Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1999

A Framework for Building Collaborative Network Agents

Ladislau Boloni

Dan C. Marinescu

Report Number:
99-001

B6I6ni, Ladislau and Marinescu, Dan C., "A Framework for Building Collaborative Network Agents" (1999).
Department of Computer Science Technical Reports. Paper 1432.
https://docs.lib.purdue.edu/cstech/1432

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A FRAMEWORK FOR BUILDING
COLLABORATIVE NETWORK AGENTS

Landislau Boloni
Dan C. Marinescu

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

CSD-TR #99-0(1
January 1999

A framework for building collaborative network agents

Ladislau B6léni and Dan C. Marinescu
Computer Sciences Department,
Purdue University
West Lafayette, IN 47907

January 20, 1999

Abstract

Agents are programs which autonomously pursue their own agenda. Agents in dis-
tributed systems are expected to be remotely controllable, and should be able to cooperate
to accomplish their tasks.

This paper presents the agent framework of the Bond distributed object system. Bond
agents have the possibility to be controlled remotely and to cooperate with each other.

The emphasis in the Bond agent framework is on the ability of quick and dynamic
creation of new agents from a library of vode. The task of an application programmer
is limited to specify the agenda, the finite state machine of the agent, and the strategies
associated with each state. Bond agents can be specified using an agent definition language
called blueprint. Agents are assembled during runtime by a factory object on the request
of a beneficiary object. Bond also provides a large database of ready-made strategies, so
in typical cases a Bond agent can be assembled without programming,.

1 Imtroduction

The term intelligent or autonomous agent is a hot topic in computer science, with various,
sometimes conflicting definitions. Stan Franklin and Art Gracsscr in their overview paper [1]
after discussing a number of alternate formulations are reaching the following definition: en
autonomous agent is a sysiem situated within and part of an environmen! that senses that
environment and acts on it, over time, in pursuil of its own agenda and so as to ¢ffect what
if senses in the future.

Other authors, like Leonard N. Foner [2] are considering the anthropomorphism of an agent
an important factor. Our understanding of an agent is largely equivalent with Franklin and
Graesser’s, and we are not considering the features of user interface as a defining element of
the agent. Some of the Bond agents have immmediate interaction only with other agents, while
other agents have a graphic user interface.

There is a close interdependence between distributed object systems and agents. In a
broad sensc cvery object can be considered as an agent. There is, however a consensus among
researchers that an agent requires an independent execution thread, and the capacity to initiate
actions on its own. Objects like servers, although they have their own execution thread do
not qualily as agents, because they rcact only to external requests.

The Bond agent framework provides support for the external control of the start of the
agent, the acquisition of information (soft state) about the world and utilizes a generic frame-
work for appending strategies. The strategies currently used range from simple table lookup
(for the monitoring agent) to relatively complicated search cngines (for the metaprogram
scheduling agent).

2 Distributed object systems supporting agents

In this section we overview several distributed object systems which provide support for agents.
The Infospheres and Bond projects are academic research projects at Caltech and Purdue,
while the IBM Aglets and the Objectspace Voyager are commercial systems. There are a
large number of other projects which provide support for agents.

2.1 Caltech’s Infospheres

The Infospheres infrastructure is a research architecture lor compositional systems, which are
systems built from interacting components.

The Infospheres infrastructure is implemented in Java. It contains a message oriented
network layer (info.net), and the agent implementation called djinns in Infosphere. Djinns
implement persistence, remote invocation and a service model based on service requests /
service replies. Djinns are running as separate thrcads inside a master djinn which provides
remote activation capabilities.

A related project is the Ubernet infrastructure which provides a very flexible communica-
tion infrastructure allowing users to assemble custom protocol stacks.

2.2 IBM Aglets

IBM Aglets are a framework for programming mobile agents. The authors are considering that
mobile agents are a single uniform paradigm for distributed object computing, encompassing
synchrony and asynchrony, message-passing and object passing, and stationary and mobile
objects. The analogy used is that mobile agents are for distributed objcct computing what
the elementary particles in physics.

The Aglets Framework is bascd on the Java programming language. As a distributed
object system it provides a global naming scheme for agents, a message passing scheme that
supports both asynchronous and synchronous peer-to-peer communication between agents.

What differentiates the Aglets framework from other distributed object systems is the
migration support. A network egent class londer allows the agent’s Java byte code and state
information to travel across the network, and an ezecution contezt provides agents with a
uniform environment independent of the actual computer system on which they are exccuting.
The package also defines the Agent Transfer Protocol (ATP) user to transfer agents over the
nctwork. ATP is an application-level standard protocol aimed at the Imternct and using
Universal Resource Locators (URL) for agent resource location, ATP offers a uniform and
platform independent protocol for transferring agents between networked computers.

