
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1999 

A Framework for Building Collaborative Network Agents A Framework for Building Collaborative Network Agents 

Ladislau Bölöni 

Dan C. Marinescu 

Report Number: 
99-001 

Bölöni, Ladislau and Marinescu, Dan C., "A Framework for Building Collaborative Network Agents" (1999). 
Department of Computer Science Technical Reports. Paper 1432. 
https://docs.lib.purdue.edu/cstech/1432 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


A FRAMEWORK FOR BUILDING
COLLABORATIVE NETWORK AGENTS

Landishm Boloni
Dan C. Marinescu

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD·TR #99·001
January 1999



A framework for building collaborative network agents

Ladislau B616ni and Dan C. Marinescu
Computer Sciences Department

Purdue University
West Lafayette, IN 47907

January 20, 1099

Abstract

Agents are programs which autonomollsly pursne their own agenda. Agents in dis­
tributed systems arc expected to be remotely controllable, and should be able to cooperate
to accomplish their tasks.

This paper presents the agent. framework of the Bond distributed object system. Bond
agents have the possibility to be controlled remotely and to cooperate with each other.

The emphasis in the Bond agent framework is on the ability of quick and dynamic
creation of new agents from a library of code. The task of an application programmer
is limited to specify the agenda, the finite state machine of the agent, and the strategies
associated with each state. Bond agents can be !:ipecified using an agent definition langllage
called blueprint. Agents are assembled during runtime by a factory object on the request
of a beneficiary object. Bond also provides a large database of ready-made strategies, so
in typical cases a Bond agent can be assembled without programming.

1 Introduction

The term intelligent or autonomous agent is a hot topic in computer science, with various,
sometimes conflicting definitions. Stan Franklin and Art Gl'aesser in their overview paper [1)
after discussing a number of alternate formulations arc reaching the following definition: an
autonomous agent i.'> a .'>y.'>tem .'>ituated within and parl of an environment that sen.<;es that
environment and act.'> on it, over time, in pm'suit of its own agenda and so as to effect what
it sen.'>es in the future.

Other authors, like Leonard N. Foner [2] are considering the anthropomorphism of an agent
an important factor. Our understanding of an agent is largely equivalent with Franklin and
Graesser's, and we are not considering the features of user interface as a defining element of
the agent. Some of the Bond agents have immediate interaction only with other agents, while
other agents have a graphic user interface.

There is a close interdependence between distributed object systems and agents. In a
broad sense every object can be considered as an agent. There is, however a consensus among
researchcrs that an agent requires an independent execution thread, and the capacity to initiate
actions on its own. Objects like servers, although they have their own execution thread do
not qualify as agents, because they react only to external requests.

The Bond agent framework provides support for the external control of the start of the
agent, the acquisition of information (soft state) about the world and utilizes a generic frame­
work for appending strategies. The strategies currently used range from simple table lookup
(for the monitoring agent) to relatively complicated search engines (for the metaprogram
scheduling agent).
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2 Distributed object systems supporting agents

In this section we overview several distributed object systems which provide support for agents.
The Infospheres and Bond projects are academic research projects at Caltcch and Purdue,
while the IBM Aglets and the Objeetspacc Voyager are commercial systems. There are a
large number of other projects which provide support for agents.

2.1 Caltech's Infospheres

The Infosphcrcs infrastructure is a research architecture for compositional systems, which afC

systems buill; from interacting components.
The Infospheres infrastructure is implemented in Java. It contain."i a message oriented

network layer (info.net), and the agent implementation called djinns in Infosphcre. Djinns
implement persistence, remote invocation and a service model based on service requests /
service replies. Djinns are running as separate threads inside a master djinn which provides
remote activation capabilities.

A related project is the Ubernet infra.<;tructure which provides a very flexible communica­
tion infrastructure allowing users t.o assemble custom protocol stacks.

2.2 IBM Aglets

113M Aglets are a framework for programming mobile agent.s. The authors are considering that.
mobile agents are a single uniform paradigm for dist.ributed object computing, encompa.<;sing
synchrony and a.<;ynchrony, message-passing and object pa.<;sing, and stationary and mobile
objects. The analogy used is that mobile agents are for distributed object computing what
the elementary particles in physics.

The Aglets Framework is based on the .lava programming language. As a distributed
object system it provides a global naming scheme for agents, a message passing scheme that
supports both asynchronous and synchronous peer-to-peer communication bet.ween agents.

