PYTHIA-II: A Knowledge/Data Base System for Testing and Recommending Scientific

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

Vassilios S. Verykios

Ann C. Caitlin

Naren Ramakrishnan

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
99-012
PYTHIA-II: A KNOWLEDGE/DATA BASE SYSTEM FOR TESTING AND RECOMMENDING SCIENTIFIC SOFTWARE

Elias N. Houstis
Vassilios S. Verykios
Ann C. Catlin
Naren Ramakrishnan
John R. Rice

CSD-TR #99-012
April 1999
PYTHIA-II: A Knowledge/Data Base System for Testing and Recommending Scientific Software

Elias N. Houstis, Vassilios S. Verykios, Ann C. Catlin, Naren Ramakrishnan and John R. Rice

Abstract

Very often scientists are faced with the task of locating appropriate solution software for their problems and then selecting from among many alternatives. Issues related to how someone specifies problems, extracts content information, builds knowledge bases, infers answers, and identifies software resources are crucial to any scientific computing development today. In [Houstis et al. 1991] we had proposed an approach for dealing with these issues by “processing” performance data obtained from “testing” software. Reliable testing requires identification of benchmarks that “densely” cover many of the application domain “features”, systematic testing procedures and automatic ways to collect and analyze the results of this process. Testing constitutes a significant investment of effort and expertise that cannot be duplicated easily by an average scientific or engineering group. In this paper, we present the architecture and implementation of a knowledge/data base system, PYTHIA-II, that makes software recommendations based on problem specifications and computational objectives such as accuracy, cost or time, and memory requirements. It is designed to (i) identify and select the software/hardware resources available for a user's problem, (ii) locate these resources and provide information about their usage, availability, cost and related information, (iii) suggest parameter values, and (iv) provide an assessment of the recommendation. In addition, PYTHIA-II can be used to generate “testing” software repositories, since it provides all the necessary facilities to set up database schemas for testing benchmarks and associated performance data, with a number of tools for visualization, statistical ranking, data mining, knowledge representation, and recommendation generation.

This work was supported in part by DARPA grant DAAG19-94-C-0001, PRF 6902851, DARPA grant N 00019-97-C-0133 (Navy), DOE LG-6982, and Purdue Research Foundation.
Contents

1 Introduction 3

2 Recommender Systems for Scientific Software: Methodology 5
 2.1 Problem Features 6
 2.2 Performance Evaluation 7
 2.3 Reasoning and Learning Techniques in PYTHIA-II 8
 2.4 Domain Specific Recommender Systems: Architecture 10

3 PYTHIA-II: A Realization of the Recommender System Methodology 13

4 System Design 13
 4.1 Architecture 14
 4.2 Data Flow 16

5 System Components 18
 5.1 Data Generation 19
 5.2 Data Mining 19
 5.3 Recommendation Generator 21
 5.4 User Interface 22

6 Case Study: Modeling the Performance of Elliptic PDE Software 23
 6.1 Performance Database Description 23
 6.2 Data Mining and Knowledge Discovery Process 26
 6.3 Knowledge Discovery Outcome 27

7 Conclusion 30
I. INTRODUCTION

Complex problems, whether scientific or engineering, are most often solved today by utilizing public domain or commercial libraries or some form of problem solving environments (PSEs) [Gallopoulos et al. 1994]. Most extant software systems are characterized by a significant number of parameters affecting efficiency and applicability which must be specified by the user. This complexity is significantly increased by the number of parameters associated with the execution environment. Furthermore, one can create many alternative solutions of the same problem by selecting different software that implements the various phases of the computation. Thus, the task of selecting the best software for a particular problem or computation is often difficult and sometimes even intractable. In [Houstis et al. 1991] we had proposed an approach for dealing with these issues by "processing" performance data obtained from "testing" software. Reliable testing requires systematic testing procedures and automatic ways to collect and analyze the results of this process. Testing constitutes a significant investment of effort and expertise that cannot be duplicated easily by an average scientific or engineering group.

In this paper, we present the architecture and implementation of a knowledge/database system, PYTHIA-III\(^1\), whose design objectives address most of the above issues. Specifically, from the end-user perspective, PYTHIA-III will allow users to specify the problem to be solved and their computational objectives such as accuracy, cost or time, and memory requirements. The system will (i) identify and select the software/hardware resources available for the user's problem, (ii) locate these resources and provide information about their usage, availability, cost and related information, (iii) suggest parameter values, and (iv) provide an assessment of the recommendation. To support the development of the "testing" software repositories, PYTHIA-III provides a highly extensible database schema for testing suites and associated performance data, with a number of tools for visualization, statistical ranking, data mining, knowledge representation, and recommendation generation.

The realization of PYTHIA-III requires us to

1. develop and analyze methodologies and tools for generating knowledge of specific domains (e.g. linear algebra, linear elliptic PDEs, mesh decomposition) of scientific software (algorithms),
2. address the issue of intelligent integration and presentation of information,
3. devise a software architecture for PYTHIA-II, and
4. integrate methodologies to provide advice for solving classes of scientific problems and indicate the available software/hardware resources, including an estimation of the parameters involved.

Given a problem description from a known class of problems, along with some performance criteria, PYTHIA-III provides a knowledge based technology for the selection of the most efficient software/machine pair and estimation of software/hardware parameters involved. Due to its ability to make recommendations by combining attribute-based elicitation of a specified problem features and matching them

\(^1\)PYTHIA-II is a successor to the PYTHIA system [Weerawarana et al. 1997] for selecting scientific algorithms using exemplar based reasoning.
against those of a predefined "dense" population of similar problems, we classify PYTHIA-II as a recommender system [Ramakrishnan et al. 1998]. We describe an operational recommender system with a case study that covers software for elliptic partial differential equations found in the problem solving environment PELLPACK [Houstis et al. 1998]. The initial version of PYTHIA-II is built as a foundational system that can be enlarged into a national software recommender service for the entire scientific community by making it available as a network server.

One of the core research issues in building PYTHIA-II is understanding the fundamental processes by which knowledge about scientific problems and their solutions is created, validated, accumulated, and communicated. Some of this knowledge comes directly from experts-scientists and engineers-in-the-field. Other knowledge is mined from experimental data. Yet further knowledge is learned from the experience gained by the system itself as it extracts performance knowledge about software components running on various platform and applied to various problems. The methodology employed for extracting knowledge from performance data is implemented as a knowledge/database process which utilizes database, statistical, data mining, and rule generation technologies.

We now describe a sample PYTHIA-II session. Suppose that a scientist or engineer uses PYTHIA-II to find software that solves an elliptic partial differential equation (PDE). The system uses this broad categorization (and more subdivisions such as linear, first order, if necessary) to direct the user to a form-based interface that requests more specific information about features of the problem and the user's performance objectives. Figure 1 illustrates a portion of this scenario where the user provides features about the operator, right side, domain, and boundary conditions - integral parts of a PDE - and specifies a time constraint (measured on a Sun SPARCstation 20, for instance) and an error requirement to be satisfied. As shown, the interface contacts the PYTHIA-II (web) server on the user's behalf which, in turn, interfaces with a domain specific recommender. The recommender uses the knowledge acquired by the learning methodology presented in [Houstis et al. 1991; Ramakrishnan 1997; Ramakrishnan et al. 1998] to perform the software selection. Having determined a good algorithm, the recommender consults databases of performance data to determine the solver parameters, such as the number of grid
lines to use with a PDE discretizer. Estimates of the time and accuracy with the recommended algorithm are also presented.