2.3 Objectspace Voyager

Objectspace Voyager is a Java Object Request Broker (ORB) designed to quickly and easily
develop distributed systcms. Besides the traditional features of an ORB it also contains
support for mobile agents. The communication between object is done using Voyager prozics
which are the cquivalent of the CORBA or RMI siubs or the Bond shadows.

Voyager also contains a component model. A Voyager component extends the object with
special interfaces (Ildentity, IMobility, ILifecycle and IProperty) that add value to the object.

Persistence is defincd in Voyager as the ability of an object to live beyond an application’s
duration. Persistence is achieved by writing the object in a database. Objects written in the
databasc arc eufoloaded and made active when a message is delivered to them.

Voyager also provides an agent framework. The main feature of a Voyager agent is its mo-
bility. The mobility of the agent relies on the fact that the Voyager proxies are transportable,

so if an agent uses only proxics to access objects, its state can be migrated and the execution
resumed at the remote location.

2.4 The Bond distributed object system

The Bond distributed object system (http://bond.cs.purdue.edu) is built on a message
oriented structure, using KQML as messaging language. Bond objects [3] are network objects
in the sense that they can communicate with each other, can be instantiated and run remotely.

KQML, Knowledge Querying and Manipulation Language, is a product of the Kuowledge
Sharing Effort supported by DARPA, NSF, and AFOSR, for organization and coordination
of autonomous agents, [4, 5]. Intended as an inter-agent communication language by its
designers, KQML is used in Bond as an inter-object communication language. In Bond all
objects can receive and send messages.

Although cvery Bond object fully understands the syntax of KQML, their understanding
is limited to messages related to their functionality. Instead of the language/ontology pair
as specified in the original design of KQML we introduced a different approach based on
subprotocols. This extension is fully compatible with the KQML standards. Subprotocols are
small, closed subsets of KQML commands. In programming languages terminology we can
think of them as small, specialized languages. The attributc elosed in this definition means
that commands in a subprotocol do not reference commands outside the subprotocol, and the
reply or acknowledgment is always a member of the same subprotocol with the question.

Subprotocols generally contain the messages needed to perform a specific task. Examples
of generic Bond subprotocols are property access subprotocol, agent control subprotocol or
securily subprotocol. An altermative formulation would be that subprotocols introduce a
structure in the semantic space of the messages. To create a fully [unctional distributed
system, a typical object should implement a number of subprotocols. We call a message
pattern the totality of messages a distributed object system should use in order to accomplish
a certain task.

Two objects can communicate using messages which are members of the subprotocols
implemented by both objects. Every Bond object implements at least the properly sccess
subprotocol which allows to remotely interrogate and set the properties of an object. The
subprotocols implemented by an objcct is also a property of the object. If two objects want
to comnmunicate withont having any previous knowledge about the other, the first thing to do
1s to interrogate the SubprotocolsImplemented property. After this, they can communicate
using the intersection of the subprotocols implemented by both of them. A Bond object can
implement a subprotocol in three ways: static implementation, acquiring subprotocals by
probes and generating and Icarning new subprotocols.

Subprotocols are a key element in the implementation of Bond agents. For a more detailed
description of Bond subprotocols, we reler the reader to [8].

3 The anatomy of Bond agents

The structure of the Bond agents presented in Figure 1 irnplements the theoretical model AM,;
as presented in [9].
The components of a Bond agent are:

» The model of the world is a container object which contains the information the agent
has about its environment. This information is stored in the form of dynamic properties
of the model object. There is no restriction of the format of this information: it can
be a knowledge base or ontology composed of logical facts and predicates, a pre-trained

R :] Metaohfpets

Aganda S

Agent

Figure 1: The anatomy of a Bond agent

neural network, a colleclion of mcta-objects or different forms of handles of external
objects {file handles, sockets, ctc).

¢ The agenda of the agent, which defines the goal of the agent. The agenda is in itself an
object, which implements a boolean function on the model and a distance function on
the madel. The boolean [unction shows if the agent accomplished its goal or not. The
agenda acts as a termination condition for the agents, except for the agents marked as
having a continuous agenda where their goal is to maintain the agenda as being satisfied.
The distance function may be used by the strategics to choose their actions.

s The finite state machine of the agent. The current state is a model variable named
STATE-1. Bach state has an assigned strategy which defincs the behavior of the agent
in that state. An agent can change its state by perlorming transitions. Transitions are
triggered by internal or cxternal events. External cvents are messages sent by other
agents or programs. The sct of external messages which trigger transitions in the finite
statc machine of the agent defines the conirol subprotocol of the agent.

e Each state on an agent has a strategy defining the behavior of the agent in that statc.
Each strategy performs actions in an infinite cycle until the agenda is accomplished or
the state is changed. Actions arc considered atomic from the agent’s point of view,
external or internal events interrupt the agent only betwcen actions. Each action is
defined exclusively by the agenda of the agent and the current model. A strategy can
terminate by triggering a transition by generating an internal event. After the transition
the agent moves in a new state where a different strategy defines the behavior.

