
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1998

A Knowledge Discovery Methodology for the Performance A Knowledge Discovery Methodology for the Performance

Evaluation of Scientific Software Evaluation of Scientific Software

Vassilios S. Verykios

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
98-042

Verykios, Vassilios S.; Houstis, Elias N.; and Rice, John R., "A Knowledge Discovery Methodology for the
Performance Evaluation of Scientific Software" (1998). Department of Computer Science Technical
Reports. Paper 1429.
https://docs.lib.purdue.edu/cstech/1429

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A KNOWLEDGE DISCOVERY METHODOLOGY FOR THE
PERFORMANCE EVALUATION OF SCIENTIFIC SOFTWARE

Vassilios S. Verykios
Elias N. Houstis

John R. Rice

Department of Computer Sciencc.~

Purdue University
West Lafayette, IN 47907

CSD-TR #98-042
November 1998

A Knowledge Discovery Methodology for the
Performance Evaluation of Scientific Software *

Vassilios S. Verykios, Elias N. HOllstis, and John R. Rice
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907-1398, USA.

November 5, 1998

Abstract

In this paper we define a knowledge discovery in databases (KDD) methodology to automatically gen"
erate metadata (i.e., knowledge rules) from software/machine pair performance databases. This metadala
can be used to characterize the computational behavior of various classes of software or machines. The
core and the most computationally intensive part of the KDD methodology is the data mining phase
which identifies "interesting" patterns from the performance data. The discovery patterns are expressed
in a high level representation to be used to summarize and predict the computational behavior of the
targeted software/machine. This paper presents an implementation and evaluation of the proposed KDD
process for a class of scientific software together with three data mining algorithms (ID3, HOODG, and
CN2). For this case study we have selected a set of software that implements the "mesh/grid partition­
ing~ phase of the domain decomposition approach used for the parallel processing of partial differential
equation (PDEs) computations. The raw performance database is generated from a population of elliptic
PDEs and PELLPACK [HRW+98] solvers by varying the PDE domain, mesh, and domain partitioning
(DP) algorithm. The goal of the KDD process here is to evaluate the performance of PELLPACK,
CHACO [HL95c], METIS [KK95c], and PARTY [PD96] algorithms/software. This case study shows
that (a) the three data mining algorithms llsed are qualitatively and quantitatively equally effective, (b)
the knowledge discovered for the DP algorithms by this KDD process is quantitatively similar to that
deduced by purely experimental observations [VH97], and (c) the KDD process is not limited by the size
of the performance data and its dimensionality.

1 Introduction

Selecting and tuning software for a specific application to achieve a user's objectives on a target machine
is part of every computational endeavor with constraints on time and and cost resources. Performance
evaluation of software/machine pairs is currently used for achieving this task for which several measurement
and visualization tools are available. They are designed for real or simulated architectures and are capable
of playing back or visualizing the computations. The purely visualization approach used by tools such as the
one described in [HF91], has limited utility in massively parallel systems and integrated lire cycle simulations.
This is because the inference, domain parameter estimation, and scalability issues are left to be resolved by
the performance evaluator and system designer.

Alternatives to this approach are techniques that attempt to mine the knowledge from the performance
data stored in a relational database system without significant user interaction. However, making effective
and accurate decisions directly from such data is difficult for two reasons: a) these databases are frequently
very large, and b) the database is usually described using low level concepts and relations that are cognitively
distant from the concepts used by the decision maker.

·This work w"" supported in plLrl by DARPA conlracl N66001-97-CB533, NSF granl 9202536, and a Purdue Research
Foundation special initiation award.

1

In this paper we define a knowledge discovery in databases approach to evaluate the performance of
scientific software on a class of machine architectures. Moreover, our implementation of this KDD process
[Hou9S] avoids some of the shortcomings observed above. Its data mining phase explores the contents of the
database to automatically identify concepts and rules supported by the data. In addition, the rules discovered
can be tested on different databases so that their predictive ability and generality can be evaluated and the
rules can be edited before they are incorporated into the performance knowledge base (KB) being developed.

This paper is organized as follows. Section 2 defines a knowledge discovery process for the performance
evaluation of scientific software and related work. Moreover, it presents three data mining algorithms in
terms of the selected scientific software. In Section 3 we describe the scientific software selected and discuss
the generation of the performance data used. The case study for the KDD process uses four major libraries of
DP algorithms. Section 4 discusses the implementation of the proposed KDD approach on the performance
database of the case study and presents the knowledge structures generated by the three data mining
algorithms considered. In Section 5 we present an analysis of the effectiveness of the KDD process and
our implementations of its various phases in the context of the DP case study. Finally, Section 6 summarizes
our observations and Appendix A provides a description of the particular DP software used in this case
study.

2 A Knowledge Discovery Approach for Scientific Software

In general, raw data contain information useful for decision support or exploration and understanding of the
phenomena governing the data source [FHS96J. Traditionally, analysis of data has been a strictly manual
process. One or more analysts would become intimately familiar with the data and - with the help of
statistical techniques - would provide summaries and generate reports. However, such an approach rapidly
breaks down as the quantity of data grows and the number of dimensions increases. To automate this process,
especially for databases containing performance data of scientific software, various other methodologies have
been proposed.

A systematic approach to the performance evaluation of PDE solvers was implemented in [BRH79] based
on what is called today data mining techniques. Subsequently, it was used to complete several systematic
performance studies of various classes of PDE solvers. The data mining approach used a non-parametric
statistical technique to derive the profiles of various solvers selected for evaluation. In turn these profiles
are used to rank solvers with respect to various criteria. The use of these profiles to derive knowledge rules
(metadata) for applicable solvers on "similar" PDE problems with known solutions was first realized in the
ATHENA expert system [HHR+91]. In this system the inference was implemented using an exemplar or
collaborative filtering (i.e., leveraging similarities between an a priori defined population of problems and
the user defined one) to make recommendations. This system was further advanced in the PYTHIA project
[WHR+96] where other data mining techniques were explored such as Bayesian and neural network methods.
In addition, the system GOLEM [MF90] was integrated into PYTHIA to implement the inductive logic
programming (IPL) knowledge discovery approach. GOLEM is applied to derive automatically rules from
the rankings of methods. The inference engine of PYTHIA expert system was implemented by CLIPS [Gia91]
system. The use of neure-fuzzy techniques in the context of PYTHIA system was explored in [JWR+96].
Finally, in the series of conferences on expert systems for scientific computing [HRV90, HRV92, HRV94],
several expert systems are presented for various scientific software.

In this paper, we use the knowledge discovery in databases (KDD) approach ([FPSS96]) which can be
considered as an extension of the PYTHIA methodology by utilizing database technologies at all phases plus
using "symbolic" data mining techniques. The implementation of this KDD methodology is described in
[Hou9S]. In this paper, we define the KDD process for scientific software and implement the data mining
phase with a new class of "heuristic" algorithms. The steps or phases that characterize this process are
described in Table 1. Figure 1 gives a schematic view of the process defined in Table 1. The third column
of Table 1 lists the implementation choices in the PYTHIA II system [Hou9S].