What differentiates the Aglet.s framework from other distributed object systems is the
migration support. A network agent cla!i!i loader allows the agent's .lava byte code and state
information to travel across the network, and an execution context provides agents with a
uniform environment independent. of t.he actual computer syst.em on which they are execut.ing.
The package also defines the Agent 'D.-ansfer Protocol (ATP) user to transfer agents over the
network. ATP is an application-level standard protocol aimed at the Internet and m;ing
Universal Resource Locators (URL) for agent resource location, ATP offers a uniform and
platform independent prot.ocol for transferring agents between networked computers.

2.3 Objectspace Voyager

Objectspace Voyager is a Java Object Request Broker (ORB) designed to quickly and easily
develop distributed systems. Besides t.he traditional features of an ORB it also contains
snpport for mobile agents. The communicat.ion between object is done nsing Voyage1' proxies
which are the equivalent of the CORBA or RMI stubs or the Bond shadows.

Voyager also contains a component model. A Voyager component ext.ends the object with
special interfaces (Ildentity, !Mobilit.y, ILifecyde and !Property) that. add value to the object..

Persistence is defined in Voyager as the ability of an object to live beyond an application's
duration. Persistence is achieved by writing the object in a database. Objects written in the
database arc autoloaded and made adive when a message is delivered to them.

Voyager also provides an agent framework. The main feature of a Voyager agent is its mo­
bility. The mobility of the agent relies on the fact that the Voyager proxies are transportable,
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so if an agent uses only proxies to access objects, its state can be migrated and the p.xecution
resumed at the remote location.

2.4 The Bond distributed object system

The Bond distributed object system (http://bond. cs. purdue. edu) is built on a message
orientcd structure, using KQML as messaging language. Bond objects [3] are nctwork objects
in the sense that they can communicate with each other, can be instantiated and run remotely.

KQML, Knowledge Querying and Manipulation Language, is a product of the Knowledge
Sharing Effort supported by DARPA, NSF, and AFOSR, for orgam7,ation and coordination
of autonomous agents, [4, 5]. Intended a..<; an inter-agent communication language by its
designers, KQML is used in Bond as an inter-object communication language. In Bond all
objects can receive and send messages.

Although every Bond object fully understands the syntax of KQML, their understanding
is limited to messages related to their functionality. Instead of the language/ontology pair
Cl5 specified in the original design of KQML we introduced a different approach based on
subprotocols. This extension is fully compatible with the KQML standards. Subprotocols are
small, closed subsets of KQML commands. In programming languages terminology we can
think of them as small, speciali7.ed languages. The attribute closed in this definition means
that commands in a subprotocol do not reference commands outside the subprotocol, and the
reply or acknowledgment is always a member of the same subprotocol with the question.

Subprotocols generally contain the messages needed to perform a specific task. Examples
of generic Bond subprotocols are property access subprotocol, agent control subprotocol or
security subpl'Otocol. An alternative formulation would be that sllbprotocols introducc a
structure in the semantic space of the messages. To create a fully functional distributed
system, a typical object should implement a number of subprotocok We call a message
pattern the totality of messages a distributed object systcm should use in order to accomplish
a certain task.

Two objects call communicate using messages which are members of the subprotocols
implemented by both objects. Every Bond object implements at least the property access
.'>ubprotocol which allows to remotely interrogate and set the properties of an object. The
subprotocols implemented by an object is also a property of the object. If two objects want
to communicate without having any previous knowledge about the other, the first thing to do
is to interrogate the Subprotocolslmplemented property. After this, they can communicate
using the intersection of the subprotocols implemented by both of them. A Bond object can
implement a subprotocol in three ways: static implemcntation, acquiI'ing subprotocols by
probes and generating and learning new suhprotocols.

Subprotocols are a key element in the implementation of Bond agents. For a more detailed
description of Bond subprotocols, we refer the reader to [8J.

3 The anatomy of Bond agents

The structure of the Bond agents presented in Figure 1 implements the theoretical model AMI
as presented in [9].

The components of a Bond agent are:

• The model of the world is a container object which contains the information the agent
has about its environment. This information is stored in the form of dynamic properties
of the model object. There is no restriction of the format of this information: it can
be a knowledge base or ontology composed of logical facts and predicates, a pre-trained
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FigllIe 1: The anatomy of a Bond agcnt

neural network, a r.ollecLion of Ulcta-objects or different forms of handles of external
objects (file handles, sockets, etc).