The rest of the paper is organized as follows: The motivation and general methodology for building recommender systems are introduced in Section 2. The system architecture of a recommender system is also presented in this section. Section 3 develops these ideas further by addressing the issues with specific reference to the PYTHIA-II system. A case study with the prototype system for a benchmark suite of test problems and algorithms is outlined in Section 4. Section 5 concludes by discussing future research and development directions.

2. RECOMMENDER SYSTEMS FOR SCIENTIFIC SOFTWARE: METHODOLOGY

In the context of human artifacts, a recommender system (RS) can be viewed as an intelligent system that uses stored user preferences for a given class of artifacts to locate and suggest artifacts that should be of interest to associated users. Throughout this paper we define an RS for software/hardware artifacts as a system that uses stored artifact “performance data” on a population of predefined problems and machines to locate and suggest “efficient” artifacts for the solution of “similar” problems. Recommendation becomes necessary when user’s requests or objectives cannot be properly represented as ordinary database queries. In this paper we present an RS that assists scientists in selecting suitable software for the problem at hand, in the presence of practical constraints on accuracy, time and cost. In other words, it is necessary to adaptively select, recommend and locate software to conform to the performance requirements set by the user [Rice 1969]. We refer to this as the algorithm/software recommendation problem. Following, we describe the complexity of this problem, the research issues that must be addressed, and a methodology for resolving them.

Awareness of the algorithm selection problem has its origins in an early paper by Rice [Rice 1976]. Given a task in scientific computation, with performance criteria constraints on its solution (such as accuracy, time, cost, etc.), it is necessary to decide on an algorithm to achieve the desired objectives. Even for routine tasks in computational science, this problem is ill-posed and quite complicated. The difficulty in algorithm selection is primarily due to:

—The space of applicable algorithms for specific problem subclasses is inherently large, complex, ill-understood and often intractable to explore by brute-force means. Approximating the problem space by a representation (feature) space also introduces an intrinsic error in the modeling sense.

—Depending on the way the problem is (re)presented, the space of applicable algorithms changes; some of the better algorithms sacrifice generality for performance and have specially customized data structures and routines fine tuned for particular problems or their reformulations.

—Both specific features of the given problem and algorithm performance information need to be taken into account when deciding on the algorithm selection strategy.

—A mapping from the problem space to the good software in the algorithm space is not the only useful measure of success - one should also be able to obtain useful
<table>
<thead>
<tr>
<th>Phases</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine evaluation</td>
<td>Identify the computational objectives for which the performance evaluation of the selected scientific software is carried out.</td>
</tr>
<tr>
<td>objectives</td>
<td></td>
</tr>
<tr>
<td>Data preparation</td>
<td>(1) Identify the evaluation benchmark, its problem features, experiments (i.e., population of scientific problems for the generation of performance data).</td>
</tr>
<tr>
<td>(1) selection</td>
<td>(2) Identify the performance indicators to be measured.</td>
</tr>
<tr>
<td></td>
<td>(3) Identify the actual software to be tested, along with the numerical values of their parameters.</td>
</tr>
<tr>
<td></td>
<td>(4) Generate performance data.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) pre-processing</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Data mining</td>
<td>(1) Transform the data into an analytic or summary form.</td>
</tr>
<tr>
<td></td>
<td>(2) Model the data to suit the intended analysis and data format required by the data mining algorithms.</td>
</tr>
<tr>
<td></td>
<td>(3) Mine the transformed data to identify patterns or fit models to the data; this is the heart of the process, and is entirely automated.</td>
</tr>
<tr>
<td>Analysis of results</td>
<td>This is a post-processing phase done by knowledge engineers and domain experts to ensure correctness of the results.</td>
</tr>
<tr>
<td>Assimilation of</td>
<td>Create an intelligent interface to utilize the knowledge and to identify the scientific software (with parameters) for user's problems and computational objectives.</td>
</tr>
<tr>
<td>knowledge</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: A Methodology for building recommender systems. This layered methodology is very similar to procedures adopted in the performance evaluation of scientific software.

indicators of domain complexity and behavior, such as high level qualitative information about the relative efficacies of algorithms.

There is an inherent uncertainty in interpreting and assessing the performance measures of a particular algorithm for a particular problem. Minor differences in algorithm implementation can produce large differences in performance measures that make it impractical to rely on purely analytic estimates.

Distribution and evolution of the knowledge corpus for problem domains make it difficult to assimilate relevant information; techniques are required that allow distributed recommender systems to coexist and cooperate together.

A methodology for generating an RS for scientific artifacts is defined in Table 1. The layered approach suggested by this methodology is akin to similar strategies put forth for the performance evaluation of scientific software. Its implementation, illustrated by PYTHIA-II, is discussed in Section 3. Assuming a "densely" distributed set of benchmark problems from the targeted application domain, this methodology uses a three-pronged strategy: feature determination in the problem domain, performance evaluation of scientific software, and the automatic generation of recommender systems from such data. Following, we described each of these in more detail.

2.1 Problem Features

The applicability and efficiency of algorithms/software depends significantly on the features of the targeted problem domain. Identifying and characterizing problem features of the problem domain is a fundamental problem in software selection. Even if problem features are known, difficulties arise because the overall factors influencing the applicability (or lack) of an algorithm in a certain context are not
very well understood. The way problem features affect methods is complex, and algorithm selection might depend in an unstable way on the features. Even when a simple structure exists, the actual features specified might not properly reflect the simplicity. For example, if a good structure is based on a simple linear combination of two features f_1 and f_2, the use of features such as $f_1 \ast \cos(f_2)$ and $f_2 \ast \cos(f_1)$ might not accurately reflect the underlying mapping. A good selection methodology might fail because the features are given an attribute-value meaning and assigned measures of cardinality in a space where such interpretations are not appropriate. Many attribute-value approaches (such as neural networks) routinely base comparisons on features values (such as 1 and 5), erroneously concluding that the magnitude of the latter is five times that of the former. Comparing features, on the other hand, might not be possible, or it may be that their values can only be interpreted in an ordinal/symbolic sense. In the current implementation of PYTHIA-II, this phase is implemented by the knowledge engineer.

Figures 2 and 3 show the data base schema for a feature and a feature relation, respectively. The relation record shows how PYTHIA-II represents the correspondence between problem definition entities (e.g., PDE equations) and their features. Some instances of these records for the PDE case study are shown in Figure 4.

2.2 Performance Evaluation

The performance evaluation phase implemented in PYTHIA-II is based on well established methodologies for scientific software [Rice 1969; Boisvert et al. 1979; Casaletto et al. 1969; Dodson et al. 1968; Dyksen et al. 1984; Housten et al. 1978; James and Rice 1967; Konig and Ullrich 1990; Moore et al. 1990; Rice 1983; Rice 1990]. While there are many important factors that contribute to the quality of numerical software, we illustrate our ideas using speed and accuracy. Even though more important (and more difficult to characterize) attributes such as reliability,
portability, documentation, etc., are ignored in this discussion, our methodology handles such features as well. Other classes of performance objectives for software are handled more simply, e.g., code language, public or proprietary, licensing availability, or member of library X.