Note that the core and the most computational intensive part of KDD is the data mining step that identi­
fies interesting patterns from performance databases. The rest can be viewed as pre- or post-processing steps
applied by the user or the knowledge engineer. In Table 2, we present a list of various data mining operations
applicable in the context of the KDD process along with several techniques for their implementations, see
[FPSS96].

2

ata Reduction
and. Projection

Disco'r'e[ed

KnOWledgTI

Patterns A""emIMOdel/"l::r' ~~,ecpceta'; on

Transfo[med. ~ata

D"'aH Mi.L..J JnJng

T"'.~1=~~Dam

Perfo[mance ~

DambaseA~leeted
U Clallsesof

Experi mellts

Figure 1: Schematic of the KDD process.

I Pbaacs I Descrlptlon I ImplementatIon I
DetennLne I 10ent, y t c computation obJectLves wl~.n. Manually
"Iuutinn re!lpe<:t to which the pcrfonnance evaluation of
objectivefl the selccted liCientiflc 90nware is carried out.
!:J~ta preparatIon I ~1}_ldentlry the .t>enc!,mark. apphcatlon~ (l_C', "(1) selection population of scientific problems for the SQL
(2) pre-proce!I.ing generation of performance data). Td/Tk

(2) Identify the performance indicatol"!l to be
mCallured.
(3) Identify the actual software to be t""ted
together with the numerical values of their
p......meters.

I (1) Generate performance data.
Data transformatIon I :~)"lransform the data Into an ana ytlc In-house

or summDry ronn .tatistical
(2) Model the data to .uit the intended analysis sonware
and the data rormats required by the data
mininll "lp;orithms.

Datu mining Mine the transformed data to identiry patterns Golem
Or fit models to the data, this is the hea", of
the matter and hns been m""tly automated,

Analy"s or results .. Ill. IS a po.t_processmg phase done by MafluaUy
knowledge engineers and domain ellpert.
to ensure correctneM or the results_

Asslml atlon of Create (In mtelhgent mterface to utlhze Lew,
knowledge the knowledge afld to identify the .cientific

sortware (with parameters) ror user's
I omblems and computational objective•.

Table 1: The steps of the KDD process for scientific software.

3

I Pre ICt,VC Datab....e Link an ys,s DevIatlon
ModelinR: Segmentation Dete<:tion

~. catIon Cluste~Ing AUOclatlon lscovery ,sllahzatlon
reSSlon I Sequent,al pattern I StatistiC'll

Ummanzat,on discovery
a ue pre lctton

Table 2: Data mining operations and their corresponding techniques

In this study we consider three classification techniques for predicting the performance of software with
implementations available in the MLC++ [KSD96] software library and the CN2 [CN89] program. The
classifiers we select are CN2 [CN89] (using rule-induction) 103 [Qui86] (using decision trees) and HOODG
[Koh94] (using graphs). We describe these algorithms in terms of the case study DP software and its
performance database.

CN2 generates an ordered list of simple, propositional like classification rules such as "if_then" state­
ments where the conditional part consists of a propositional expression (i.e., a conjunction of tests on the
performance metrics). The consequent part of the rule is the DP algorithm. CN2 constructs the rules itera­
tively one at a time. A rule is constructed by searching for a conditional part that covers a large number of
performance records of a particular DP algorithm and few records of other DP algorithms. Having found a
"good" rule, the algorithm removes those performance records from the input covered by the rule and adds
the current rule to the end of the list of rules. The best conditional part in an input set is found using a
beam search (i.e., the construction of a search graph, where at each iteration the graph is extended the beam
width, a mostly user specified limit on the leaves). CN2 estimates the quality of a rule from its accuracy and
significance. CN2 uses the information theoretic entropy measure (the same used by ID3) to evaluate the
accuracy of the rule and the likelihood ratio statistic to evaluate the statistical significance of the rule. This
is done by locating a regularity among the data that is unlikely to have occurred by chance [CN89].

ID3 [Qui86] constructs a decision tree from records (each one corresponding to a DP algorithm) whose
fields contain measurements of the performance metrics. In the generated decision tree, (a) every internal
node is labeled with the name of one of the performance metrics used, see Table 4 in Section 3.2.2 for those
of the DP case study, (b) the branches coming out from an internal node are labeled with values (or ranges
of values) of the performance metric in that node, and (c) every leaf node is labeled with a DP algorithm.
ID3 algorithm uses a top-down irrevocable strategy (Le., an operation is selected and applied irrevocably
without provision for later reconsideration) that searches only part of all applicable to the performance
database decision tree>, guaranteeing that a simple - but not necessarily the simplest - tree is found. A
simple decision tree can be generated by selecting a metric which minimizes the information needed in the
resulting subtrees to differentiate subsets of performance data based on their corresponding DP algorithms.

HOODG [Koh94} represents the underlying knowledge as a decision graph. This graph is directed and
acyclic with the following properties: a) there are exactly as many nodes in the graph that have out-degree
zero as the number of DP algorithms, b) the nodes that do not belong 1n a) are labeled by some performance
metric and their out-going edges are labeled by a distinct value (or range of values) from the domain of
values of the performance metric, and c) there is one distinguished node which is called root, that is the only
node with in-degree zero. In case each performance metric occurs only once along any path, then the graph
is called read-once. If all the nodes at a given level are labeled by the same metric, then the graph is called
oblivious. An oblivious decision graph is reduced when there are no two distinct nodes at the same level that
branch in exactly the same wayan the same value. We denote by OODG a reduced oblivious read-once
decision graph. HOODG is a hill climbing algorithm for constructing OODGs bottom-up. The algorithm
starts from a set of sets {All A2•. ..} where each set Ai is the set of all performance records for the i-th DP
algorithm. The ten DP algorithms for our case study are listed in Table 3.

For a case study using the KDD process and its implementation, we have selected a set of ten domain
decomposition software modules from the PELLPACK system used to decompose geometric data structures
(Le., meshes). These decompositions are used in PDE applications to partition the underlying computations
for parallel machines.

4

3 A Performance Database for Domain Partitioning Software

In this section, we describe briefly the software of the case study of the KDD process and list the benchmark
computations and metrics utilized to generate the performance database.

3.1 An Overview of the Domain Decomposition Problem and Software

Mapping computations to parallel machines by partitioning the associated discrete geometric data (i.e.,
meshes, grids) and the underlying computations is standard for solving PDE problems. The mesh/grid
partitioning problem is very often reduced to a graph partitioning problem [Chr92] in which the vertices of
the graph are divided into a specified number of subsets, such that the load is almost equally distributed
among them, and a minimum number of edges join two vertices in different subsets. A partition of the graph
into subgraphs leads to a decomposition of the data and/or tasks as'>ociated with a computational problem.
The subgraphs can then be mapped to the processing elements of the parallel computer.

