lines while it is proportional to
the overlapping area in the case of overlapping methods [4].

~ The bookkeeping is rather easy for the decomposition and manipulations
of the associated data structures compared to the more complicated and
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Fig. 1. The interface relaxation mechanism
costly bookkeeping of the overlapping methods [4].

There are two principal viewpoints of non-overlapping methods, precondition-
ing and interface relaxation. For an in depth and up-to-date survey of non—
overlapping domain decomposition methods considered and analyzed from the
preconditioning viewpoint the reader is referred to [13] and for a general for-
mulation and analysis of interface relaxation methods to [8]. We give a bricf
presentation of the interface relaxation method philosophy and practice, in
order to identify its main characteristics.

Interface relaxation is a step beyond non-overlapping domain decomposition;
it follows Southwell’s relaxation of the 1930’s ~ but at the PDE instead of the
linear algebra level — to formulate relaxation as iterated interface smoothing
procedures. A complex physical phenomenon consists of a collection of simple
parts with each onc of them obeying a single physical law locally and ad-
Justing its interface conditions with neighbors. Interface relaxation partitions
the domain on a set of non-overlapping subdomains, imposes some boundary
conditions on the interface among subdomains lines. Given an initial gucss,
it imitates the physics of the real world by solving the local problems exactly
on each subdomain and relaxing boundary values to get better estimates of
correct interface conditions. This is illustrated in Figure 1 where the gencric
relaxation formula g;; (based on the current solutions UM®” and UNe* of
the two local to the neighboring subdomains Q; and ;) calculates successive
approximations b,‘-\;?’“’ to the solution on the interface I'; ; between them.

To formally describe this method we consider the differential problem

Du=fin§, Bu=condfd (1)




where D is an elliptic, non-linear in general, differential operator and B a con-
dition operator defined on the boundary 98 of a domain @ € R, d=1,2,....
This domain is partitioned into p subdomains €;,7 = 1,...,p such that

Q= U2, Q; and N2, ;= 0. For reasons related either to the physical char-
acteristics of this problem or to the computing resources available, one would
like to replace (1) with the following system of loosely coupled differential
problems

Dyu= f;in 4, Gyu=0on 83\0Q Bju = c; on §; NN (2)

where ¢ =1,...,p. These differential problems are coupled through the inter-
face conditions G;u = 0 and involve the restrictions D; and B; of the global
differential and boundary operators, 12 and B, respectively, on each subdomain
with some of them possibly linear and some others nonlincar. The functions f;
and ¢; are similar restrictions of functions f and c. The local interface operator
G; is associated with the interface relaxation method and different selections
for the G}’s lead to different relaxation schemes. In this study we consider
several interface relaxation methods that have the following characteristics:

- They first decompose the problem (1) at differential level and then discretize
the resulting differential subproblems (2).

— They have the versatility to use the most appropriate discretization scheme
for each subproblem.

— They do not overlap the subdomains €2;.

— Using good relaxation parameters in G;, they are fast enough so no precon-
ditioning is needed.

— They simplify the geometry and physics of the computation by considering
the subproblems (2) instead of the global differential problem (1).

— They can utilize software parts technology by reusing cxisting "legacy” soft-
ware parts for solving the individual subproblems (2).

— They are general and robust.

There are several challenging questions concerning practical applications of
such methods (e.g. find the most suitable relaxer for a particular problem
of application, determine what is the domain of applicability of each one of
them, explain the interaction between the mathematical iteration and the nu-
merical solving method, select *good” or "optimal” values for the relaxation
parameters involved, - - -). It is worth to point out that since all the methods
decompose and relax interface values at continuum level the convergence anal-
ysis of these methods need to be carried out at PDE (continuum) level and
therefore is a mathematical and not a numerical analysis problem (sce [8] for
a discussion).




3 Estimating relaxation paramaters in the general case

As it has been allready observed [11,5] the value of the relaxation paramaters
plays a crousial role in the convergence of the various interface relaxation
methods. Fine tuning of these parameters can greatly improove the rate of
convergence while a bad choice might lead to unacceptable slow convergence
or even divergence. They depend on both the eigenvalues of the differential
operator and the geometric parameters of the domain. Unfortunately analytic
expressions of this dependence are not available and does not seem easy to de-
rive them for general cases. Therefore general and robust heuristic mechanisms
that automaticaly compute "good” values for the relaxation paramaters are
needed. We next present a framework to adaptively adjust the values of the
relaxation paramaters o; and f; of the averaging interface relaxation method
towards its optimal value. The mecthodology of the proposcd scheme is general
enough to treat complicated (possibly non-linear) differential operator and ar-
bitrary domain decompositions in 1,2 or 3 dimensions, has allready be applied
with success to the successive over-relaxation (SOR) itcrative method [6] and
can be readily applied to virtualy any interface relaxation methods.

Consider the particular interface I';; € R, d = 0, 1,2 between subdomains ©;
and {2;. The interface relaxation equations on I';; are given by

(@K (2k) (2k)
ul(z) A (:r))+3uj (:1:), el )

u(z) = B ( g v ov

where -2 represents the outward normal derivative to I'; ; and

u(z) = ag; (uf* V() - u¥*V(2)) + uPV(2) , zeTyy (4)

We arc interested in investigating how different values of the relaxation pa-
rameters affect the quality of the iterants u(z) and w/(z). We can achieve that
by computing the derivative of a certain quantity, that reflects the quality
of iterants, with respect to these relaxation parameters and use it to update
their values. We can consider two such quantities: the 2-norm of the residual
r =|| Du(z) — f{z) || on the interface [, ; or the size of the Gerr disc associ-
ated with that particular interface as considered in the previous section. We
should mark that the first choice will not work for interfaces where there are
discontinuities and the second one assume that that the iteration matrix A
[12] has been obtained.

We first concedrate on the first option Assuming that we are able to compute

the sensitivity of the residual with respect to o;; as its partial derivative

Ta = 72— after performing the Neumann (3) rclaxation then we can use a
¥,




secant method to update the value of the rclaxation parameter in the next
iteration. More specifficaly, if we assume that with the superscripts below we
denote the iteration step then we obtain the following simple adaptive formula

o) (L) )& (L} —ofi ™
1]
@5 “Ta [A.} G0 (5)

while the equivalent formula associated with the Dirichlet (77

k-1
[3(‘"“] (L) {k)ﬂ;'[ ﬂ( ) (6)
s (%) U\- 1
™8 — s

can be derived similarly. Obviously there is no way to analyticaly calculatc 7,
since there is no closed form of r, as a function of the o’s and A's, avaialble.
Nevertheless such function is given in a form of an algorithm while relaxing
each interface. Therefore a possible solution is to use automatic differentiation
[9] to obtain *good” values for the relaxation parameters. In the automatic
differentiation framework one apllics a process that generates code which uses
lookup tables and mechanicaly apply the chain rule to compute the derivative
of a function given in a form of a computer program. Among the various
software infrastructures that exploit the automatic differentiation idea we have
select the ADIFOR package [2] for our implementation.

To move to our sccond option we consider the Gerschorin disk associated with
the ith interface and try to simultaniously minimize its area and move its
center as close to the origin as possible. This can be done by minimizing the
sum of the absolute value of the elements in the 7th row of the iteration matrix
M with respect to o and .

Thus we can use antomatic differention to calculate the Jacobian matrix and
solve the associated equations for the optimum values of the relaxation pa-
rameters.
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