• The agenda of the agent, which defines the goal of the agent. The agenda is in itself an
object, which implements a boolean function on the model and a distance function on
the model. The boolean function shows if the agent accomplished its goal or not. The
agenda acts as a termination condition for the agents, except for the agents marked as
having a continuous agenda where their goal is to maintain the agenda as being satisfied.
The distance function Illay be used by the strategies to choose their actions.

• The finite state machine of the agent. The current state is a model variable named
STATE-1. Each state has an assigned strategy which defines the behavior of the agent
in that state. An agent can change its state by performing transition.~. Transitions are
triggered by internal or external events. External events are messages sent by other
agents or programs. The set of external messages which trigger transitions in the finite
state machine of the agent defines the control subprotocol of the agent.

• Each state on an agent has a strategy defining the behavior of the agent in that state.
Each strategy performs actions in an infinite cycle until the agenda is accomplished or
the state is changed. Actions arc considered atomic from the agent's point of view,
external or internal events interrupt the agent only between actions. Each action is
defined exclusively by the agenda of the agent and the current model. A stratcgy can
terminate by triggering a transition by generating an internal event. After the transition
the agent moves in a new state where a different strategy defines the behavior.

One of the interesting properties of the Bond agent framework is that all components are
objects, which allow the Bond agents to be assembled dynamically and even modified during
runtime. Another important feature is that the behavior of the agent is uniquely determined
by the model (the model also contains the state which defines the current strategy). The
model being in esscnce a data object can be saved, transferred over the network allowing for
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checkpointing and migration of Bond agents. The atomicity of the actions gives us natural
checkpointing points.

3.1 Specifying an agent with the blueprint language

The Bond agent framework can be programmed at two levels. At the p.xpert level, the developer
can define its own new strategies and agenda.<; by programming them directly in Java. At thc
blueprint level, t.lle user can create new agents using the blueprint language of the nond agent
framework. With the blueprint a user can:

-specify the finite state machine of the new agent
-assign strategies from a strategy databa.<;e to the states
-assign the agenda of the agent from the stratcgy database
-assemble new strategies following an aspect oriented programming approach usmg the

strategy composition objects.
-assemble llew agendas by applying boolean composition on predefincd agendas
-create the control subprotocol of the agent
-initialize the variables of the model.
However a blueprint description call not define new strategies or agendas which can not

described as boolean conditions on the model.
Some of the advantages of using blueprint over programming the agent in .lava arc:

• Blueprint programs are small text mode descriptiolls that can be transfered across the
network, stored in a database or even embedded in KQML messages.

• Blueprint programs are sufficiently simple that they can be generated or modified by
an agent. The possibility of agents building new custom agents opens up exciting new
possibilities.

• There is a possibility to modify an agent at runtime by interpreting a new blueprint
script.

3.1.1 The blueprint language

blueprint is a descriptive language for a Bond agcnt. There is two different way of using
blueprint:

• compiling: the blueprint2Java complier transforms a blueprint description into the
static Java implementatioll of the agent.

• interpreting: the AgentFactory calls an interpreter and creates the agent at runtime.

Interpreted agents pay a penalty in their startup time, but at the runtime they behave
exactly like the compiled agent. The startup penalty is usually small (under a second) so
as a general rule the advantagcs of dynamic generation outwcigh the disadvdntage of thc
interpretation time.

blueprintprogram
"begin" "blueprint" "agent" IDENTIFIER
[ Imports]
[ AddingStates ]
[ AddExternalTransitions ]
[ AddInternalTransitions ]
[ SetAgenda ]
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[ InitializeModel J
"end" "blueprint"

Imports ::= CImport)*

" "

Import ::= "import" JAVA_PATH

AddingStates ::= C AddState )*

"., ,,

AddState :: =

, 'add" "state" IDENTIFIER
"with" "strategy" Strategy [InitializeModelJ , , . , ,,

AddExternalTransitions ::=

"external" "transitions" "~{'I

CAddTransition)+ 'I}"~

AddInternalTransitions ::=

"internal" "transitions" "{"
CAddTransition)+ 'I}"