More formally, let G = (N,E, WN, WE) be an undirected graph without self edges or multiple edges
from one node to another. N is the set of nodes, E is the set of edges connecting nodes, W,.,. is the set of
node weights and WE is the set of edge weights. We use the notation INI (or lEI) to denote the number
of elements in the set N (or E). We consider a node n in N as representing an independent task to be
executed, and the weight Wn as a measure of the cost of task n. An edge e between two nodes i and j in E
means that an amount of data W~ must be transferred from node j to node i to complete the overall task.
Partitioning G creates a division of N into P disjoint pieces, N = Nt U N 2u ... U Np , where the nodes in N;
are assigned to the processing element Pi. This partitioning is subject to the optimality criteria below:

• The sums of the weights WN of the nodes n in each N; are approximately equal. Consequently, the
load is approximately balanced across the processors .

• The sum of the weights WE of edges connecting nodes in different No and Nj are minimized. In other
words, the total size of all messages communicated between different processors is minimized.

There are two classes of partitioning heuristics, depending on whether or not we have coordinate infor­
mation for each node of G, such as (x, y) or (x, y, z) coordinates. Coordinates are usually available if the
graph comes from triangulating, or otherwise discretizing a physical domain. For graphs with coordinate
information, the partitioning heuristics are geometric, in the following sense: as'>ume, first, that there are two
coordinates :r: and y, that is, the node lies on the plane. Typically, such graphs have the additional property
that only nodes which are spatially close together have edges connecting them. Then the algorithms seek
either a line or a circle that divides the nodes in half, with (about) half the nodes on one side of the line
or circle and the rest on the other side. All these algorithms work by trying to find a geometric "middle"
of the nodes (there are several definitions of middle) and then pass a line (or plane) or circle (or sphere)
through this middle point. These algorithms completely ignore where the edges are; they implicitly assume
that edges connect only nearby nodes. If the graph satisfies some reasonable properties (which often arise in
finite element meshes), then one can prove that most of these algorithms find good partitions (which means
that they split the nodes nearly in half, while keeping the number of edges connecting different sub-domains
close to a minimum).

The second kind of graph we want to partition is coordinate free, i.e., we have no identification of a node
with a physical point in space. In addition, edges have no simple interpretation, such as representing physical
proximity. These graphs require combinatorial rather than geometric algorithms to partition them (although
combinatorial algorithms may also be applied to graphs with coordinate information). The Kernighan-Lin
(KL) algorithm takes an initial partition of G into N 1 and N2 and iteratively improves it by swapping groups
of nodes between Nt and N2, greedily picking the group to swap that minimizes the number of edge crossings
at each step. In practice, the KL algorithm converges quickly to a (local) optimum, ifit is given a good initial
partition. Most recently, the spectral partitioning algorithm has been introduced, based on the intuition that
the second lowest vibrational mode of a vibrating string naturally divides the string in half.

Finally, many of the above algorithms can be accelerated by using a multilevel technique. The idea is
(1) to replace the graph by a coarser graph with much fewer nodes, (2) to partition the coarser graph, and
(3) to use the coarse partition as an initial guess for partitioning the original graph. The coarse graph may,
in turn, be partitioned by using the same algorithm recursively: a yet coarser graph is partitioned to get a
starting guess, and so on.

5

3.2 The PELLPACK System and Domain Partitioning Software

PELLPACK [HRW+98] is a problem solving environment for solving PDE problems on high performance
computing platforms and a development environment for building new PDE solvers or PDE solver com­
ponents. PELLPACK allows the user to (symbolically) specify a PDE problem, determine the solution
algorithms to be applied, solve the problem, and finally analyze the results produced. The problem and
solution algorithm are specified in a custom designed high level language, through a complete graphical
editing environment. The user interface and programming environment of PELLPACK is independent of
the targeted machine architecture and its native programming environment. PELLPACK adopts the "divide
and conquer" parallel computational paradigm and utilizes the discrete geometry non-overlapping domai.n
decomposition approach for problem partitioning and load balancing. A number of tools and libraries exist
in the PELLPACK environment to support this approach and estimate (specify) its parameters. These
include sequential and parallel finite element mesh generators, automatic (heuristic) domain decomposers,
finite element and finite difference modules for discretizing elliptic PDEs, and parallel implementations of
the sequential ITPACK [KRGB2] linear solver library. The parallel libraries have been implemented in both
the hosted and hostless node programming modules for several multiprocessor platforms using different na­
tive and portable communication libraries. The implementations utilize standard send/receive, reduction,
barrier synchronization and broadcast communication primitives from these message passing communication
libraries. No particular machine configuration topology is assumed in the implementation. In our measure­
ments we use the MPI [GLS94] portable communication library of the parallel ITPACK implementation.
Tn addition, PELLPACK supports a reuse-methodology, referred to as M+, which assumes that the dis­
cretization of the PDE problem is made by an existing sequential "legacy" PDE code. PELLPACK then
uses a parallel machine to solve the system of discrete equations. The parallel solution of the discretized
PDE equations requires a decomposition of the sequentially produced algebraic system. This decomposition
can be made either implicitly obtained through a decomposition of the mesh or grid structures, or explicitly
specified by the user. Then, the partitioned system is down-loaded on the parallel machine. This is the most
widely used methodology, since it allows for the preservation of the most knowledge intensive part of the
code and for speeding up the most computationally intensive part.

In this case study, we evaluate the computational behavior of DP software used in the context of the
PELLPACK parallel processing methodology described above. For this, we take various performance mea­
surements from several modules of the parallel ITPACK linear solver library of a selected population ofPDE
problems on various parallel architectures following the M+ approach. The ten DP algorithms considered
are briefly described in Table 3 and the references cited. For the sake of completeness, we describe the entire
suite of algorithms provided through the DP libraries incorporated into the PELLPACK system in Appendix
A.

Next we describe the benchmark computations and the performance metrics in the database used for the
evaluation of the KDD process.

3.2.1 Benchmark Computations and Metrics for the Evaluation of the DP Software

The computational experiments for this study were performed on an nCUBE/2 and a network of workstations.
The nCUBE/2, is a 64-node system with 4 MBs memory per node. The network of workstations used consists
ofB Spare Station 20s (Model 61) with 32 MBs of memory running Solaris 2.4, connected to both a 10 Mbps
Ethernet and an ATM switch, running at speeds up to 155 Mbps.

The benchmark computations selected for the evaluation of the DP software listed in Table 3 are ,used
to solve the following two simple 3D elliptic PDE problems:

U"r + U yy + U~Z

u"., +uyy + U;:z

(1)

(2)

subject to Dirichlet boundary conditions on five domains. The domains are a cylinder, a union of a cube
with a cylinder, a cube with a hole, an airplane, and the U-object depicted in Figure 2 ((a) the mesh and
(b) rendering of the solution on the mesh).