Accuracy may be measured by several means; we chose either a function of the norm of the difference between the computed solution and the true solution or an estimate of the error guaranteed by an approximation algorithm. Speed is normally measured by the time required to execute the appropriate software/routines in a particular execution environment. The PYTHIA-II problem execution environment ensures that all performance evaluations are made in a consistent manner; their outputs are automatically coded in the form of predicate logic formulas. We deliberately resort to attribute-value encodings when the situation demands it; for instance, the representation of linearized performance profiles for solvers is useful to obtain interpolated values of grid and mesh parameters for PDE problems. Diagnostic information like error reports, fail codes, etc., is also provided in the form of logic formulas so that they may influence the algorithm selection methodology. Some of the most important performance measures appear to be - and are - quite hardware and systems infrastructure dependent. Our philosophy is that a recommendation should be made that is close to best. If one wants to be sure about the best, one has to generate data for the particular computing environment to be used, and this almost always involves more computation than using a close to best algorithm.

How can performance data from many different machines be used to make a recommendation for a new, unknown, machine? We use machine specific performance factors and feature matching to compare execution times on different machines [Houstis and Rice 1980]. Although these are approximate, we believe our comparison mechanism is valid.

2.3 Reasoning and Learning Techniques in PYTHIA-II

There are many approaches to generating recommendations for artifacts. For software selection, we have adopted one that is based on a multi-modal learning approach. Multimodal reasoning methods integrate different AI approaches to leverage their individual strengths. The PYTHIA-II system is a general framework supporting the integration of a range of reasoning and learning techniques. Specifically, it provides the following three broad learning strategies:

— **Case Based Reasoning (CBR):** A case based reasoning system [Kolodner 1993; Riesbeck 1996; Riesbeck and Schank 1989; Watson 1977] records 'cases' of past experience and uses them to guide problem solving in future analogous situations.
These cases might reflect a useful solution approach, a bad strategy or estimate of the likely outcomes in a state-based environment. The original PYTHIA system [Weerawarana et al. 1997] utilized a rudimentary form of case based reasoning where the cases correspond to characteristic-vector descriptions of PDE problems and algorithms. Such systems are advantageous for their 'stored library' paradigm, where it is assumed that a case library can be constructed that covers the actual problems and situations encountered. In addition, case based reasoning can be used to 'evolve' new cases (in environments where data is sparse), suggest directions for continued exploration (in an unknown and large environment) and form the basis for recommender systems via the case bank. CBR has been successfully applied in previous advisory systems such as the SQUAD system at NEC, a system using approximately 30,000 cases to provide advice to software quality control engineers [Kitano and Shimazu 1996].

- **Inductive Logic Programming (ILP):** ILP systems [Bratko and Muggleton 1995; Dzeroski 1996; Muggleton and Raedt 1994], on the other hand, attempt to construct a predicate logic formula so that all positive examples of good recommendations provided can be logically derived from the background knowledge, and no negative example can be logically derived. The advantages of this approach lie in the generality of the representation of background knowledge. ILP techniques are also useful in distinguishing between the various features of the problem domain as being suitable for representation vs. discrimination. Formally, the task in algorithm selection is: given a set of positive exemplars and negative exemplars of the selection mapping and a set of background knowledge, induce a definition of the selection mapping so that every positive example can be derived and no negative example can be derived. While the strict use of this definition is impractical, an approximate characterization, called the cover, is utilized which places greater emphasis on not representing the negative exemplars as opposed to representing the positive exemplars. Techniques such as relative least general generalization and inverse resolution can then be applied to induce clausal definitions of the algorithm selection methodology. This forms the basis for building recommender procedures using banks of selection rules. This methodology has been adopted in [Ramakrishnan 1997].

- **Decision-Tree Induction:** Decision trees are a precursor to ILP systems and while limited in their representation capabilities, are advantageous for their ability to handle noise, outliers and use attribute-value based comparisons to influence decision making. The ID3 [Quinlan 1986] is one such system that we have investigated for inclusion in the PYTHIA-II system. ID3 is a supervised learning system for top-down induction of decision trees using a greedy algorithm. This algorithm is based on a simple information-theoretic consideration of the classifiability of a given training set with respect to several of its attributes. The result of this process is a tree-like knowledge representation structure where: (a) every internal node (including the root) bases its decision on the value of some attribute; (b) every leaf node identifies a specific class. It is very advantageous in domains where attributes have a mixed symbolic-numeric flavor and the underlying structure is simple enough to be accommodated in a tree-based representation. A performance evaluation of domain decomposition algorithms based on this paradigm has been
2.4 Domain Specific Recommender Systems: Architecture

In this section we detail the software architecture of a domain specific RS based on the recommendation methodology and its components discussed above. The design objectives of an RS for scientific software include (i) modeling domain specific data into a structured representation as expressed by a database schema, (ii) providing facilities for the generation of system specific performance data by using simulation techniques, (iii) automatically collecting and storing this data, (iv) summarizing, generalizing, and discovering hidden patterns/rules that capture the behavior of the scientific software system that generates the performance data by expressing them in a high level logic based representation language, and finally, (v) incorporating them into the intensional/deductive part of the underlying relational DBMS in the form of relation views. A view of these operational components of the PYTHIA-II system is given in Figure 5.

Two of the basic components of an RS are the stored rule base and an inference engine to support its deduction capabilities. The rule base contains rules generated using one of automated learning process described above. In the RS production framework we envision having a highly integrated software system for knowledge acquisition and maintenance that spans the domains of databases, statistical analysis, inductive learning and a deductive-like approach, coupled with a high level user interface that facilitates easy access and reasonable learning curves for the knowledge engineer planning to update and maintain a domain specific RS. We propose a fully automated system for generation and maintenance of domain specific recommender systems, but do not neglect human intervention throughout the process.
especially when the generalization accuracy attained by the machine learning system is of low quality. Domain experts apply their feedback/evaluation (i.e., sanity check) to the induced rules, since it is easy for them to judge the general applicability and reasonableness of rules, even as it is beyond human capability to identify rules by searching through very large databases. We propose a modularized approach for building recommender system cores (e.g., Figure 5) with the interfaces between the various modules as points where human support or interaction can easily take place.

By modeling and collecting all the information related to a specific scientific computing domain in a database system, our integrated approach easily synthesizes input programs on demand. All the required information exists in a structured way in the database which transforms the programs to the input format required by the execution environment. The database system then executes them in an automatic, possibly batch manner. Simulation techniques applied to the appropriately transformed programs generate performance data to be collected, cleaned and converted to a format suitable to the performance schema defined beforehand for storage in the database. A statistical analysis phase can be applied to some suites of performance data to summarize the data and to extract information about the various trends or patterns that are known to exist. The objective of such a statistical analysis might be some ranking, or a discretization of continuous variables (since we know where percentiles are located we can reasonably split a continuous variable if required by the system using the data), and so on. At this point, the core of the inductive rule generation and case based reasoning processes begins. Appropriately selected data are retrieved from the database and are fed into the knowledge discovery system that attempts to mine novel patterns hidden in the data, expressing the results in a high level representation language. We expect that different methods will be applicable to different problem domains. At the termination of the rule generation process, the domain expert decides whether the knowledge generated in the form of rules is satisfactory (the sanity check), or else the process is repeated.

The intensional part of the underlying DBMS includes capabilities to define rules (those automatically generated by the learning process), which can deduce or infer additional information from the facts that are stored in the database. Rules in our case are relational views. They specify virtual relations that are not actually stored but can be formed from the facts by applying inference mechanisms based on the rule specification. An SQL (the standard for database query and modification) interface at this stage is enough to provide the user with domain specific recommendations. A user of the RS can use the SQL engine of the DBMS to retrieve data and recommendations either from facts stored as simple relations or from the relational views that consist of a simple encoding of the discovered knowledge. A simple text based or graphical SQL based form interface can be used by an end user to access the services of an RS.