One of the interesting properties of the Bond agent framework is that all components arc
objects, which allow the Bond agents to be assembled dynamically and even modified during
runtime. Another important featurc is that the behavior of the agent is uniquely determined
by the model {the model also contains the state which defines the current strategy). The
model being in essence a data object can be saved, transferred over the network allowing for

checkpointing and migration of Bond agents. The atomicity of the actions gives us natural
checkpointing points.

3.1 Specifying an agent with the blueprint language

The Bond agent framework can be programmed at two levels. At the expert level, the developor
can define its own new stratcgics and agendas by programming them directly in Java. At the
blueprint level, the user can crcate new agents using the blueprint language of the Bond agent
framework. With the blueprint a user can:

-specify the finite state machine of the new agent

-assign strategies [rom a strategy database to the states

-assign the agenda of the agent from the stratcgy database

-assemble new strategics following an aspecl oriented programming approach using the
strategy composition objects.

-assemble new agendas by applying boolean composition on predefined agendas

-create the control subprotocol of the agent

-initializc the variables of the model.

However a blueprint description can not define new strategics or agendas which can not
described as boolean conditions on the model.

Some of the advantages of using blueprint over programming the agent in Java arc:

» Blueprint programs are small text mode descriptions that can be transfered across the
network, stored in a database or even embedded in KQML messages.

¢ Blueprint programs are sufficiently simple that they can be gencrated or modified by
an agent. The possibility of agents building new custom agents opens up exciting new
possibilities.

¢ There is a possibility to modify an agent at runtime by interpreting a new blucprint
script.

3.1.1 The blueprint language

blueprint is a descriptive language for a Bond agent. There is two different way of using
blueprint:

e compiling: the blueprint2Java compiler transforms a blueprint description into the
static Java implementation of the agent.

s interpreting: the AgentFactory calls an interpreter and creates the agent at runtime.

Interpreted agents pay a penally in their startup time, but at the runtime they behave
exactly like the compiled agent. The startup penalty is usually small {(under a second) so
as a general rule the advantages of dynamic generation outweigh the disadvantage of the
interpretation time.

blueprintprogram ::=
‘‘begin’’ ‘‘blueprint’’ f‘agent’? IDENTIFIER ‘f;?’
[Imports]
[AddingStates]
[AddExternmalTransitions]
[AddInternalTransitions]
[SetAgenda]

[InitializeModel]
‘fend!’ ‘'blueprint’’ .7’

Imports ::= (Import)=*
Import ::= ‘‘import’’ JAVA_PATH ‘¢;*°
AddingStates ::= (AddState)=
AddState ::=
‘fadd’’ ‘‘state’’ IDENTIFIER
‘fwith’’ f‘strategy’’ Strategy [InitializeModel] **;*!

AddExternalTransitions ::=
‘external’?’ f‘transitions?? f{‘f
(AddTransition}+ ‘f}??

AddInternalTransitions ::=
‘finternal’? ‘‘transitions’?® ‘f{‘¢
{(AddTransition)+ ¢}

AddTransition ::=
‘“from’’ IDENTIFIER f‘to’’ IDENTIFIER ‘‘on’’ IDENTIFIER ¢¢;?*

SetAgenda ::=
‘‘set’’ ‘‘agenda’’ ‘‘to’’ Agenda ‘‘;’’
Strategy ::=
IDENTIFIER |
IDENTIFIER ‘‘.*” IDENTIFIER |
IDENTIFIER ‘¢.**> IDENTIFIER ‘‘::'’ IDENTIFIER |
‘“composed’’ ‘'{‘' (Strategy [InitializeModel])* “‘}’* |
‘‘parallel’’ ‘‘{‘‘ (Strategy [InitializeModel])% ‘‘}’’
Agenda ::=
IDENTIFIER |
IDENTIFIER “‘.?? IDENTIFIER |

f‘(l.'l.' Agenda “)J] |
Agenda ‘‘or’’ Agenda |
Agenda '‘and’’ Agenda

InitializeModel ::=
‘‘model?* *f{¢‘ (SetModelVariable)+ f*}??
SetModelVariable ::= IDENTIFIER ‘f=’’ VALUE f¢:??