For the discretization of Eq. I and 2, we apply two different software modules implementing the linear
finite element method. The first is the VECFEM module (see [GS91]) and the second is the native FEM
PELLPACK's software module. The discretized PDE system generated is decomposed, based on a particular

6

(a) (b)

Figure 2: (a) Visualization for the mesh of the U~Object domain and (b) Rendering of the solution on the
m",h

I Acronym I DelIcnptlon I Ref",..,nc" I
Chaco-Inertlll nen, Method from the A , """ HL95c
Chaco-Linear Linear Scheme from the CHACO library HL95c
ChBco-Multilevel. KL Multilevel Kern; han-Lin from the CHACO library HL95c
Chaco- pectrn pcctral parllll0nm from t e A , ''''Y HL95c

etls-Default Multi eve grap panltlomng PMBTISJ ,with
default values cho~e)n by implemento"" (from

rKK9Sclthe METIS library
Native-Inertial Partitioning of the mesh along the Inertia

axis (from the PELL:;ACK native domain
I [WH96jdecompo.ition library

NatlVe-rx,-/,,::, r~tltlonmg of the mean Into a speclhC<l. number
of segmenta along the x_coordinate, y-coorcfmELte,
or z-coordinale (from the PELLPACK native

IWH961domain decomposition library)
PlI.l'ly- oorolno.te lne.....ooromate Sortmg me.t."o.o.partltlons t e

me.h, ~;ng the eoordinate tha~lhllll the widest
IPD961nUllre from the PARTY library

Parly_Farhat The algorithm of Farhat ,s greedy ",nd utilizes a
b",adth_f1l'l1t search of the graph, .tarting from a

, [POS61vertex of minimum dell:"'~ (From the PARTY librn.ry)
Party...."'''' :l·he Gain method IS 0. sImp e g'"':.C<ly strategy

b""",d on adjaeency information for constructing
a balanced pll.l'tjtion (from the PARTY library) [PD96]

Table 3: The ten domain partitioning algorithms used in the context of M+ parallel reuse methodology and
evaluated by the KDD approach

partition of the underlying mesh, and is solved on the selected parallel platform using the M+ approach.
The system is solved using the parallel !TPACK Jacobi CG module.

For the mesh generation process, we use the 3D Geompack [MV92J software package, in which the domain
is defined as a surface triangulation of a 3D domain, where the user specifies a set of parameters that affect
the generated tetrahedral mesh. By varying one of the parameters that relates to the target Dumber of the
generated tetrahedrons in the mesh file, we can produce various meshes with an increasing number of vertices
that are refinements of an arbitrary initial mesh.

We apply the DP algorithms listed in Table 3 to obtain the mesh partitions (see Figure 3). The perfor­
mance metrics used in the experiments conducted are also listed in Table 4.

Extensive presentation of the performance evaluation data for this case study can be found in [VH97].
Here we present a subset of these data in order to evaluate the KDD process for scientific software in general
and for DP software in particular.

7

(e) (f) (g) (h)

Figure 3: (a), (b), (e), (d) : Domain partitions, and (e), (f), (g), (h) : sparsity patterns of their corresponding
linear systems for the Chaco-Inertial, Metis-Deraul!., Native--PxQxS and Party-Coordinate DP algorithms

3.2.2 Performance Metrics for DP software

Several authors [GMT95, KK95h, CHR94] have conclucted numerical experiments to compare DP algorithms
based on both the quality of the partitions produced (the number of edges cut and the load balancing of the
subdomains) and the time taken to compute the partition. Other studies consider the DP problem in the
context of the numerical solution of PDEs on multicomputers and use PDE domain dependent metrics to
compare the various DP algorithms.

The objectives of all DP algorithms considered in this paper include load balancing, minimum interface
length, and minimum subdomain connectivity. Several formulations of these criteria have been proposed and
we adopt the most common one presented in [WH96] where:

1. The load balancing is measured by

(3)

where Ni and Ni denote the number of nodes in subdomains i and j, N. denotes the number of
subdomains and Nn the number of nodes in the mesh.

2. The interface length is measured by

N.

maxL:Gi.i,j = 1, ... , N., i if:. j
,'=1

and maxGi,j, i = 1,.,., N.,j = 1, ... ,N., i if:. j

where G i ,} denotes the number of common edges or nodes between the subdomains i and j.

3. The subdomain connectivity is measured by

max (Nh.i t Gi'i) ,j = 1, ... , N., i #; j
,=1

where Nb,j denotes the number of neighboring subdomains that subdomain j has.

8

(4)

(5)

(6)

I Acronym I Descnptlon I Charactenzatlon I
Numher-of.Subdcmains Number of oubdomnins generated by Integer,

the domain panitiooioll:-aJRor;thm Machine independent
Load-Balancing The maximum difference in the number Integer,

of nod"" of the subdomains Machine independent
Mall'lmum-lnterfac"'Lengtn ~he maxImum number of OUter nooes Integer,

among all the 8ubdcmaine Machine independent
SubdomB.ln-Conneet,v,ty T~e ma"nmum number of nelgobonng Integer,

sllbdomaio. multiplied by the number Muchine independent
of outer nod"" for each subdomllin

uecomp0!ltlon_ ~lme The tIme In seconos, lor an aJgonthrn Real,
to decompose a mesh Machine dependent

Max,mum.:Solvmg_Tlme Mll.l<lmUm tIme In seconds over aJl'
domains solvin the linear system Machine dependent

",peeaup ThIS numoer snOWs now many tImes a Real,
parallel conflguration is faster than Machine dependent
its sequential vern~~n (with respect
to the aolving time

Maxlmum-Decompos,t,on- ~.?~ max,mum tIme >n seco~os OVer
Machine dependentSolving_Time all procell8orn ror decomposing and

8Olvin.o: the problem
~a",mum_Communlcatlon_ M!\.X,mum time >n second" over all "',T,me processorn "pent ror communicntion Machine dependent

purposes, during the SOIUt'IOn of the
linear sy~tem

MllXimum-TottLi-Time Maximum time 10 "econds OVer all ..~,
procellsorn for loading, solving Machine dependent
and Bavin~ the solution

Table 4: Machine independent and machine dependent performance metrics for the evaluation of the DP
algorithms.

In addition to the above machine-independent criteria, we use six machine-dependent ones: (1) the time
taken to compute the partition, (2) the maximum time taken by a processor, for solving its corresponding
part of the linear system, (3) the speedup achieved by the parallel computation, (4) the maximum time
taken for both decomposing the entire domain and solving the linear systems that correspond to each one
of the subdomains, (5) the maximum communication time over all processors, and (6) the maximum total
execution time taken by a processor for initialization, loading of the linear system, solving it and saving the
solution. "Maximum time" is considered to be the execution time of the slowest processor needed to run the
problem in the parallel computation.