AddTransition ::=

, 'from" IDENTIFIER "to" IDENTIFIER "on" IDENTIFIER "., ,,

SetAgenda :: =

I 'set" "agenda" "to" Agenda , , . , ,,

Strategy :: =

IDENTIFIER I
IDENTIFIER "." IDENTIFIER I
IDENTIFIER "." IDENTIFIER 'I::"~ IDENTIFIER I
, 'composed" 'I {" C Strategy [InitializeModelJ )* "}"
"parallel" 'I{" C Strategy [InitializeModelJ )* "}"

Agenda ::=

IDENTIFIER I
IDENTIFIER "." IDENTIFIER
"c" Agenda 'I)"~ I
Agenda I'or" Agenda I
Agenda "and" Agenda

InitializeModel ::=

"model" "~{'I C SetModelVariable)+ I'}"

SetModelVariable ::= IDENTIFIER "=" VALUE

4 The life cycle of an agent

A bondAgent can be created in the following ways:
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• Statically: an agent derived from the bondAgent framework can create its components
(finite state machine, states, strategies etc.) in its constructor.

• Dynamically: the agent is created by a factory object bondAgentFactory using a
blueprint. The factory object generates the components of the agent either by creating
them, either by loading them [rom persistent storage.

In the following, we present the lifecyde of the agent.

4.1 Creating an agent

A Bond agent can be either instantiated, if it is a statically created agent, or assembled from
library components using a blueprint. If the agent is instantiated as a llew thread in the current
Bond executable it can be created a.<:; any other Java object, as in the following example:

bandAgent ba = new bondExampleAgent 0 ;

However, Bond agellts are normally created using the bondAgentFactory object. This
object allows us to remotely instantiate agents:

bAF. say(1I (achieve : content create-agent
:agent bondExampleAgent
:subprotocol AgentControl)")

In this ca.<:;e the variable bAF can be either a bondAgentFactory object or a shadow of it.
This givf'$ us the first advantage of the use of the factory, because agents can be instantiated
remotely in a transparent way.

Another advantage is that the agents may be Cl..'lsembled dynamically from a blueprint, a
text mode description of the agent. In this case the request can be:

bAF.say(lI(achieve :content assemble-agent
:blueprint http://bond.cs.purdue.edu/blueprints/Example.bpt
: subprotocol AgentGontrol) II)

where we are actually instructing the factory to download the blueprint from the specified
URL, and assemble the agent according to the specifications in the blueprint from the library
components available locally. Alternatively, we can embed the blueprint in the message.

Whichever way of creating the agent we arc using, the agent factory will reply with a
message communicating the bondID and address of the new agent.

(tell :content agent-created
:bondID the-new-bondID :address ector.cs.purdue.edu:2001
:subprotocol AgentControl)

The usual procedure is that the object that requested the creation of the new agent (the
beneficiary of the agent) creates a shadow of the agent shAgent, used for further interaction
with the agent. The agent factory also creates a shadow of the agent's beneficiary, thus
establishing a two--way relationship between the agent and the beneficiary. After creation the
agent factory will no longer be used dlll'ing the lifetime of the agent. This creation process is
summarized in Figure 2
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Figure 2: Creating an agent remotely using an agent factory. (1) The beneficiary object
sends a create-agent message to the agent factory (2) The blueprint is fetched by the agent
factory from a repository or extracted from the message (3) The strategies are loaded from
the strategy database (4) The agent is created (5) The id of the agent is communicated back
to the beneficiary, and (6) The beneficiary object controls the new agent

4.2 Initialization

After finishing the creation of the agent, the agent becomes an active bondObject. This
means that it can receive and send messages, but does not yet have a thread on its own. The
rea.'lon why agents are not started immediately after creation is because their agenda may
be incomplete without some inpnt. For example the agenda of an agent which performs the
supervised execution of a legacy application is incomplete without the path of the program
to be run. In its initialization phase the beneficiary gives information about the world to the
agent, by writing it in the agent's model. Typically this information is related to the agenda
of the agent, but a beneficiary can also provide some useful information about. the current
state of the world to the newborn agent.

For example, for the executor agent mentioned before we can set the command to be
executed by:

shAgent.sayC"achieve :content setModel :narne Commandline :value matlab"+
": subprotocol AgentControl)". this) j

Of course the assnmption is that the name Commandline has a meaning for the agent. This
topic will be explored in more detail when we present strategies and namespaces.

4.3 Starting

After the initialization is finished the program can start the agent by sending a start message:

shAgent. say C"achieve : content start-agent : subprotocol AgentControl)", this);

or, if the agent way instantiated locally we can simply use:
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agent. start 0 ;

The agent creates its internal thread, initializes its state to Lhe default state specified in
its constructor or in the blueprint and starts to pursue its agenda according to the strategy
associated with the current state.