Our RS requires the support of an object-oriented, relational database to provide storage, retrieval and processing for atomic entities, experiments, performance data, knowledge-related data and derived data. Atomic entities are domain specific since they represent the problem definition objects of a targeted domain, but the performance and knowledge-related data schema extend easily to other problem domains. Following we describe the data base schema specification used for pro-
Problem Population. The (atomic) entities which describe the PDE problems include equation, domain, boundary_conditions and initial_conditions. Field attributes for these entities must be defined in a manner consistent with the syntax of the targeted scientific software. Solution algorithms are defined by calls to library modules of the software; the modules are represented by entities which include grid, mesh, decompose, discretize, indexer, linear_system_solver, and triple. In addition, a sequences entity contains an ordered listing of all modules used in the solution process of a PDE problem. Miscellaneous entities required for the benchmark include output, options and fortran_code. Figures 15 and 16 show the schema for the equation and sequences records, respectively. Instances of an equation and sequence record for the PDE population are shown in Figure 8. The equation field attribute in the equation record uses the syntax of the PELLPACK PSE [Houstis et al. 1998]. The θb in the specification provides for parameter replacement and the $\textit{forfile}$ attribute provides additional source code to be attached to the equation definition. The sequences record shows an ordered listing of the module calls used to solve a particular PDE problem. For each module call in the list, the sequence identifies the module type, name and parameters.

--- Features. An explanation of the features and their database representation is given in Section 2.1.

--- Experiments. The experiment is a derived entity which identifies a specific PDE
problem and lists a collection of sequences to use in solving it. Generally, the experiment covers a range of solution algorithms with varied parameters; it is translated to a collection of driver programs which are executed to produce performance data corresponding to the solution algorithms and execution platform. See Figure 17 for the schema definition.

—Rundata. The rundata schema specifies the targeted hardware platforms, their characteristics (operating system, communication libraries, etc) and execution parameters. The rundata and experiment record fully specify an instantiation of performance data.

—Performance Data. The performance schema is a very general, extensible representation of data generated by experiments. An instance of performance data generated by the PDE benchmark is shown in Figure 10.

—Knowledge-related Data. Processing for the knowledge-related components of PYTHIA-II is driven by the profile and predicate records. These schema represent the set of experiments, problems, methods and features which should be considered for analysis. An instance of the predicate schema is given in Figure 19.

—Derived Data. Data resulting from the data mining of the performance database is stored back into the profile and predicate records. This data is processed by visualization and knowledge generation tools.

3. PYTHIA-II: A REALIZATION OF THE RECOMMENDER SYSTEM METHODOLOGY

4. SYSTEM DESIGN

In this section we describe the overall design of the system in terms of its components and structure and the data flow.
create table EXPERIMENT (
name text, -- record name (primary key)
system text, -- software identification used for program generation
nopt integer, -- number of options
options text[], -- array of option record names (foreign key)
nopparam integer, -- number of parameter specific options
optparam text[], -- array of option record names
equation text, -- equation record which defines the equation
eqparam integer, -- number of equation parameters
eqparam text[], -- array of equation parameter names
domain text, -- domain record on which the equation is defined
ndomparam integer, -- number of domain parameters
domparam text[], -- array of domain parameter names
bccond text, -- boundary condition record
nbcparm integer, -- number of bcond parameters
bcparm text[], -- array of bcond parameter names
nparm integer, -- number of parameters applied across all definitions
parm text[], -- array of problem-wide parameters (no. of programs)
sequences text[], -- names of the sequence records containing soln. schemes
nout integer, -- number of output records
output text[], -- array of output record names
nfor integer, -- number of source code files to include
fortran text[] -- names of the files to include
);

Fig. 9: The experiment record specifies the components of a PDE problem and identifies the collection of sequences to use in solving it.

4.1 Architecture
The modular design of PYTHIA-II is shown in Figure 5. The hierarchical architecture of the system consists of four layers:

- user interface layer
- data generation, data mining, and recommendation generation layer
- relational engine layer, and
- database layer.

The database layer provides permanent storage for the problem population, the performance data and problem features, and the computed statistical data. The next layer is the relational engine which supports an extended version of the SQL database query language and provides the required functionality for the stored data to be accessible to the upper layers. The third layer consists of three subsystems: the data generation system, the data mining system, and the recommendation generation system. The data generation system accesses the records defining the problem population and processes them within the problem execution environment, invoking integrated scientific software for solving the problem and generating performance data. The statistical data analysis module and the pattern extraction module comprise the data mining subsystem. The statistical analysis module is a prototype software implementation of a non-parametric statistical method applied
Fig. 10. An instance of performance data from the PDE benchmark.

to the generated performance data. PYTHIA-II integrates a variety of publicly available pattern extraction tools adhering to different learning paradigms.

In the highest layer, a graphical user interface allows the knowledge engineer to exploit the capabilities of the system for generating knowledge as well as query the system for facts stored in the database layer. The end-user interface also resides in the top layer. It uses the knowledge generated by the lower layers, encoding it
appropriately as a knowledge base for an expert or recommender system. The facts stored in the database drive the process of answering domain specific questions posed by end users. The architecture of PYTHIA-II is extensible, with well defined interfaces among the components of the various layers. The interfaces of these components are discussed in Section 4.2, and their functionality and implementation are described in Section 5.

For storage and database management, we selected the POSTGRES95 relational database and used PgTcl as the application programming interface of PYTHIA-II and the POSTGRES95 back-end. Using Tcl/Tk as the basic programming environment for the implementation of PYTHIA-II allows the database to be accessed in a transparent and intuitive way. PgTcl is efficient for database access, since it communicates with the back-end directly via the front-end-back-end protocol, without the need for intermediate C libraries (similar to Oracle Pro*C). It also handles multiple back-end connections from a single front-end application. The implementation code can either use library calls for connecting/selecting/reading from the database, or can execute embedded SQL statements, making the data access simple and flexible.

4.2 Data Flow

The PYTHIA-II design presented above supports two different user interfaces, one for the knowledge engineer and the other for end users who request domain specific advice about the problems they want to solve. This section describes the data flow and I/O interfaces between the main components of the PYTHIA-II system from the perspective of these two interfaces.

Knowledge engineer perspective: The data flow is depicted graphically in Figure 12, where the boxes represent stored entities, the edges represent operations related to the underlying database, and the self-edges represent operations related to various external programs such as statistical analysis, transformations and data
filtering. The automated knowledge discovery process begins with populating the problem-specific database tables. In PYTHIA-II, the underlying database schema is fixed, but extensible and dynamic. The knowledge engineer has to specify his understanding of the domain in terms of the relational data model to match PYTHIA-II’s database schema. The front-end interface for populating the database includes a full-fledged graphical environment with menus, editors, and database-specific forms for presentation purposes, very much like those supported by Oracle’s SQL*Forms.

An experiment database record combines problem records into classes of problems, and a high-level problem specification is generated by a program-based transformation of the experiment record into a complete and correct input file specification. These files are passed to the problem execution environment which invokes the appropriate scientific software for problem execution. Although the variability of the input specification is dealt with by the specific schema of the problem record, the variations in the output format for the files generated during execution are handled by specifying a system specific and user selected file template. The template lists, among other things, the full specification for the program to be called for the collection of the “important” data contained in the output files. This data is automatically collected by the program, and stored in the performance data records for further processing, while all the output files are deleted. These records keep logical references to the problem records in the form of foreign keys. In this manner, performance data can be matched with problem features by executing n-way joins, which is necessary for pattern extraction.