4 The life cycle of an agent

A bondAgent can be created in the following ways:

o Statically: an agent derived from the bondAgent [ramework can create its componcnts
(finite state machine, states, stratcgics ete.) in its constructor.

¢ Dynamically: the agent is created by a factory object bondAgentFactory using a
blueprini. The factory object generates the components of the agent either by creating
them, either by loading them [rom persistent storage.

In the following, we present the lifecycle of the agent.

4.1 Creating an agent

A Bond agent can be either instantiated, if it is a statically created agent, or assembled from
library components using a blueprint. If the agent is instantiated as a new thread in the current
Bond cxccutable it can be created as any other Java object, as in the following example:

bondAgent ba = new bondExampleAgent();

However, Bond agents are normally created using the bondAgentFactory object. This
object allows us to remotely instantiate agents:

bAF.say(" (achieve :content create-agent
:agent bondExampleAgent
:subprotocel AgentControl)")

In this case the variable bAF can be either a bondAgentFactory object or a shadow of it.
This gives us the first advantage of the use of the factory, because agents can be instantiated
remotely in a transparent way.

Anotlier advantage is that the agents may be assembled dynamically from a blueprint, a
text mode description of the agent. In this case the requesi can be:

bAF.say("(achieve :content assemble-agent
:blueprint http://bond.cs.purdue.edu/blueprints/Example.bpt
:subprotocol AgentControl)")

where we are actually instructing the factory to download the blueprint from the specificd
URL, and assemble the agent according to the specifications in the blueprint from the library
components available locally. Alternatively, we can embed the blueprint in the message.

Whichever way of creating the agent we arc using, the agent factory will reply with a
message communicating the bondID and address of the new agent.

(tell :content agent-created
:bondID the-new-bondID :address ector.cs.purdue.edu:2001
:subprotocol AgentControl)

The usual procedure is that the object that requested the creation of the new agent (the
beneficiary of the agent) creates a shadow of the agent shAgent, used for further interaction
with the agent. The agent factory also creates a shadow of the agent’s beneficiary, thus
establishing a two-way rclationship between the agent and the beneficiary. After creation the
agent factory will no longer be used during the lifetime of the agent. This creation process is
sumrmarized in Figure 2

f r B
" Blueprint

Slralegy database

repository

1L

NFRIIHE

r Y
[

(2) \'

’- Agent Factory

h 4

Beneficiary object

AT

B T eI,
‘o

Figure 2: Creating an agent remotely using an agent factory. (1} The beneficiary object
sends a crcate-agent message to the agent factory (2) The blueprint is fetched by the agent
factory from a repository or extracted from the message (3) The strategies are loaded from
the strategy database (4) The agent is created (5) The id of the agent is communicated back
to the beneficiary, and (6) The bencficiary object controls the new agent

4.2 Initialization

After finishing the creation of the agent, the agent becomes an active bondObject. This
means that it can receive and send messages, but does not yet have a thread on its own. The
reason why agents are not started immediately after creation is because their agenda may
be incomplete without some input. For example the agenda of an agent which performs the
supervised execution of a legacy application is incomplete without the path of the program
to be run. In its initialization phase the beneficiary gives information about the world to the
agent, by writing it in the agent’s model. Typically this information is related to the agenda
of the agent, but a beneficiary can also provide some useful information about the current
slatc of the world to the newborn agent.

For example, for the exccutor agent mentioned before we can set the command to be
executed by:

shigent.say("achieve :content setModel :name Commandline :value matlab®+
":subprotocol ApgentContrel)", this);

Of course the assumption is that the name Commandline has a meaning for the agent. This
topic will be explored in morc detail when we present strategies and namespaces.

4.3 Starting
After the initialization is finished the program can start the agent by sending a start message:
shAgent.say("achieve :content start-agent :subprotocol AgentControl)", this);

or, if the agent way instantiated locally we can simply use:

agent.start();

The agent creates its intcrnal thread, initializes its state to (he default state specified in
its constructor or in the blueprint and starts to pursue its agenda according to the strategy
associated with the current state.

4.4 Running

The normal way of operation of the agent is being into one of its states and performing actions
according to the strategy in order to accomplish its agenda. Normally the agent performs an
infinite loop by periodically asking the strategy about the next action to be executed. If there
is no strategy associated with the current state, the agent waits.

Agents move from one state to the other by mcans of transitions. Transitions are triggered
by cvents which reach the agent. The events may be internal if they are generated by a strategy
or exiernal if they are messages sent by external objects. Internal events are the success or
failure events generated by strategies. External cvents are KQML messages send by remote
or local objects to the agent. The set of KQML messages which trigger transitions in the
agent form the control subprotocol of the agent. If the agent is assembled dynamically from a
blueprint the control subprotocol is also generated dynamically.