4.4 Running

The normal way of operation of the agent is being into one of its states and performing actions
according to the strategy in order to accomplish its agenda. Normally the agent performs an
infinite loop by periodically asking the strategy about the next action to be executed. If there
is no strategy associated with the current state, the agent waits.

Agents move from one state to the other by means of transitions. Transitions are triggered
by events which reach the agent. The events may be internal if they are generated by a strategy
or exlental if they are messages sent by external objects. Internal events are the success or
failure events generated by strategies. External events are KQML messages send by remote
or local objects to the agent. The set of KQML messages which trigger transitions in the
agent form the control subpmtocol of the agent. If the agent is assembled dynamically from a
blueprint the control subprotocol is also generated dynamically.

4.5 Termination

An agent terminates when its agenda is accomplished (i.e. when the agenda object's
satisfiedBy(model) function returns true). Agents which have an agenda marked with
a continuous goal never terminate, unless interrupted from the outside.

If the agent has no beneficiary, the agent immediately exits. If the agent has a beneficiary,
it sends a termination message, terminates it thread, but the objects associated with the agent,
e.g, the model are not destroyed. The reason for this is that after the agenda is satisfied the
beneficiary can read out values from the model- which may represent results of a computation,
the very reason why the agent was started. Also the beneficiary may change values in the
model and restart the agent, without the need to create it again. (Restarting the agent without
changing the model does not make sen."ie because the agenda uses only its model as input, and
the agenda will be immediately satisfied upon restart).

The agent can be killed by the beneficiary by sending a kill-agent message

shAgent.say(" achieve :content kill-agent :subprotocol AgentControl) ,this);

The same message can also be used to terminate agents with a continuous agenda.

5 Control and autonomous operation of the Bond agents

The behavior of an agent is completely determined by its internal state information. The state
information of a Bond agent is contained entirely in the model of the agent. The external
world infiuences the behavior of the agent only by its reflection into the model. There is
however one model variable which requires a special handling, the current state of the finite
state machine of the agent, because this variable determines the current strategy used by the
agent.

To control the behavior of an agent, we need to set the state of the finite state machine.
The state of the agent can not be changed arbitrarily. An internal or external object can
change the state of the agent by triggering transitions in the finite state machine of the agent.
The transitions are labeled by events, whose generation trigger the specific transition.
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In this section we present the methods for controlling an agent from the inside, by the
current strategy or from the exterior by other agents. We also present in more detail the
structure of the strategies, and the possibilities offered by them to the agent programmer.

We consider Bond agents as being both contmllable in the sense that their current strategy
can be changed by a controlling authority sending external events, and autonomous because
the strategies take actions only ba.<;ed on the agents agenda and the current knowledge as
reflected in the model.

5.1 Internal control of the agent

The agent can be controlled internally by transitions generated by the strategies. A strategy
generates internal events. There are two reserved internal events, success and failure, but
the strategy can use any other events. These events are reserved to facilitate the assembly of
agents from reusable strategies. Generating an internal event can be done in a strategy by
the instruction like:

fsm. transition( "success") ;

This should be the last statement within the action function of the agent, because the
transition will change the state and the current strategy of the agent.

A strategy does not know about the structure of the finite state machine it is embedded
into. Generating an internal event will trigger a transition which terminates the strategy by
changing the state. The label of the internal event indicates the way in which the strategy
was terminated. However, the new state and the associated strategy depends exclusively on
the finite state machine of the agent.

For example, an internal event labeled failure usually takes the agent into a state which
corresponds to an error. However, depending on the blueprint of the agent, this state may
have a st.rategy which attempts to recover the error, or a different strategy which simply exits.

5.2 External control of the agent

An agent can be controlled ext.ernally using the messages in the AgentControl subprotoc.ol,
defined by the Bond system and allows the external object to create, destroy and interrogate
the state of an agent. Besides this, every agent defines its own control subprotocol, t.he set of
external messages that t.rigger transit.ions in a specific agent. This subprot.ocol is specific for
every agent and it is det.ermined by a finite state machine.

The control subprotocol of an agent is in the Subprotocol property of the finite state
machine. A remote object. can leam the subprotocol of the agent by reading this variable
using the Property Access subprotocol.