By combining data from a number of performance records, while maintaining all but one of the experimental variables constant, we can generate a profile that characterizes the behavior of a certain parameter with respect to other parameters. The statistical analyzer uses the instructions for extracting performance data contained in a profile database table, which contains the number of experiments deemed necessary by the knowledge engineer for the analyzer to produce rankings of the solver profiles with the required statistical significance. The analyzer submits “canned” SQL queries to retrieve the data to use for further processing. Figure 13 presents an instance of this process for the case study considered in Section 6.

After the performance data has been retrieved and combined, it is provided to the statistical analyzer for ranking based on the domain parameter selected by the user for evaluation. The ranking produces an ordering of these parameters which is statistically significant (i.e., if the performance data shows no significant difference
between parameters then they are shown as tied in rank). The ranking can be used in a number of different ways to drive the pattern extraction process. Before the data is handed over to this process however, yet another abstraction level is used. A predicate record defines the collection of profile records to be used in pattern extraction. This means that the knowledge engineer can change the set of input profile records as easily as updating a database record. The predicate also contains all the required information used by the program that creates input for the algorithms used in pattern extraction.

A filter program is called for the selected predicate record to collect and transform the information to the input format required by the pattern extraction programs. After the input data is prepared, the programs generate output in the form of "logic" rules, "if-then" rules or decision trees/graphs for categorization purposes. In this process there is open-ended extensibility regarding the integration of tools like neural networks, genetic algorithms, fuzzy logic tool-boxes, rough set systems, etc.

End user perspective: The Recommender is the module within PYTHIA-II which is accessed by the end-user for requesting domain specific advice. The front-end for a Recommender must be configurable and adaptable for satisfying a variety of user needs. It is well understood that end users of a Recommender for scientific computing are most interested in questions regarding accuracy of a solution method, performance of a hardware system, optimal number of processors to be used in a parallel machine, how to achieve certain accuracy by keeping the execution time under some limit, etc. The PYTHIA-II Recommender interface allows users to specify the characteristics of the problems to solve, as well as the performance objectives or constraints. The system that supports this functionality is CLIPS. This is an expert system shell tool-box, which uses the induced knowledge, even background knowledge, and facts from the problem, feature, performance, profile and predicate tables to provide the user with the best recommended solution to the problem presented. It is also possible that the user’s objective cannot be satisfied. In that case, the user can specify weights for the various objectives, and then the system tries to satisfy the objectives (e.g., accuracy first, then memory constraints) based on the ordering implied by the weights.

5. SYSTEM COMPONENTS
This section describes the functionality of the components of PYTHIA-II contained in the top two layers of Figure 5.
5.1 Data Generation

Information in the performance database drives PYTHIA-II's data analysis and rule generation. The performance database may be a pre-existing store of performance measures or the data may be produced by executing scientific software within the problem execution environment. PYTHIA-II is independent of the characteristics and functionality of the software, and it imposes no requirements or restrictions on the internal operation of the software. In fact, it allows the scientific software to operate entirely as a black box. There are, however, three I/O requirements that must be met by software to be integrated into PYTHIA-II.

5.2 Data Mining

Data mining encompasses the process of extracting and filtering performance data for statistical analysis, generating solver profiles and ranking them, selecting and filtering data for pattern extraction, and generating the knowledge base. The two components involved in this process are the statistical analysis module (analyzer) and the pattern extraction module.

PYTHIA-II runs the analyzer as a separate process, sending it an input file and a set of parameters for output specification. Since the call to the analyzer is configurable, data analyzers can easily be integrated into the system. The statistical analyzer is independent of the problem domain since it operates on the fixed schema of the performance records. The current analyzer was developed in-house.

The task of the analyzer is to assign a ranking to a set of algorithms for a selected problem population based on a priori determined performance criteria. It assumes that the algorithms are executed on the selected problems, and that the resulting performance measures for each execution are collected and inserted in the database. The analyzer accesses the database to extract the performance data based on the specification of a selected predicate record.

A predicate record defines the complete set of analyzer runs which are to be used as input for a single invocation of the rules generator. The predicate fields of interest to the analyzer are (1) the list of algorithms to rank, and (2) a profile matrix, where each row represents a single analyzer run and the columns identify the profile records to be accessed for that run. Each profile record specifies how the analyzer should gather and assess the performance measures produced by one problem execution. Table II shows how the analyzer interprets one row of the predicate's profile matrix. The table columns are the specified algorithms, and the table rows are the problems represented by the profiles specified in a single row of the predicate's profile matrix. The X_{ij} are values computed by the analyzer based on the profile record specification for Problem i and algorithm j (see below for the discussion of the methods used to compute the X_{ij}).

The process for ranking the algorithms uses multiple comparisons and contrast estimators based on Friedman rank sums [Hollander and Wolfe 1973]. The two-way layout associated with distribution-free testing is shown in Table II, which assumes nk data values from each of k algorithms for n problems. This assumption is not strictly necessary; the analyzer can "fill in" missing values using various methods, for example, averaging values in the algorithm column. The ranking proceeds as follows:
Table II: Algorithm ranking table based on Friedman Rank Sums using the two-way layout. X_{ij} is the performance of algorithm j on problem i, and R_j, $R_{\cdot j}$ are the rank assignments.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Algorithm 1</th>
<th>Algorithm 2</th>
<th>...</th>
<th>Algorithm k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1</td>
<td>X_{11}</td>
<td>X_{12}</td>
<td>...</td>
<td>X_{1k}</td>
</tr>
<tr>
<td>Problem 2</td>
<td>X_{21}</td>
<td>X_{22}</td>
<td>...</td>
<td>X_{2k}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Problem α</td>
<td>$X_{\alpha 1}$</td>
<td>$X_{\alpha 2}$</td>
<td>...</td>
<td>$X_{\alpha k}$</td>
</tr>
<tr>
<td>Rank</td>
<td>R_1</td>
<td>R_2</td>
<td>...</td>
<td>R_k</td>
</tr>
<tr>
<td>Average Rank</td>
<td>$R_{\cdot 1}$</td>
<td>$R_{\cdot 2}$</td>
<td>...</td>
<td>$R_{\cdot k}$</td>
</tr>
</tbody>
</table>

For each problem i rank the algorithms' performance. Let r_{ij} denote the rank of X_{ij} in the joint rankings of $X_{i1}, ... X_{ik}$ and compute $R_j = \sum_{i=1}^{n} r_{ij}$.

Let $R_{\cdot j} = \frac{R_j}{n}$ where R_j is the sum over all problems of the ranks for algorithms j, and then $R_{\cdot j}$ is the average rank for algorithm j. Use $R_{\cdot j}$ to rank the algorithms over all problems.

Compute $Q = q(\alpha, k, \infty)\sqrt{\frac{n-k(k+1)}{12}}$ where $q(\alpha, k, \infty)$ is the critical value for k independent algorithms for experimental error α. $|R_u - R_v| > Q$ implies that algorithms u and v differ significantly for the given threshold α.

The $R_{\cdot j}$'s are the desired algorithm ranks.

It remains to discuss the methods used to compute the X_{ij}. The assignment of a single value to represent the performance of algorithm j for problem i, which can then be compared to other performance values in the framework of the two-way layout, is not a simple matter. Even when comparing elapsed execution time, there are many parameters which should be varied for a serious evaluation of algorithm speed: problem size, execution platform, number of processors (for parallel code), etc. To accommodate these variances in the algorithm execution, the analyzer uses the method of least squares approximation for a collection of observed data over a given variation of problem executions.