4 Implementation of the KDD Process for the DP Software

The implementation of the entire KDD process defined in Section 2 is described in [Hou98], here we describe
only the data mining phase. The performance database for the DP algorithms of Table 3 is organized
into records with respect to each geometric domain and DP algorithm considered. Each record consists of
measurements of the performance metrics defined in Table 4 for a particular machine configuration (i.e.,
number of processors). After the generation of the performance database, a selection phase is applied to the
database for extracting the relevant information which will be used as input to the data mining algorithms.
This phase is implemented in terms of selection, projection, and join queries submitted to the database.
The next step of the KDD process is deciding on the data mining operations and their implementation (i.e.,
algorithms and software).

The applicable data mining operations and techniques are selected based on their ability to satisfy the
following requirements: (a) rank the DP algorithms under evaluation with respect to the performance metrics
and data, (b) predict the computational behavior of the DP algorithms from the performance database, (c)
express the patterns identified in a high level representational form (in order to make it easier for the domain
expert to evaluate the generated knowledge), and (d) deal efficiently with both the numerical and the symbolic
nature of the metrics involved. These four requirements lead us to select the classification approach for the
predictive modeling operation and the so-called rule induction [LS95] and decision tree/graph [Qui86, Koh94]
classification techniques ror its implementation. These classification techniques generate knolVledge in a rorm
that is amenable to inspection and interpretation, i.e., knowledge engineers and domain experts can easily
understand the underlying decision boundaries in the data and take action based upon them. We have

9

selected the three public domain classifiers CN2, ID3, and HOODG described in Section 2 to implement the
data mining phase in this case study.

These data mining algorithms are to identify the patterns that characterize the behavior of the DP
algorithms/machines considered with respect to: (1) the performance of these algorithms, (2) the quality of
the decomposed mesh, and (3) the performance of parallel PDE solvers that utilize the mesh decompositions
generated by the DP algorithms considered. Thus, the data mining algorithm has to search the performance
records corresponding to each PDE domain (mesh) and DP algorithm and identify (classify) those DP
algorithms for which some of the performance measurements are within certain ranges of values of the
performance metrics.

4.1 Application of the Data Mining Algorithms to DP Performance Database

The data mining algorithms ID3, HOODG, and CN2 are given as input 50 records (5 records per DP
algorithm, for a total of 10 DP algorithms) that contain measurements of the performance metrics listed in
Table 4.

Parts of the decision tree generated by the ID3 algorithm for these data is shown in Figures 4, 5. Each
node of the tree contains an integer condition vector C of length 10 (since 10 DP algorithms are in our case
study). Its i-th component indicates the number of records associated with the i-th DP algorithm for a given
domain, for which the values of the performance metrics satisfy all the conditions depicted on the graph
edges that belong to the path from the root of the tree leading to every node.

CCOlllpllSitio ~-Time
.5.5.5. S. S, 5, 5. 5, 5

<= 4.02949988842 ;> 4.02949988842

n SubtrcC tSubtrcC

Figure 4: Root node with the left and right subtrees of the decision tree generated by ID3.

A decision tree can be transformed into a rule set by converting each path of the tree into a rule as follows:
(a) the internal nodes and their output branches are converted into conditions of the antecedent ("if-part")
of the rule; (b) the leaf node is converted into the consequent ("then_part") of the rule. For example, the
conversion of the leftmost path of the tree (Figures 4 and 5), from the root to the leaf, reads as follows: if
the decomposition time for an algorithm is less than 0.46499 and the maximum interface length is less than
or equal to 308 nodes (for the particular domain we are considering) then the algorithm that gives these time
and length characteristics is the 'Wative-PxQxS" algorithm. This transformation is applied to all the paths
from the root to the leaves to uncover very "interesting" patterns. Moreover, we observe that ID3 produces
decision trees with strong classification. This means that their leaves contain performance records from only
one DP algorithm, i.e., only one number from the integer condition vector, which is previously described, is
non-zero for all of the leaves. Although this kind of classification is interesting, frequently, it leads to trivial
patterns (e.g., leaves that describe only one performance record). It would be of much interest, though, to
come up with rules for leaves that cover a maximal number of records, like those that correspond to the two
left-most paths, from the root to the leaves (see Figure 5).

A solution to this problem is to use a discretizer as a wrapper to the ID3 decision tree classifier. In essence,
a discretization algorithm splits the values of a continuous (integer-valued or real-valued) performance metric
into a small list of intervals. This effectively converts continuous metrics into symbolic values (i.e., each
resulting interval is regarded as a discrete value of that metric). Figure 6 shows the decision tree produced by
the ID3 classifier after applying such a discretization pre-processing step. We observe that the discretization
algorithm decomposes the decomposition time variable into five non-overlapping intervals, the maximum
interface length into three non-overlapping intervals, and the maximum decomposition plus solving time
into three non-overlapping intervals. We also observe that the discretization is consistent for all the nodes
that. test the values of a particular discretized metric (the out-going edges are consistently labeled with
the same ranges of values) such as the maximum interface length in Figure 6. Another important point to
notice is that even if the leaves are labeled with only one DP algorithm, they cover performance records

10

<-1II ,:a

<-l'l1lIII:"JII! ,U'-

lHUlUU ULUlUU

Figure 5: Left subtree of the Decision tree generated by ID3. The condition vector C is given at each node.

from certain classes of DP algorithms. This should not be interpreted as a situation where reduced accuracy
has occurred, but as an intentional clustering for some of the DP algorithms. For example, the leaf labeled
as Chaco-Inertial contains records corresponding to Chaco-Linear, Chaco-Multilevel~KL, and Metis-Default
in addition to the Chaco-Inertial records. This is an indication that all of these algorithms behave in a
similar manner with respect to the decomposition time and the maximum decomposition plus solving time
performance metrics.

The output of the HOODG algorithm applied to the DP performance database is illustrated in Figure
7. In general, during the data collection phase, the analyst collects the maximum possible number of
metrics, without knowing in advance whether they are useful for the application domain or not. All the data
mining algorithms considered, including the HOODG algorithm, suffer when irrelevant or weakly relevant
performance metrics [KSD96] are present. Thus, a selection of a subset of performance metrics should be
applied as a pre-processing step to the data mining algorithm. Actually, this step can be applied by the same
program that applies the data mining algorithm. This is done primarily for three reasons: (a) to speed up
the data mining process, by reducing the total amount of data that needs to be considered, (b) to reduce the
number of metrics that the domain expert needs to understand, and (c) to increase the quality of patterns.
The patterns induced by applying the HOODG algorithm are similar to those of the decision tree algorithm.