4.5 ‘Termination

An agent terminates when its agenda is accomplished (i.e. when the agenda object’s
satisfiedBy(model) function returns truc). Agents which have an agenda marked with
a contimious goal never terminate, unless interrupted from the outside.

Il the agent has no beneficiary, the agent immediately exits. Il the agent has a beneficiary,
it sends a termination message, terminates it threacl, but the objects associated with the agent,
e.g, the model are not destroyed. The reason for this is that after the agenda is satisfied the
beneficiary can read out values from the model - which may represent results of a computation,
the very rcason why the agent was started. Also the beneficiary may change values in the
modecl and restart the agent, without the need to create it again. (Restarting the agent without
changing the model does not make sense because the agenda uses only its model as input, and
the agenda will be immediately satisfied upon restart).

The agent can be killed by the bencficiary by sending a kill-agent message

shAgent.say("achieve :content kill-agent :subprotocol AgentControl),this);

The same message can also be used to terminate agents with a continuous agenda.

5 Control and autonomous operation of the Bond agents

The behavior of an agent is completely determined by its internal state information. The state
information of a Bond agent is contained entirely in the model of the agent. The external
world influences the behavior of the agent only by its reflection into the model. There is
however one model variable which requires a special handling, the current state of the finite
statc machine of the agent, because this variable determines the current strategy used by the
agent,

To control the behavior of an agent, we need to set the state of the finite state machine.
The state of the agent can not be changed arbitrarily. An internal or external object can
change the state of the agent by triggering transitions in the finite state machine of the agent.
The transitions are labeled by cvents, whose generation trigger the specific transition.

In this section we present the methods for controlling an agent from the inside, by the
current strategy or from thc exterior by other agents. We also present in more detail the
structure of the strategies, and the possibilities offered by them to the agent programmer.

We consider Bond agents as being both controllable in the sense that their current strategy
can be changed by a controlling authority sending external events, and autoromous because
the strategies take actions only based on the agents agenda and the current knowledge as
reflected in the model.

5.1 Internal control of the agent

The agent can be controlled internally by fransitions generated by the strategies. A strategy
gencrates internal events. There are two rescrved internal events, success and failure, but
the strategy can use any other events. These events are reserved to facilitate the assembly of
agents from reusable strategies. Generating an internal event can be done in a strategy hy
the instruction like:

fsm.transition("success"};

This should be the last statement within the action function of the agent, becausc the
transition will change the state and the current strategy of the agent.

A strategy does not know about the structure of the finite statc machine it is embedded
into. Generating an internal event will trigger a transition which terminates the strategy by
changing the state. The label of the internal cvent indicates the way in which the strategy
was terminated. However, the new statc and the associated strategy depends exclusively on
the finite state machine of the agent.

For example, an internal cvent labeled failure usually takes the agent into a state which
corresponds to an error. However, depending on the blucprint of the agent, this state may
have a strategy which attempts to recover the error, or a different strategy which simply exits.

5.2 External control of the agent

An agent can be controlled externally using the messages in the AgentControl subprotocol,
defined by the Bond system and allows the external object to create, destroy and interrogate
the statc of an agent. Besides this, every agent defines its own conirol subprotocol, the set of
external messages that trigger transitions in a specific agent. This subprotocol is specific for
cvery agent and it is determined by a finite state machine.

The control subprotocol of an agent is in the Subprotocol property of the fnite state
machine. A remote object can learn the subprotocol of the agent by reading this variable
using the Property Access subprotocol.

5.3 Security aspects of agents

The distributed execution and remote control of the agents pose security threats. The Bond
agent framework is integrated with the rest of the Bond security system, and allows the
programmer to sct the type of security he considers necessary for the current application.

The maximal sccurity is obtained by setting the beneficiary_only variable of the agent.
When sct this switch forces the agent to accept only messages from its creator or replies to
its own messages. Although this approach seems very restrictive it allows the creation of
hierarchical agent systems as required by a large number of practical applications.

If a fine-grain security approach is needed, Bond agents, like any other Bond object can
have a number of sceurily probes attached. The Bond library contains security probes for a

10

variety of sccurity paradigms like firewall type security, password based access, ticket based
access and authentication based access. A user may define its own security probe. Also,
different access protocols may be set up for various types of messages [6].

5.4 The implementation of strategies in Bond

In every state of the internal finite state machine which has a non-null strategy associated
to it, the agent performs actions according to the strategy. We call this mode of operation
autonoemous.