A profile is the set of all lines created by a least square approximation to the raw performance data for a given problem over all methods. The analyzer accesses the profile records named by the predicate to identify exactly which performance measures are to be used for a given problem. This record lists the choices for the x and y axis, and defines which invariants to use in the selection process. In addition, the record identifies where these values are stored in the performance records generated by the execution of the problem.

The goal of the pattern-extraction module is to support the automatic knowledge acquisition process and to extract patterns/models from the data to be used by the recommender to provide advice to end users. This process is independent of the problem domain.

The relational model of PYTHIA-II automatically handles the book-keeping of the raw data and offers a unique opportunity for easily generating and storing any amount of raw performance data as well as manipulating them. In order to test various learning methodologies, we choose a specific format for the data that will be used by the pattern extraction process, and then write filters that transform this format (on the fly) to the format required by the various data mining tools inte-
grated into PYTHIA-II. Since the idea behind knowledge acquisition is to support recommendations with as few changes to the automatically generated knowledge as possible, we have integrated mostly systems that generate comprehensible knowledge in the form of logic rules, if-then-else rules or decision trees.

The first learning system we integrated was GOLEM [Muggleton and Feng 1990]. It can be classified as an empirical single predicate Inductive Logic Programming (ILP) learning system [Dzeroski 1996]. It is a batch non-interactive system with noise handling capabilities that implements the relative least general generalization principle that can be considered as careful generalization in the search space of possible concept descriptions.

Rules generated by GOLEM can be processed in a language like first order predicate logic. These rules can be easily utilized by an expert system as its rule base, as described below. In addition to GOLEM, we have also integrated the following learning systems into PYTHIA-II: PROGOL, MLC++ library, CN2, PEBLS, OC1.

5.3 Recommendation Generator

The Recommender is the end-user module of the PYTHIA-II system. It is a form of decision support system and is the only module in PYTHIA-II that is case study dependent as well as domain dependent. We will describe how a Recommender has been generated as an interface for the knowledge generated by GOLEM.

GOLEM is a relational learning system that uses positive examples for generalization and negative examples for specialization. Each logical rule generated by GOLEM is associated with an information compression factor measuring the generalization accuracy of the rule. Its simple formula is \(f = p - (c + n + h) \) where \(p \) and \(n \) are the number of positive and negative examples respectively covered by a specific rule, while \(c \) and \(h \) are information that is related to the form of the rule. The information compression factor is used for ordering the rules in the rule base in a decreasing order.

Each rule selected by GOLEM covers a number of positive and negative examples. The set of positive examples covered for each rule along with the rules, is one part of the input given to the Recommender. The Recommender asks the user to specify the features of the problem he wants to solve. The Recommender, using the CLIPS inference engine, checks its rule base to find a rule that matches its left-hand side which specifies the problem features. Every rule that is found to match the problem features specified by the user is selected and is placed into the agenda. Rules are sorted in decreasing order based on their generality (number of examples they cover), and the very first rule in the agenda is fired to determine the best algorithm for the problem the user specifies. Since each rule provided by GOLEM to the Recommender is associated with a set of positive examples that are covered by the rule, the Recommender goes through the list of positive examples associated with the fired rule and retrieves the example that has the most common features with the user specified problem. This step aids in subsequent parameter estimation.

After this example problem is selected, the fact base of the Recommender is processed in order to provide the user with any required set of parameters for which the user asks advice. The fact base consists of all the raw performance data stored in the database. The Recommender accesses this information by submitting queries generated on the fly, based on the user's objectives and selections. If the
user objectives cannot be met, a recommendation is provided as described at the end of Section 4.2. For the Recommender used in the case study presented in the next section, the final step is the recommendation of a certain method, machine, or number of processors, as the best method to use to satisfy the given conditions. It also indicates what grid size should be used to achieve the specified the accuracy within the time limitations imposed by the user.

5.4 User Interface

The modular implementation of PYTHIA-II makes it possible to accomplish much of the work involved in knowledge discovery without resorting to the graphical interface, and in some cases this is the preferred way of completing a given task. For example,

1. Creating database records for the problem population and experiments: the SQL commands can be given directly inside the POSTGRES95 environment.
2. Generating executable programs from the experiments: the program generator is a separate process called from the problem execution environment which is specific to the scientific software used. The process is invoked with an argument list describing the I/O for the program generation, and it may be called outside of PYTHIA-II.
3. Executing programs: the execution process is controlled by scripts invoked by PYTHIA-II. These scripts can also be called outside of PYTHIA-II since they simply operate on the generated program files which reside in a particular directory.
4. Collecting data: the data collector is called by PYTHIA-II as a separate process, and it is specific to the scientific software. As in (2) above, this process is invoked with an argument list describing its I/O.

With respect to the above items, the graphical interfaces that assist in those tasks are most useful for knowledge engineers who are unfamiliar either with the structure of PYTHIA-II or with the SQL language used by POSTGRES95. In this case, the interfaces provided by PYTHIA-II's dbEdit and dataGEN are invaluable. The top level window of the PYTHIA-II system is shown in Figure 14.

The graphical interface to the POSTGRES95 database is called dbEdit. Each PYTHIA-II record has a corresponding form which is presented to the user when records of that type are selected for editing. In dbEdit, the specification of these fields is handled by selection boxes whose contents are determined by field typing.
dataGEN facilitates the tasks involved in the data generation process. Users familiar with the implementation of the system may prefer to call these processes on their own, but when many users are involved in the (lengthy) data generation process, the graphical interface is most useful.

dataMINE encompasses the statistical analysis of data in selected performance records and the pattern extraction process. Even for the most experienced users, it is impractical to attempt either of these tasks outside of PYTHIA-II. A template query is used to extract the performance data of interest in order to generate input for the statistical analyzer. The input specification for pattern extraction is equally difficult to build; it retrieves and matches scores of features across hundreds of performance records, and filters ranking data from the statistical analyzer output. In addition to carrying out essential data preparation tasks that cannot be handled outside of the graphical user interface, **dataMINE** presents a simple menu system that walks the user through the process of selecting the predicate, calling the statistical analyzer, generating graphical profiles of the ranked methods, and calling the knowledge generator.

As a bonus, **dataMINE** is integrated with DataSplash [Olston et al. 1998], an easy-to-use integrated environment for navigating, creating, and querying visual representations of data. DataSplash is a visualization system that has been built on top of POSTGRES95, therefore interaction with PYTHIA-II is built into it.

6. CASE STUDY: MODELING THE PERFORMANCE OF ELLIPTIC PDE SOFTWARE

To validate the design and implementation of PYTHIA-II, a knowledge base was generated for evaluating PELLPACK [7] solvers based on performance data produced by a population of 2-dimensional, singular, steady state PDE problems. This case study corresponded to existing studies [Rice et al. 1981; Weerawarana et al. 1997; Houstis and Rice 1982], allowing validation of the adopted KDD process. The algorithm selection problem for this domain can be formally stated as follows:

\[
\begin{align*}
\text{Select an algorithm to solve} \\
Lu &= f \quad \text{on } \Omega \\
Bu &= g \quad \text{on } \partial\Omega
\end{align*}
\]

so that relative error \(e_r \leq \theta\) and time \(t_s \leq T\)

where \(L\) is a second order, linear elliptic operator, \(B\) is a differential operator involving up to first order partial derivatives of \(u\), \(\Omega\) is a bounded open region in 2-dimensional space, and \(\theta\), \(T\) are performance criteria constraints.