Finally, we analyze the ordered rule list produced by the CN2 induction algorithm which is shown in
Figure 8. The patterns in this case are quite understandable, since they are directly expressed as "if~then"

statements. The condition vector C is also shown next to each one of the rules. One of the disadvantages
of this algorithm is that it does not allow discretization. As a result, the splitting of metric values is not
consistent throughout the different rules that test the value of the same metric.

11

.0.,,,,

-~'.',J_'."'.'.'-

'>.I'"

"'... ,17.770 ".71M6.0l'"

.-~
0.0.0.0.0.0.0,'.'"

_m

Figure 6: Decision tree generated by ID3 after using a discretization algorithm for the metrics .

• 17,m """"'"'

Figure 7: Decision graph generated by HOODG after using a discretization algorithm for the metrics.

IF 'huilllWll-Interface-Lsngth> 317.50
THEt Algorithm = lative-Inartiu [0 0 0 0 0 6 0 0 0 0]
ELSE IF Decomposition-Time) 36.16
TIfEI Algorithm = Chaco-Spectral [0 0 0 5 0 0 0 0 0 0]
ELSE IF DacOlllposition-Time < 0.46
THE' Algorithm = lative-Pl:ll.r.S [0 0 0 0 0 0 5 0 0 oj
ELSE IF Subdomain-Connectivity (1705.00

AID Decomposition-Time> 6.60
AID MlUiIllWII-ColIID.unication-Time < 6.74

THE. Algorithm = Party-Coordinate [0 0 0 0 0 0 0 5 1 1]
ELSE IF SUbdolllll,in-Connactivity < 1890.60

AID "~imum-Decolllposition-Solving-Time) 24.79
THO Algorithm = Party-Fuhat [0 0 0 0 0 0 0 0 4 0]
ELSE IF Ilaximum-Interface-Length < 207.50

AID llaximum-Decompo8ition~Solving-Tima (15.23
AID 0.73 ("aximumw COIll%llunlcation-Tima < 6.65

THEI Algorithm. Chaco-Inertial [5 0 0 0 0 0 0 0 0 0]
ELSE IF "axlmum-Interface-Lungth < 234.50

AID Decomposition-Tima < 1.39
AID "aximum-Solving-Timu (14.51

THEI Algorithm = "etis-Dufault [0 0 1 0 5 0 0 0 0 0]
ELSE IF Decomposition-Tima < 2.15

AID llaximum-CommuniclI.tion-Tima) 1>.96
THEI Algorithm = Chaco-Linear [0 5 1 0 0 0 0 0 0 0]
ELSE IF DacompoBition-Tima) 4.03
THE' Algorithm" Party-Gain [0 0 0 0 0 0 0 0 0 4]
ELSE
(DEFAULT) Algorithm = Chaco-l'Iultilevel-1L [0 0 3 0 0 0 0 000]

Figure 8: Ordered rule list produced by CN2 induction algorithm.

12

0.0000 0.1650 VERY SHORT
0.1650 0.4650 SHORT
0.4650 - 4.0295 MEDIUH
4.0295 35.145 LOllG
35.145 VERY LOllG

I Range of Values I Symbolic Value I

Table 5: Discretization of the Decomposition Time metric and the corresponding symbolic values.

! Range of Values I Symbolic Value I
0.0 271.0 SHORT
271.0 317.5 MEDIUH
317.5 LOllG

Table 6: Discretization of the Maximum Interface Length metric and the corresponding symbolic values.

5 Analysis of the Metadata Produced by the KDD Process for
the DP Case Study

In this section, we analyze the metadata produced by the KDD process and the data mining algorithms
for the case of DP software. First, we discretize the performance metrics as specified in Tables 5, 6 and
7. Symbolic values are given for the selected ranges of metrics. Then we interpret the output of the ID3
classifier. Specifically, the metadata represented by the decision tree of Figure 6 can be summarized as
follows:

I. The Native-Inertial algorithm produces decompositions with long maximum interface length and very
short decomposition time (fast) for all the meshes considered. This is consistent with the underlying
heuristic used.

2. The Native-PxQxS algorithm exhibits similar behavior. This makes us to conjecture that the Native
PELLPACK library contains the fastest algorithms considered in this study.

3. The Inertial, Linear, and Multileve.l-KL algorithms from CHACO, and the METIS default algorithm
all fall under the same category of algorithms. They are characterized by a medium decomposition
time (reasonably fast algorithms), and a short maximum decomposition and solving time. This char­
acterization implies that they are not too fast, they sacrifice computation time in the decomposition
process, in order to produce high quality partitions of the PDE domain meshes. The Linear method
takes advantage of the ordering of the mesh nodes produced by the mesh generator, while the local
refinement algorithm KL (see Section 3.1) increases the quality of the generated mesh.

4. All the algorithms from the PARTY library are characterized by a long decomposition time and short
interface decomposition length. The latter happens, primarily, because the Helpful Set local parti­
tioning algorithm (see Appendix AA) tries to optimize the interface length quality metric. Note that
no local refinement algorithm is used in the algorithms from the Native PELLPACK decomposition
library.

I Range of Values I Symbolic Value I
0.0000 17.7740 SHORT
17.7740 46.6385 MEDIUH
46.6385 - LOllG

Table 7: Discretization of the Maximum Decomposition plus Solving Time metrics and the corresponding
symbolic values.

13

5. The Spectral Method from CHACO is always characterized by a very long decomposition time. This
is primarily due to the cost of computing the eigenvalues of the Laplacian matrix of the graph that
corresponds to the mesh (see Section 3.1, and Appendix A.l).

The metadata in Figures 5-8 suggest that the patterns uncovered by both ID3 and HOODG (after pre­
processing the data by a discretization technique) and by the CN2 program coincide with the conclusions
derived by studying the raw performance data with the "naked eye" approach [VH97J. Both ID3 and
HOODG algorithms choose: (1) the time taken to decompose the mesh, (2) the maximum interface length,
and (3) the total maximum decomposition and solving time as the most important metrics for comparing
and characterizing the DP algorithms. The pruning performed by these classifiers uses, as a consequence,
only these metrics for building the metadata models.

We also observe that both 103 and HOODG identify almost the same paUerns. Their main difference is
that the graph representation of the metadata induced by HOODG is slightly more condensed (fewer nodes
for the same patterns) than the ID3 decision tree classifier. Moreover all the non-leaf nodes at a given level
of the graph are labeled by the same metric (this is a result of the oblivious property previously defined).
This is consistent with the theoretical behavior of these algorithms.

The information from the ordered rule set produced by CN2 indicates that: a) it uses more metrics to
exhibit a paUern, b) the values of the variables identified can be considered as lower and/or upper bounds
and can be utilized more effectively if they can be correlated with the ranges of values of the corresponding
metrics, and c) the most significant rules (based on the ordering in the rule set) are very similar to those
induced by the decision tree and graph classifiers.