5.3 Security aspects of agents

The distributed execution and remote control of the agent.s pose security threats. The Bond
agent framework is integrated with the rest. of the Bond security system, and allows the
programmer to set the type of security he considers necessary for the current application.

The maximal security is obtained by setting the beneficiary_only variable of the agent.
When set this switch forces the agent to accept. only messages from its creat.or or replies to
it.s own messages. Although this approach seems very restrictive it allows the creation of
hierarchical agent systems as required by a large number of practical applications.

If a fine-grain securit.y approach is needed, Bond agents, like any other Bond object. can
have a number of security probes attached. The Bond library contains security probes for a
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variety of security paradigms like firewall type security, password based access, ticket based
access and authentication based access. A user may define its own security probe. Also,
different access protocols may be set up for various types of messages [6].

5.4 The implementation of strategies in Bond

In every state of the internal finite state machine which has a non-null strategy associated
to it, the agent performs actions according to the strategy. We call this mode of operation
autonom01l.~.

A strategy was defined as a function on the model and the agenda, and the agenda itself
is a function on the model. This definition is a practical necessity because the agent has no
direct access to the objects of the world. All the actiOIlS of the agents are bac;ed upon the
model rather than the real ~orld. However, the real goals of the agent do not refer to the
model, but to the real world. This means that the strategy has to solve two simultaneous
problems:

(a) bring the model to a status where the agenda is satisfied
(b) ensure that the model is reflecting the reality as closely as possible.
We conclude that the actions of the agent are: (a) directed to change the status of the

world, but bac;ed on the status of the model and (b) update the model.
A I30nd strategy is an object derived from bondStrategy which implements the function

nextActionO. Whenever a transition occurs in the finite state machine of the agent normally
a new strategy is installed. The install () function of the strategy is a good place to verify the
state of the model, create the new variables as needed. If a strategy is going to access model
variables frequently, it is a good idea to create some local pointers to the model variablefi,
eliminating the r.ost of the name-based access.

The functionality of the strategies arc embedded in the nextActionO function called by
the agent in all infinite loop. The time spent by the agent in a particular call of nextAction
should be limited. An action is atomic in the sense that it can not be interrupted by a
trausition.

The actious performed in the nextAction() function should be uniquely determined by its
parameters: the model and the agenda. This allows the agent to be interrupted, saved/restored
and migrated.

5.4.1 Strategies with and without a state

An important classification criteria [or a strategy if it hac; a state or not .

• Stateless strategies where every instance of the strategy is equivalent. For example
a search-based scheduling strategy is stateless. This means that the agent factory can
create a new strategy for each agent bac;ed only on the class code.

• Strategies with state where different instances of the strategy object represent dif­
ferent strategies depending on their state. The agent factory should load the specific
instance of the strategy from a persistent storage. An example is a neural-network based
strategy, where an already trained neural-network is saved and reused repeatedly for the
specific task it was trained for.

5.4.2 Strategy composition

The behavior of the agent in each state is determined by the strategy ac;sociated with the
state. Usually the behavior of a complex agent is multifaceted in any given state. For exam­
ple the agent performs an action, collects information about the environment and does some
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housekeeping opcrations. Although it is UllIealistic to cxpect that we can build a strategy
databa.<;e comprehensive enough to deal with every function the agent designer wants to per­
form, usually at least some aspects of the agent's behavior are standard enough that they can
be implemented using strategies from the database. These approach is made possible by the
strategy composition mechanism in the Bond agent framework.

The strategy composer implements an interleaving mechanism, which allows a new strat­
egy to be composed directly from a number of existing strategies. The strategies can he
composed in a round-robin approach, when the strategies are allowed to take actions each
after another, or in parallel when the actions of different strategies arc executed concur­
rently in separate threads. The strategy composition mechanism is implemented by the
bondCompositeStrategy object and is supported by the Blueprint language. There is a
possibility to add or remove st.raLcgies during runtime, but this approach is not supported by
Blueprint.

The strategy composition is a form of aspect oriented programming [7J, where the composcr
object performs a similar function with the weaver in Aspf'.dJ.

Practically every well-written strategy can be used in a composition. However a special
care should be taken for the possible interactions between strategies through common model
variables. This problem is even more difficult for the parallel composition where race conditions
may occur. Preferably, composed strategies would use disjunct namespaces, but this is not
always possible.

Anothcr problem is referring to the transitions from composed strategies. The default
composer (bondCompositeStrategy) implements the following rules.