6.1 Performance Database Description

In this study, we restrict ourselves to rectangular domains. Accuracy is measured as the maximum absolute error on the rectangular mesh divided by the maximum absolute value of the PDE solution. Performance studies are conducted and the amount of time required to obtain three levels of accuracy — \(10^{-3}\), \(10^{-4}\) and \(10^{-5}\) — are collected by the PYTHIA-II system.

Table III shows the general form of the PDE problems included in the study. In Table IV, the solver modules and solver sequences which were applied to the
Problem Component	Generalized Forms	Parameterization
Equation	\(\text{coeff}(x, y) \cdot U_{xx} + \text{coeff}(x, y) \cdot U_{yy} \)	Operator coefficients are specified in the database as parameter records and right-hand-sides are specified as Fortran routines in data files referenced by the database equation records.
\(\text{coeff}(x, y) \cdot U_x + \text{coeff}(x, y) \cdot U_y \)		
\(\text{coeff}(x, y) \cdot U = \xi(x, y) \)		
Domain	unit square, \([-1, 1] \times [-1, 1]\)	Endpoints are specified in the database as parameter records.
rectangle \([a, b] \times [c, d]\)		
rectangle \([a, b] \times [a + c, b + d]\)		
Boundary Conditions | \(u \equiv 0 \) on outer boundary \(u = \text{true}(x, y) \) on outer boundary | True \((x, y)\) is specified as Fortran routines in data files referenced by database equation records.

Table III. Problem population used for the case study.

<table>
<thead>
<tr>
<th>Module Type</th>
<th>Module Names</th>
<th>Performance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid</td>
<td>5 x 5, 9 x 9, 17 x 17, 33 x 33, 65 x 65</td>
<td></td>
</tr>
<tr>
<td>Discretizer</td>
<td>5-point star, hermite collocation</td>
<td></td>
</tr>
<tr>
<td>Indexer</td>
<td>as in, red-black</td>
<td></td>
</tr>
<tr>
<td>Linear System Solver</td>
<td>band gc, spack-jacobi cg</td>
<td></td>
</tr>
<tr>
<td>Triple</td>
<td>grid, 9-point star, as in, band gc grid, fft 9-point (orders 2, 4, 6) grid, hermite collocation, as in, band gc grid, dyakanov-cg grid, dyakanov-cg 4</td>
<td>error, elapsed time</td>
</tr>
</tbody>
</table>

Table IV. Methods and solver sequences used for the case study.

problems are listed. Table V identifies the features of the problem components used to drive the rules generation and form the basis for user inquiries to the PYTHIA-II Recommender. Table VI uses the "raw data" descriptions in Tables III and IV to demonstrate how the recommender methodology of PYTHIA-II was applied to the case study.

Defining the PDE population and experiments required 21 equation records with up to 10 parameter sets each, 3 rectangle domain records of differing dimensions, 3 sets of boundary conditions records, 10 grid records defining uniform grids from coarse to fine, several discretizer, indexing, linear solver and triple records with corresponding parameters, and a set of 40 solver sequence records defining the solution schemes. Using these components, 37 experiments were specified, each defining a collection of PDE programs involving up to 35 solver sequences for a given PDE problem.

The 37 experiments were executed sequentially on a SPARCstation5 with 32MB memory running Solaris 2.5.1 from within PYTHIA-II's execution environment. All 37 test cases executed successfully, resulting in the insertion of over 500 performance records into the database. The analyzer evaluated the solver performance based on generated measures for time vs problem size and time vs error. The analyzer rankings and problem features were passed to the rules generator which produced logic-based rules governing method selection for PELLPACK solvers. The Recommender was then used to predict the best method and estimate the corresponding parameters for user specified features and performance criteria. Specifically, if an
Table V. Features for the problem population of the case study.

<table>
<thead>
<tr>
<th>Problem Component</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation</td>
<td>first tier operator: Laplace, Poisson, Helmholtz, self-adjoint, general second tier operator: analytic, entire, constant coefficients, operator smoothness tier: constant, entire, analytic right-hand-side tier: entire, analytic, singular(infinite), singular derivatives, constant coefficients, nearly singular, peaked, oscillatory, homogeneous, computationally complex right-hand-side smoothness tier: constant, entire, analytic, computationally complex, singular, oscillatory, peaked</td>
</tr>
<tr>
<td>Domain</td>
<td>unit square, $[a, b] \times [c \rightarrow \alpha, \beta + x]$, where x can vary, $[a, b] \times [a + c, \beta + c]$, where c is a constant</td>
</tr>
<tr>
<td>Boundary Conditions</td>
<td>$U = 0$ on all boundaries $AU = f$ on all boundaries $BU = f$ on some boundaries $AU + BU = f$ on some boundaries constant coefficients, non-constant coefficients</td>
</tr>
</tbody>
</table>

Table VI. Applying PYTHIA-II to the PELLPACK case study.

<table>
<thead>
<tr>
<th>Phases</th>
<th>Description</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine evaluation objectives</td>
<td>Evaluate the efficiency and accuracy of a set of solution methods and their associated parameters with respect to elapsed time, error and problem size.</td>
<td>Manual</td>
</tr>
<tr>
<td>Data preparation</td>
<td>(1) problem population: Table III (2) measures: elapsed solver time, discretization error. (3) methods: Table IV (4) Generate performance data.</td>
<td>POSTGRES95 SQL Tcl/Tk PERL</td>
</tr>
<tr>
<td>Data Mining</td>
<td>(1) Collect the data for error and time across all solvers, grid sizes (2) Use the method of least squares to develop linear approximations of time vs error across all grid sizes. Develop profiles of the methods for all problems, and rank the methods (3) Use the rankings and the problem features to identify patterns and generate rules.</td>
<td>TCL/Tk PERL In-house statistical software GOLEM</td>
</tr>
<tr>
<td>Analysis of results</td>
<td>Domain experts ensure correctness of the results.</td>
<td>Manual</td>
</tr>
<tr>
<td>Assimilation of knowledge</td>
<td>Create an intelligent interface to utilize the knowledge to identify the “best method” with associated parameters for user’s problems and computational objectives.</td>
<td>CLIPS</td>
</tr>
</tbody>
</table>

end-user identified a problem with features such as “Poisson equation” with “computationally complex” right-hand-side on a unit square having “mixed boundary conditions”, and specified that the error should not exceed “10^{-4}” with execution time less than .5 CPU seconds, the Recommender predicted the best grid size and solver which satisfied the performance criteria for a problem with those features. It also listed the expected error and execution time, and identified the “closest” matching problem from the rules base.

The POSTGRES95 database was populated with 44 records defining problems, features, methods, and experiments. Each record had a corresponding form in the PYTHIA-II graphical interface which was used to create and edit the records. Three record definitions are shown in Figures 15, 16, and 17. The dbEdit interface is used for editing problem, method and experiment records.
6.2 Data Mining and Knowledge Discovery Process

After the experiment records were defined, dataGEN was used to select them from the database and execute them. Each experiment represented up to 35 PDE programs. When program execution was complete, the raw performance output was located in a specified target directory, and the data collection facility was invoked to extract data from the output and trace files and insert it in the performance database. The dataMINE interface was used to access the performance data according to the specification of the predicate and profile records created for the case study. A portion of the predicate record is shown in Figure 19. The predicate specified all problems and methods so that the data available to the Recommender for making inferences based on user inquiries was as broad as possible. The analyzer used this predicate to generate profiles and rankings for the seven PELLPACK solvers. Figure 18 lists the ranking produced by the analyzer for all solvers over all methods. The rankings and features were used by GOLEM to define rules.