6 Conclusions

We have presented a knowledge discovery in databases (KDD) methodology to automatically generate meta­
data (i.e., knowledge rules) from a performance database associated with the domain partitioning (DP)
software integrated in PELLPACK {HRW+98]. This metadata are used to characterize the computational
behavior of DP software on two parallel platforms. The data mining part of the KDD methodology is
implemented by three classification algorithms (ID3, HOODG, and CN2). The performance database for
the DP algorithms was generated from a population of elliptic PDE problems and PELLPACK solvers by
varying the PDE domain, mesh, and DP algorithm. This case study shows that (a) the three data mining
algorithms considered are qualitatively and quantitatively equally effective, (b) the knowledge discovered
for DP algorithms by the proposed KDD process is quantitatively similar to that deduced by purely exper­
imental observations [VH97], and (c) the KDD process is not limited by the size of the performance data
and its dimensionality. We note that the KDD process and the three data mining algorithms considered are
independent of the nature of the performance database. Thus, the process can be adopted for the evaluation
of any domain of scientific software to predict its performance over a well defined domain of applications and
computational environments.

References

[BRH79] Ronald F. Boisvert, John R. Rice, and Elias N. Houstis. A system for performance evaluation
of partial differential equations software. IEEE Transactions on Software Engineering, SE­
5(4),418-425,1979.

[Chr92] N. P. Chrisochoides. On The Mapping of Partial Differential Equation Computations onto
Distributed Memory MIMD Parallel Machines. PhD thesis, Department of Computer Sci­
ences,Purdue University, 1992.

[CHR94] N. P. Chrisochoides, E. N. Houstis, and J. R. Rice. Mapping Algorithms and Software Environ­
ments for Data Parallel PDE Solvers. Special Issue of the Journal of Parallel and Distributed
Computing on Data-Parallel Algorithms and Programming, 21(1):75-95, 1994.

[CN89] P. Clark and T. Niblett. The CN2 Induction Algorithm. Machine Learning, 3(4):261-283, 1989.

14

[FHS96] U. Fayyad, D. Haussler, and P. Stolorz. Mining Scientific Data. Comm. ACM, 39(1l):51-57,
1996.

[FPSS96] U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Mining to Knowledge Discovery:
An Overview. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors,
Advances in Know/edge Discovery and Data Mining, pages 1-34. AAAI Press/MIT Press, 1996.

[Gia91} J. C. Giarratano. CLIPS User's Guide, Version 5.1. NASA Lyndon B. Johnson Space Center,
1991.

[GLS94] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the
Message Passing Interface. MIT Press, October 1994.

[GMT95] John R. Gilbert, Gary L. Miller, and Shang-Hua Teng. Geometric Mesh Partitioning: Imple­
mentation and Experiments. In Proc. of 9th International Parallel Processing Symposium, pages
418--427. IEEE Computer Society Press, 1995.

[GS91] 1. Gross and P. Sternecker. The Finite Element Tool Package VECFEM. UnIversity ofKarlsruhe,
1991.

[HF91] M. T. Heath and J. E. Finger. Visualizing the Performance of Parallel Programs. IEEE Software,
8(5P9-39, 1991.

[HHR+91] C.E. Houstis, E.N. Houstis, J.R. Rice, P. Varadaglou, and T.S. Papatheodorou. Athena: A
Knowledge Based System for / /ELLPACK. In E. Diday and Y. Lechavallier, editors, Symbolic­
Numeric Data Analysis and Learning, pages 459-467. Nova Science, 1991.

[HL93] B. Hendrickson and R. Leland. An Improved Spectral Load Balancing Method. In SinDvec et al.,
editor, Proc. 6th SIAM Conf. Parallel Processing for Scientific Computing, pages 953-961. SIAM
Pub., Philadelphia, 1993.

[HL95aJ B. Hendrickson and R. Leland. An Improved Spectral Graph PartitiDning Algorithm for Mapping
Parallel Computations. SIAM J. Sci. Computing, 16(2):452-469,1995.

[HL95bJ B. HendricksDn and R. Leland. A Multilevel Algorithm for Partitioning Graphs. In Proc.
Supercomputing '95. ACM, 1995.

[HL95c] B. Hendrickson and R. Leland. The Chaco User's Guide, Version 2.0. Sandia National LabDra­
tories, July 1995.

[HDu98] E. N. Houstis. PYTHIA II: A Recommender System fDr High Performance Software/Hardware
Artifacts. Technical Report TR-98-031, Dept. Compo Sci., Purdue University, 1998.

[HRV90] E. N. Houstis, J. R. Rice, and R. Vichnevetsky, editors. Intelligent Mathematical Software
Systems. North-Holland, 1990.

[HRV92] E. N. Housl.is, J. R. Rice, and R. Vichnevetsky, editors. Expert Systems for Scientific Computing.
North-Holland, 1992.

[HRV94] E. N. Houstis, J. R. Rice, and R. Vichnevetsky, editDrs. Third International Conference on
Expert Systems, volume 36 of Special triple issue Df. Math. Compo Simulation, 267-503, 1994.

[HRW+98] E.N. Houstis, J.R. Rice, S. Weerawarana, A.C. Cat.lin, M. Gaitatzes, P. PapachiDu, and K. Wang.
Parallel ELLPACK: A Problem Solving Environment for PDE Based ApplicatiDns on Multicom­
puter PlatfDrms. ACM Ihms. Math. Soft., 24(1):30-73, 1998.

[J WR+96] A. Joshi, S. Weerawarana, N. Ramakrishnan, E.N. Houstis, and J.R. Rice. Neuro-Fuzzy Support
for PSEs: A Step Toward the Automated Solution of PDEs. IEEE Computational Science and
Engineering, voI.3(1):44-56, 1996.

15

[KK95a] G. Karypis and V. Kumar. Analysis of Multilevel Graph Partitioning. Technical Report TR
95-037, Department of Computer Science, University of Minnesota, 1995.

[KK95b] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning Irregular
Graphs. Technical Report TR 95-035, Department of Computer Science, University of Minnesota,
1995.

[KK95cJ George Karypis and Vipin Kumar. METIS Unstructured Graph Partitioning and Sparse Matrix
Ordering. University of Minnesota, Department of Computer Science, August 26, 1995.

[Koh94] Ron Kohavi. Bottom-up Induction of Oblivious Read-Once Decision Graphs: Strengths and
Limitations. In Proc. 12th National Conference on Artificial Intelligence, pages 613-618, 1994.

[KRG82] D. Kinkaid, J. Respess, and R. Grimes. Algorithm 586: Itpack 2c: A Fortran Package for
Solving Large Linear Systems by Adaptive Accelerated Iterative Methods. ACM Trans. Math.
Soft., 8(3P02-322, 1982.

[KSD96] Ron Kohavi, Dan Sommerfield, and James Dougherty. Data mining using MLC++: A machine
learning library in C++. In Tools with Artificial Intelligence. IEEE Computer Society Press,
1996. http://vi/i/ . sgi. com/Technology/mlc.