• first failure - the first failure transition from one of the strategies will trigger a failure
transition for the composed strategy.

• last success - the last success transition triggers a sucr:ess transition for the r:omposite
strategy. Previous success transitions only deactivate the given strategy (after a success
transition, the action function of the strategy will not be called any more).

• all other transitions generated from any of the member strategies arc translated a.<;
transitions for the composite strategy.

One of the immediate applications for strategy r:omposition is to add timeouts to exist­
ing strategies by composing them with the Uti!. WaitAndFail strategy from the strategy
databa.<;e, which waits a period of time specified in the model variable TimeOut and then
performs a failure transition. The following Blueprint sequcnce is creating a strategy which
performs a computation which, if not terminated, will be interrupted after 30 seconds.

add state BoundedCalc yith strategy
composed {

MyStrategy. Calc i

Util.WaitAndFail { TimeOut = 3D};

};

5.5 The model of the agent

We define the model of the agent as the collection of the information the agent ha.<; about
the world. This leads us to the difficult problem of knowledge Tep7'(~scntation. The model in
Bond agents is represented with a bandMadel object. As any Bond object, the model can
contain an indefinite number of (item, value) pairs a.<; dynamic properties. The Bond agent
framework docs not imposc by default a structure on the model. In essence, every strategy
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is free to write and read anything in the model, allowing the agent developer to use its own
knowledge representation. At creation time, every agent starts with an empty model. During
initialization the beneficiary can initialize the model with information useful for the agent to
know before started. Further on, every strategy reads information from the model, and writes
back new knowledge.

Many agents need to handle some standard situations like running remote programs, syn­
chronizing with other agents, performing data transfers, performing operations on trigger
conditions etc. Also, certain aspects of the strategies may be standard and reusable, like se­
curity checks, logging and checkpointing. The Bond framework provides a strategy database
which allow developers to concentrate only on those aspects of their agent which is indeed
particular.

However, the main requirement scemless cooperation between strategies is the fact that
they should understand each others knowledge representation ill the model. The solutiollii we
arc exploring are basically naming conventions applied to the model variables.

5.5.1 Namespaces

A namespace is a subspace of the names available for use in the model. The variables
in a namespace have a common prefix. Strategies from a strategy group use a common
namespace. For example, the model variable commandline being in the namespace program
is recorded with the name program. commandline in the model. The getModelO and
setModelO functions of strategies hide the namespace from the strategy. If the current
namespace of the strategy group is program than getModel(' Ccommandline' ') is translated
in model. get (C 'program. commandline' '). Namespaces avoid name conflicts between iden­
tical strategies applied to different objects from the environment, and also present a basis for
evaluating predicates on the agent.

6 Case study: remote execution agent

In this section we present the development process for a Bond agent using the Blueprint lan­
guage and the strategy database. The example we have chosen, a legacy application wrapper
is a relatively simple ca.<;e, with a large number of practical applications. A wrapper is an agent
capable to start and control the execution of a legacy application and at the same time to
communicate with other agents towards a common goal. The strategies and even the blueprint
presented here can be reused in any of the cases where an agent should execute an external
program.

6.1 From specification to the blueprint

We start from a informal specification of the agent. We want to build an agent which executes
a legacy application. The agent should continuously supervise the execution, collect and make
available the standard output in rcal time. The termination of the legacy application should
be captured real-time, and the error messages (if any) should be captured and made available.

We have additional requirements related to pre and post-processing.

• Prepare the inputs of the legacy application by fetching the input files from remote sites,
and the output files may need to be transfered to various places on the network (data
staging).

• On termination, delete the temporary files created by the program and the input and
output files which are not needed any more (garbage collection).
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• If the execution of the program failed, try to execute the program on a different machine
(error recovery).

For the first step, we ignore the additional requirements and concentrate only on the basic
tasks of the program. It is obviolls that we need a number of states which correspond to
the different stages of exe[',ution. For a programmer who prefers to visualize programmlng
concepts, it may be the best approach to draw the finite state machine. Our proposal is
presented in Figure 3. Although the programmer sbould not stick to OUI format of drawing,
it is a good idea to make a distinction between the external amI internal transitions, because
this allows us to immediately identify thc control subprotocol of the agent.