A strategy was defined as a function on the model and the agenda, and the agenda itsclf
is a function on the model. This definition is a practical nccessity because the agent has no
direct access to the objects of the world. All the actions of the agents are based upon the
model rather than the real world. However, the real goals of the agent do not refer to the
model, but to the real world. This means that the strategy has to solve two simultaneous
problems:

(a) bring the model to a status where the agenda is satisfied

(b) ensure that the model is reflecting the reality as closely as possible.

We conclude that the actions of the agent are: (a) directed to change the status of the
world, but based on the status of the model and (b} update the model.

A Bond strategy is an object derived from bondStrategy which implements the function
nextAction(). Whenever a transition occurs in the finite state machine of the agent normally
anew strategy iIs installed. The install() function of the strategy is a good place to verifly the
state of the model, create the new variables as needed. If a strategy is going to access model
variables frequently, it is a good ideca to crecate some local pointers to the model variables,
eliminating the cost of the name-based access.

The functionality of the strategics arc embedded in the nextAction() function called by
the agent in an infinite loop. The time spent by the agent in a particular call of nextAction
should be limited. An action is atemic in the sense that it can not be interrupted by a
transition.

The actions performed in the nextAction() function should be uniquely determined by its
paramecters: the model and the agenda. This allows the agent to be interrupted, saved/restored
and migrated.

5.4.1 Strategies with and without a state

An important classification criteria for a strategy if it has a state or not.

e Stateless strategies where every instance of the strategy is equivalent. For example
a searcl-basced scheduling strategy is stateless. This means that the agent factory can
create a new strategy for each agent based only on the class code.

s Strategies with state where different instances of the strategy object represent dif-
ferent strategics depending on their state. The agent factory should load the specific
instance of the strategy from a persistent storage. An example is a neural-network bascd
strategy, where an already trained neural-network is saved and reused repeatedly for the
specific task it was trained for.

5.4.2 Strategy composition

The behavior of the agent in each state is determined by the strategy associated with the
state. Usually the behavior of a complex agent is multifaceted in any given statc. For exam-
ple the agent performs an action, collects information about the environment and does some

11

housekeeping opcrations. Although it is unrealistic to cxpect that we can build a strategy
database comprehensive enough to deal with every function the agent designer wants to per-
form, usunally at least some aspects of the agent’s bebavior are standard enough that they can
be implemented using strategies from the database. These approach is made possible by the
strateqy composition mechanism in the Bond agent framework.

The stratcgy composer implements an interleaving mechanism, which allows a new strat-
egy to be composed directly from a number of cxisting strategies. The strategies can be
composed in a round-robin approach, when the strategies are allowed to take actions each
after another, or in parallel when the actions of different strategies arc cxecuted concut-
rently in separate threads. The strategy composition mechanism is implemented by the
bondCempositeStrategy object and is supported by the Blueprint language. There is a
possibility to add or remove stralegics during runtime, but this approach is not supported by
Blueprint.

The strategy composition is a form of aspect oriented programming [7], where the composer
object performs a similar function with the weaver in Aspect.J.

Practically every well-written stratcgy can be used in a composition. However a special
care should be taken for the possible interactions between strategics through common model
variables. This problem is even more difficult for the parallel composition where race conditions
may occur. Preferably, composcd strategies would use disjunct namespaces, but this is not
always possible.

Another problem is referring to the transitions from composed strategies. The default
composcr {bondCompositeStrategy) implements the following rules.

e first failure - the first failurc transition from one of the strategies will trigger a failurc
transition for the composed strategy.

s last success - the last success transition triggers a success transition for the composite
strategy. Previous success transitions only deactivate the given strategy (after a success
transition, the action function of the strategy will not be called any more).

¢ all other transitions generated from any of the member strategies are translated as
transitions for the compaosite strategy.

One of the immediate applications for strategy composition is to add timeouts to exist-
ing strategies by composing them with the Util.WaitAndFail strategy from the stratcgy
database, which waits a period of time specified in the model variable TimeDut and then
performs a lailurce transition. The following Blueprint scquence is creating a strategy which
performs a computation which, if not terminated, will be interrupted after 30 scconds.

add state BoundedCalc with strategy
composed {
MyStrategy.Calc;
Util.WaitAndFail { TimeOut = 30};
};

5.5 The model of the agent

We define the model of the agent as the collection of the information the agent has about
the world. This leads us to the difficult problem of knowledge representation. The model in
Bond agents is represented with a bondModel object. As any Bond object, the model can
contain an indefinite number of (item,value) pairs as dynamic properties. The Bond agent
framework docs not impose by default a structure on the model. In essence, every strategy

12

is free to write and rcad anything in the model, allowing the agent developer to use its own
knowledge representation. At creation time, every agent starts with an empty model. During
initialization the beneficiary can initialize the model with information useful for the agent to
know before started. Further on, every strategy reads information from the model, and writes
back new knowledge.