[LS95] P. Langley and H. A. Simon. Applications of Machine Learning and Rule Induction. Comm.
ADM, 38(11)055-64, 1995.

[MF90] S. Muggleton and C. Feng. Efficient Induction of Logic Programs. In S. Arikawa, S. Goto,
S. Ohsuga, and T. Yokomori, editors, Proceedings of the First International Conference on Al­
gorithmic Learning Theory, pages 368-381. Japanese Society for Artificial Intelligence, Tokyo,
1990.

[MV92] S. A. Mitchell and S.A. Vavasis. Quality Mesh Generation in Three Dimensions. In Proc. ACM
Computational Geometry Conference, pages 212-221. ACM Press, 1992.

[PD96] R. Preis and R. Diekmann. The PARTY Partitioning-Library, User Guide - Version 1.1. Uni­
versity of Paderborn, Sep. 1996.

[Qui86] J. R. Quinlan. Induction of Decision Trees. Machine Learning, 1(1):81-106, 1986.

[VH97] V. S. Verykios and E. N. Houstis. Parallel ELLPACK 3D Problem Solving Environment. Tech­
nical Report TR-97-028, Dept. Compo ScL, Purdue University, 1997.

[WH96] P. Wu and E. N. Houstis. Parallel Adaptive Mesh Generation and Decomposition. Engineering
with Computers, 1(12):155-167, 1996.

[WHR+96] S. Weerawarana, E.N. Houstis, J.R. Rice, A. Joshi, and C.E. Housti:>. PYTHIA: A Knowledge
Based System to Select Scientific Algorithms. ACM Transactions on Mathematical Software,
22(4)0447-468,1996.

[Wu95] Poting Wu. Parallel Electronic Prototyping of Physical Objects. PhD thesis, Department of
Computer Sciences, Purdue Universi~y, 1995.

A PELLPACK Domain Partitioning Software

A.I Native PELLPACK Decomposition Software

The native PELLPACK decomposition algorithms are described extensively in [WH96, Wu95]. Here, we
pr~ent a brief overview. The PxQxS algorithm splits the domain along the main axis (cartesian or polar),
after sorting the coordinates of the nodes (FD mode), or the center of the mass of the elements (FEM
mode). The Inertia Axis algorithm keeps splitting the domain into subdomains along the symmetry axis
defined by the coordinates of the nodes (FD), or the center of mass of the elements (FEM), until the

16

specified number of subdomains is reached. The Recursive Spectral Bisection algorithm uses eigenvector
based spectral search. Nodes are visited in order of increasing eigenvector values of the Laplacian matrix of
the graph. The Neighborhood Search algorithm splits the initial mesh based on a neighborhood traversal
scheme. Thereafter, the subdomains are gathered on the basis of the searching order defined. The objective
of a data clustering algorithm is to group the mesh points into clusters, such that the points within a cluster
have a high degree of "natural association" among themselves, while the clusters are relatively "distinct"
from each other.

A.2 CHACO Graph Partitioning Software

The CHACO 2.0 version of CHACO [HL95c, HL93, HL95a, HL95b] library integrated into PELLPACK ad~

dresses three classes of problems. First and foremost, it partitions graphs using a variety of approaches with
different properties. Second, it intelligently embeds the partitions it generates into several different topolo­
gies. The topologies the code considers are those of the common parallel architectures, namely hypercubes
and meshes. Third, it can use spectral methods to sequence graphs in a manner that preserves locality.
The five classes of partitioning algorithms currently implemented in CHACO are simple, spectral, inertial,
Kernighan-Lin(KL) and multilevel-KL. Each of these algorithms can be used to partition the graph into
two, four or eight sets at each stage of a recursive decomposition. KL 1s considered to be a local refinement
technique, while the other methods are global partitioning methods. CHACO allows the output of any of
the global methods to be fed into a local method. It also allows a partition to be read from a file and be
refined with a local method.

A.3 METIS Unstructured Graph Partitioning

The METIS 2.0 version of METIS software library [KK95c] is a set of programs that implement the various
algorithms described in [KK95a, KK95b]. The basic idea is to use the multilevel graph partitioning, that
is the graph G is first coarsened down to a few hundred vertices, then a bisection of this much smaller
graph is computed, and finally this partition is projected back towards the original graph (finer graph), by
periodically refining the partition. The coarsening phase is accomplished by finding a maximal matching
and by collapsing together the vertices that are incident on each edge of the matching. The next phase of
the multilevel algorithm is to compute a minimum edge-cut bisection of the coarse graph, such that each
part contains roughly half of the vertices of the original graph. Since, during coarsening, the weights of
the vertices and edges of the coarser graph are set to reflect the weights of the vertices and edges of the
finer graph, the graph from the coarsening process contains sufficient information to intelligently enforce
the balanced partition and the minimum edge-cut requirements. During the last phase, the partition of
the coarsest graph is projected back to the original graph by going through the sequence of graphs created
during the coarsening process. Since the projected graph is finer, it has more degrees of freedom that can
be used to further improve the partition, and thus, decrease the edge-cut. Hence, it may still be possible to
improve the projected partition by local refinement heuristics.

A.4 PARTY Partitioning Library

The PARTY partitioning library [PD96J tries to solve the graph partitioning problem, and its goal is (a) to
provide the user with several partitioning methods of different character, (b) efficient implementations to
guarantee high performance, (c) a variety of generalization of the methods to reflect the specific constraints of
the application more precisely, and (d) a simple interface which guarantees an easy to use as well as a strong
control over the methods. Each partitioning algorithm in the PARTY library, as a first step, applies a global
heuristic to construct an initial partition 11"1' In the second step, a local heuristic can be applied to construct a
partition 11"2 from the partition 7l"1. We list the global methods implemented in PARTY. The Optimal (OPT)
method produces an optimal result, but has an exponential run time behavior. The heuristic methods Linear
(LIN), Scattered (SCA) and Random (RAN) are exclusively depending on the vertex list, whereas the Gain
(GAl) and Farhat (FAR) methods take the adjacency information into account. Coordinate information is
needed by the Coordinate Sorting (COO) method. Although a global partitioning method already produces
a balanced partition, local methods try to improve the cut size. Most local partitioning methods were
originally developed for improving graph bisections. The two local partitioning methods in PARTY are: the

17

Kernighan-Lin heuristic and the Helpful-Set method which is based on local rearrangements. The PARTY
library offers the option of either partitioning the graph into two parts and then applies recursively the same
procedure (recursive mode) until the required number of partitions has been reached, or partitionins the
graph into the specified number of parts in one step (direct mode).

18

	A Knowledge Discovery Methodology for the Performance Evaluation of Scientific Software
	Report Number:
	

	tmp.1307986960.pdf.nWQVz