The next step of creating the agcnt is to identify the strategies we need to perform the
operations required in each status. The first step is to determine if there are stratcgies avail­
able ill the stratcgy database. If this is a generic, well known problem, like in OUI case the
execution of an cxternal application, there is a good chance that there are already strategies
which arc doing it. In our case the strategies grouped in bondExecStrategyGroup are per­
forming this. The documentation of the strategy group shows that wc have three membcr
strategies: Starting, Supervising and ProgramTermination. We will attach the strategies
to the corresponding states. The result is presented in 3. For the time being we don't have a
strategy to handle errors, so we attach a null strategy there.

..
----.

transition caused
bya message

transition due \0
'sucess"

transition due to
"'ailure'

Figure 3: Thc finite state machine of the executor agent according to the initial specification

After assigning strategies the next step is to decide the namespaces the strategies are going
to operate in. The rules are:

• The name of the namespaces should be chosen in an intuitive way.

• Interrelated strategies which describe different phases of an opcration should go into the
same namespace.

• Strategies which perform the same operation on different objects should go into different
nam.e spaces.
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For trivial cases, we ean use default as the namespace.
Now we have enough information to build the blueprint of the executor agent, which is

presented in Figure 4.

begin blueprint
agent Executor;

add state Starting with strategy Executor.starting;
add state Supervising with strategy Executor.supervising;
add state Error;
add state Interrupted with strategy Executor. terminating;

external transitions {
from Supervising to Interrupted on terminate;

}

internal transitions {
from Starting to Supervising on success;
from Supervising to Terminated on success;
from Starting to Error on failure;
from Supervising to Error on failure;

}

set starting state to Starting;
set agenda to Executor.finishedProgram;

end blueprint;

Figure 4: The blueprint of the executor agent

6.2 Extending an agent

The agent presented above is able to provide a solution for the basic requirements we specified.
Now we show how we can extend the blueprint to handle the data staging problem.

We assume that the application we are building requires its input files to be accessible
locally. Our goal is to bring the input files to the local machine before the program is started,
the so called data staging pmblem.

We assume that we know the location of the remote files. The strategies in the
bondDataStagingStrategyGroup can be used exactly for this. We are introducing a new
state which handles the datastaging. The new finite state machine is shown in Figure 5.

We can create the new agent by modifying the blueprint. The difference is only four lines,
and involves adding the new state, specifying its transitions, and setting the data staging as
the new starting state. Figure 6 shows the new blueprint.

7 Conclusion and future work

In this paper we introduced an object oriented framework for building collaborative network
agents. We view the agent as a composite object consisting of several other objects including
a finite state machine, a model of the world, strategies a."isociated with every state and an
agenda.
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lransition due to
·sucess·

transilion due to
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Figurc 5: The finite state machinc of the executor agent

begin blueprint
agent Executor;

add state BringingFiles with strategy DataStaging.GetMultipleFiles;
add state Starting with strategy Executor.starting;
add state Supervising with strategy Executor.supervising;
add state Error;
add state Interrupted with strategy Executor.terminating;

external transitions {
from Supervising to Interrupted on terminate;

}

internal transitions {
from Starting to Supervising on success;
from Supervising to Terminated on success;
from Starting to Error on failure;
from Supervising to Error on failure;
from BringingFiles to Error on failure;
from BringingFiles to Starting on success;

}

set starting state to BringingFiles;
set agenda to Executor.finishedProgram;

end blueprint;

Figure 6: The blueprint of the cxecutor agent

We introduced an agent definition language called blueprint and describe mechanisms to
crcate dynamically agents using an agent factory supplied with each Bond resident. An agent
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can be remotely controlled by its creator and possibly by other objects.
The Bond Agent Framework (BAF) allows a seamless integration of a reasoning system into

an agent. For example an agent required to select one of several alternatives may by initially
dcsigned to make a random choice and when aU other a."ipeets of its design are satisfactory,
the random choice strategy may be replaced by a strategy using an inference engine. This
can be accomplished by modifying a single line of its description, or dynamically by sending
a modified blueprint to the agent factory.

BAF also supports agent mobility. To migrate an agent from one site to another it is
sufficient to send the blueprint and the model to the agent factory at thc new site.

We also envision automatic assembly of agents by other agents from pre-existing compo­
nents. Our framework enC01l1'ages software reuse, various components of an agent including
blueprints and strategies can be acquired from repositories.

We conclude the paper with an examplc of a wrapper agent capable to start-up a legacy ap­
plication, and support its execution and communicate with other agents. A more sophisticated
application a network of PDE solvcrs is described in [10J.
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