Many agents nced to handle some standard situations like running remote programs, syn-
chronizing with other agents, performing data transfers, performing operations on trigger
conditions etc. Also, certain aspects of the strategies may be standard and reusable, like se-
curity checks, logging and checkpointing. The Bond framework provides a strategy database
which allow developers to concentrate only on those aspects of their agent which is indeed
particular.

However, the main requirement scemless cooperation between strategies is the fact that
they should understand each others knowledge representation in the model. The solutions we
arc exploring are basically naming conventions applied to the model variables.

5.5.1 Namespaces

A namespacc is a subspace of the names available for use in the model. The variables
in a namespacc have a common prefix. Strategics from a strategy group use a common
namespace. For example, the model variable commandline being in the namespace program
is recorded with the name program.commandline in the model. The getModel() and
setModel () functions of strategies hide the namespace from the strategy. If the current
namespace of the strategy group is program than getModel{' ‘commandline’’) is translated
in medel.get (¢ ‘program.commandline’’). Namespaces avoid name conflicts between iden-
tical strategies applied to different objects from the environment, and also present a basis for
evaluating predicates on the agent.

6 Case study: remote execution agent

In this section we present the development process for a Bond agent using the Blueprint lan-
guape and the strategy database. The cxample we have chosen, a legacy application wrapper
is a relatively simple case, with a large number of practical applications. A wrapper is an agent
capable to start and control the execution of a legacy application and at the same time to
communicate with other agents towards a common goal. The strategics and even the blueprint
presented here can be reused in any of the cases where an agent should execute an external
program.

6.1 From specification to the blueprint

We start from a informal specification of the agent. We want to build an agent which executes

a legacy application. The agent should continuously supervise the execution, collect and make

available the standard output in rcal timne. The termination of the legacy application should

be captured real-time, and the error messages (if any) should be captured and made available.
We have additional requircments related to pre and post-processing.

e Prepare the inputs of the legacy application by fetching the input files from remote sites,
and the output files may need to be transfered to various places on the network (data
staging).

e On termination, delete the temporary files created by the program and the input and
output files which are not needed any more {garbage collection).

13

¢ If the exccution of the program failed, try to exccute the program on a diffcrent machine
(error recovery).

For the first step, we ignore the additional requirements and concentrate only on the basic
tasks of the program. It is obvious that we need a number of states which correspond to
the different stages of execution. For a programmer who prefers to visualize programming
concepts, it may be the best approach to draw the finite state machine. Our proposal is
presented in Figure 3. Although the programmer should not stick to our format of drawing,
it is a good idea to make a distinction between the external and internal transitions, because
this allows us to immediately identify the control subprotocol of the agent.

The next step of creating the agent is to identify the strategies we need to perform the
operations required in each status. The first step is to determine if there are strategies avail-
able in the stratcgy database. If this is a generic, well known problem, like in our case the
execution of an external application, there is a good chance that there arc already strategies
which are doing it. In our case the strategics grouped in bondExecStrategyGroup are pei-
forming this. The documentation of the strategy group shows that we have three member
strategies: Starting, Supervising and ProgramTermination. We will attach the strategies
to the corresponding states. The result is presented in 3. For the time being we don’t have a
strategy to handle errors, so we attach a null strategy there.

E@’ transiion caused
by a message
fransilion due 1o
"sucess”

———— lranfilign due to
failura"

Figurc 3: The fnitc state machine of the executor agent according to the initial specification

After assigning strategies the next step is to decide the namespaces the strategics are going
to operate in. The rules are:

o The name of the namespaces should be chosen in an intuitive way.

e Interrelated strategies which describe different phases of an opcration should go into the
same namespace.

s Strategies which perform the same operation on different objects should go into different
name spaces.

14

For trivial cases, we can use default as the namespace.
Now we have enough information to build the blueprint of the executor agent, which is
presented in Figure 4.

begin blueprint
agent Executor;
add state Starting with strategy Executor.starting;
add state Supervising with strategy Executor.supervising;
add state Error;
add state Interrupted with strategy Executor.terminating;

external tramsitions {
from Supervising to Interrupted on terminate;

¥

intermal transitions {
from Starting to Supervising om success;
from Supervising to Terminated on success;
from Starting to Error on failure;
from Supervising to Exror on failure;

¥

set starting state te Starting;
set agenda to Executor.finishedProgram;
end blueprint;

Figure 4: The blueprint of the executor agent

6.2 Extending an agent

The agent presented above is able to provide a solution for the basic requiremecnts we specified.
Now we show how we can extend the blucprint to handle the data staging problem.