Example of rules mined by this process include:

\[
R_1: \quad \text{best}(A, \text{FFT6}) \leftarrow \text{dom}_\text{us}(A), \text{op}_\text{laplace}(A). \\
R_2: \quad \text{best}(A, \text{F3C1C}) \leftarrow \text{rs}_\text{s}(A), \text{op}_\text{general}(A). \\
R_3: \quad \text{best}(A, \text{PS5}) \leftarrow \text{rs}_\text{s}(A), \text{smo}_\text{cc}(A). \\
\ldots
\]

The first rule \(R_1\), for instance, indicates that the method FFT6 is best if the problem has a Laplacian operator and the domain under consideration is a unit square\(^2\).

\(^2\)While these rules appear to use a hard-wired absolute ranking encoded by the \text{best} predicate, they can be easily updated to reflect new data, via the cover heuristic detailed in Section 2.3.
CREATE TABLE EXPERIMENT (
 name text, -- record name (primary key)
 system text, -- software identification used for program generation
 nopt integer, -- number of options
 options text[], -- array of option record names (foreign key)
 noptparm integer, -- number of parameter specific options
 optparm text[], -- array of option record names
 equation text, -- equation record which defines the equation
 neqparm integer, -- number of equation parameters
 eqnparm text[], -- array of equation parameter names
 domain text, -- domain record on which the equation is defined
 ndomparm integer, -- number of domain parameters
 domparm text[], -- array of domain parameter names
 bcond text, -- boundary condition record
 nbcond integer, -- number of bound parameters
 bcparm text[], -- array of bound parameter names
 nparm integer, -- number of parameters applied across all definitions
 parm text[], -- array of problem-wide parameters (no. of programs)
 sequences text[], -- names of the sequence records containing soln. schemes
 nout integer, -- number of output records
 output text[], -- array of output record names
 nfor integer, -- number of source code files to include
 fortran text[], -- names of the files to include
);

Fig. 17: The experiment record specifies the components of a PDE problem and identifies the collection of sequences to use in solving it.

6.3 Knowledge Discovery Outcome

The rules discovered confirm the statistically discovered conclusion in [Houstis and Rice 1982] that higher order methods are better for elliptic PDEs with singularities (which was a subset of the population used in our study). They also confirm the general hypothesis that there is a strong correlation between the order of a method and its efficiency. More importantly, the rules impose an ordering of the various solvers for each of the problems considered in this study. Interestingly, this ranking corresponds almost exactly with the subjective rankings published in [Houstis and Rice 1982]. This shows that these simple rules capture much of the complexity of algorithm selection in this domain. Table VII compares these results. There were several other interesting inferences drawn. Whenever the DCG method is best, so is DCG4. The rule that had the maximum cover from the data was the one which stated that FFT6 is best for a PDE if the PDE has a Laplacian operator, homogeneous and Dirichlet boundary conditions and discontinuous derivatives on the right side. This can also be seen from rule R1, which recognizes the significant presence of a Laplace operator in a majority of the PDE population. Other rules also indicated when a certain method is inappropriate for a problem. The FFT6 module, for example is a 'bad' method whenever the problem has boundary conditions with variable coefficients. There are many more such interesting observations and we mention only the most interesting here. Finally, an approximate ordering was requested for the overall population. This gave rise to the ordering — FFT6, FFT4, FFT2, DCG4, DCG2, PS5. This is pertinent because this ranking corresponds

The exact algorithm for effecting this 'incremental learning' capability is beyond the scope of this paper.
Table VII: A comparison between two different rankings of problem solving modules for elliptic PDEs. The third and fifth columns give the subjective rankings made in an earlier study. The fourth and sixth columns give those inferred by our knowledge methodology. The very high correlation between these rankings is readily seen.
The rank analysis produces the following comparison listed in order from "best" to "worst":

The Linear Solver Ranks
(avg rank in parenthesis)

- 5pt star & bdge: 60 (1.67)
- herm coli & bdge: 60 (1.67)
- fit 8pt order 2: 132 (3.67)
- dyakanov-cg: 133 (3.67)
- fit 8pt order 6: 186 (5.17)
- dyakanov-cg 4: 192 (5.32)
- fit 8pt order 4: 246 (6.83)

Distribution of slopes for each Linear Solver

<table>
<thead>
<tr>
<th>Linear Solver</th>
<th>Avg</th>
<th>Min</th>
<th>Quart 1</th>
<th>Med</th>
<th>Quart 3</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>fit 8pt order 2</td>
<td>-1.89</td>
<td>-2.54</td>
<td>-1.89</td>
<td>-1.89</td>
<td>-1.52</td>
<td>-1.42</td>
</tr>
<tr>
<td>fit 8pt order 4</td>
<td>-3.95</td>
<td>-5.21</td>
<td>-3.95</td>
<td>-3.95</td>
<td>-3.09</td>
<td>-3.05</td>
</tr>
<tr>
<td>fit 8pt order 6</td>
<td>-2.94</td>
<td>-5.54</td>
<td>-2.94</td>
<td>-2.94</td>
<td>-1.70</td>
<td>-1.43</td>
</tr>
<tr>
<td>5pt star & bdge</td>
<td>-1.00</td>
<td>-1.61</td>
<td>-0.98</td>
<td>-0.80</td>
<td>-0.77</td>
<td>-0.62</td>
</tr>
<tr>
<td>herm coli & bdge</td>
<td>-0.96</td>
<td>-1.09</td>
<td>-0.98</td>
<td>-0.90</td>
<td>-0.88</td>
<td>-0.83</td>
</tr>
<tr>
<td>dyakanov-cg</td>
<td>-1.87</td>
<td>-2.02</td>
<td>-1.87</td>
<td>-1.87</td>
<td>-1.77</td>
<td>-1.72</td>
</tr>
<tr>
<td>dyakanov-cg 4</td>
<td>-2.53</td>
<td>-3.00</td>
<td>-2.53</td>
<td>-2.53</td>
<td>-2.40</td>
<td>-2.07</td>
</tr>
</tbody>
</table>

Fig. 18. Rankings for the PELLPACK solver case study.

Fig. 19. Partial listing of a predicate from the PDE benchmark.

most closely to that for Poisson problems which formed the bulk of our population. Furthermore, all the selections made by PYTHIA-II are 'valid' (a selection is considered 'invalid' if the method is inappropriate for the given problem or if any of the parameters do not apply correctly to the method). In prior research, accuracy of algorithm selection was measured as the fraction of the valid selections that are also correct (a correct selection is one where the selected method and parameters does result in solutions satisfying the requested criteria). In overall, the rules from this study performed best algorithm recommendation for 100% of the cases.
7. CONCLUSION
The PYTHIA-II software environment, facilitates the knowledge discovery in databases (KDD) process for manipulating performance data related to scientific computing applications. Its architecture is both flexible (allowing extension to newer domains) and scalable (providing a variety of options to the knowledge engineer for mining data, while storage and retrieval issues are handled by an integrated database system). The modular approach subsumed by the system maximizes the ability of an end-user to visualize the entire KDD process, either in parts or as a whole. The high extensibility of the system is facilitated by the large number of alternative paths available at every stage.
REFERENCES