We assume that the application we are building requires its input files to be accessible
locally. Our goal is to bring the input files to the local machine before the program is started,
the so called data staging problem.

We assume that we know the location of the remote fles. The strategies in the
bondDataStagingStrategyGroup can be used exactly for this. We are introducing a2 new
state which handles the datastaging. The new finite state machine is shown in Figure 5.

We can create the new agent by modifying the blueprint. The difference is only four lines,
and involves adding the new statc, specifying its transitions, and setting the data staging as
the new starting state. Figure 6 shows the new blueprint.

7 Conclusion and future work

In this paper we introduced an object oriented framework for building collaborative network
agents. We view the agent as a composite object consisting of several other objects including
a fnite state machine, a model of the world, strategies associated with every state and an
agenda.

15

{ransilion caused
by a message

transilion dus to
"sucess"

transition due 1o
“failure®

Figurc 5: The finite state machine of the executor agent

begin blueprint
agent Executor;
add state BringingFiles with strategy DataStaging.GetMultipleFiles;
add state Starting with strategy Executor.starting;
add state Supervising with strategy Executor.supervising;
add state Error;
add state Interrupted with strategy Executor.terminating;

external transitions {
from Supervising to Interrupted on terminate;

¥

internal transitions {
from Starting to Supervising on success;
from Supervising to Termirated on success;
from Starting to Error on failure;
from Supervising to Error on failure;
from BringingFiles to Error onr failure;
from BringingFiles to Starting on success;

}

set starting state to BringingFiles;
set agenda to Executor.finishedProgram;
end blueprint;

Figure 6: The blueprint of the exccutor agent

We introduced an agent definition language called blueprint and describe mechanisms to
create dynamically agents using an agent factory supplicd with each Bond resident. An agent

186

can be remotely controlled by its creator and possibly by other objects.

The Bond Agent Framework {(BAF) allows a seamless integration of a reasoning system into
an agent. For example an agent required to select one of several alternatives may by initially
designed to make a random choice and when all other aspects of its design are satisfactory,
the random choice strategy may be replaced by a strategy using an inference engine. This
can be accomplished by modifying a single line of its description, or dynamically by sending
a modified blueprint to the agent factory.

BAF also supports agent mobility. To migrate an agent from one site to another it is
sufficient to send the blueprint and the model to the agent factory at the new site.

We also envision automatic assembly of agents by other agents from pre-existing compo-
nents. Our framework encourages software reuse, various components of an agent including
blueprints and strategies can be acquired from repositories.

We conclude the paper with an example of a wrapper agent capable to start-up a legacy ap-
plication, and support its execution and communicate with other agents. A more sophisticated
application a network of PDE solvers is described in [10].

References

[1] S. Franklin and A. Graesser Is it an agent, or just a program? Proceedings of the Third
International Workshop on Agent Theories, Architectures and Languages, Springer Verlag
1996

[2] L.N. Foner What’s an ugent, anyway? A sociological case study Agents Memo 93-01,
Agents Group, MIT Media Lab.

[3] L. Boloni: Bond Objects — ¢ white paper Department of Computer Sciences, Purdue
University CSD-TR. #98-002

[4] T. Finin, et al. Specification of the KQML Agent-Communication Language, DARPA
Knowledge Sharing Initiative draft, June 1993

[5} Y. Labrou, T. Finin A Proposal for a new KQML Specification UMBC TR-CS-97-03

(6] R. Hao, L. Boloui, K. Jun, and D.C. Marinescu An Aspect-Oriented Approach To Dis-
tributed Object Security Technical Report, Department of Computer Science, Purdue
University, CSD-TR#98-038

[7] G.Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.-M. Loingtier, J. Irwing
Aspect oriented programming Proceedings of the European Conference of Object-Oriented
Programming (ECOQP), June 1997

[8] L. B6loni, R. Hao, K.K. Jun and D.C. Marinescu Subprotocols: an object oriented solution
Jor semantic understanding of messages in e distributed object systermn Submitted to the
Fourth IEEE Symposium on Computers and Communications (ISCC’99)

[9] L. Boloni and D.C. Marinescu A multi-resolution model for building agents Technical
Report, Department of Computer Science, Purdue University.

[10] P. Tsompanopoulou, L. B6léni and D.C. Marinescu The Design of Software agents for o
Network of PDE Solvers Technical Report, Department of Computer Science, January,
1999.

17

	A Framework for Building Collaborative Network Agents
	Report Number:
	

	tmp.1307986960.pdf.WAVYs

