
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1997

Exploiting And-Or Parallelism in Prolog: The OASys Computational Exploiting And-Or Parallelism in Prolog: The OASys Computational

Model and Abstract Architecture Model and Abstract Architecture

I. P. Vlachavas

Report Number:
97-033

Vlachavas, I. P., "Exploiting And-Or Parallelism in Prolog: The OASys Computational Model and Abstract
Architecture" (1997). Department of Computer Science Technical Reports. Paper 1370.
https://docs.lib.purdue.edu/cstech/1370

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

EXPLOITING AND-OR PARALLELISM IN PROLOG:
THE OASYS COMPUTATIONAL MODEL

AND ABSTRACT ARCIDTECTURE

I. P. Vlachavas

CSD·TR 97-033
June 1997

Exploiting And-Or Parallelism in Prolog:

The OASys Computational Model and Abstract Architecture

I. P. Vlachavas l

Department of Informatics, Aristotle University ofThessaloniki, 54006 Thessaloniki, Greece

E-mail: vlahavas@csd,auth.gr, URL: http://www.csd.auth.grf-plkl

Abstract - Different forms of parallelism have been extensively investigated over the

last few years in logic programs and a number of systems have been proposed. OASys

is an experimental parallel Prolog system that exploits and~or-parallelism and

comprises a computational model, a compiler, an abstract machine and an emulator.

OASys computational model combines the two types of parallelism considering each

alternative path as a totally independent computation which consists of a conjunction

of determinate subgoals. It is based on distributed scheduling and supports

recomputation of paths as well as stack copying. The system features modular design,

high distribution and minimal inter-processor communication. This paper presents

briefly the computational model and describes the abstract machine discussing data

representation, memory organization, instruction set, operation and synchronization.

Finally perfonnance results obtained by the single~processor implementation and the

multiple-processor emulation are discussed.

Keywords: Prolog, Abstract Machine, And-Dr-Parallelism, Stack Copying,

Recomputation

1. INTRODUCTION

As parallel processing technology has reached a stage where multiprocessors are being

marketed as workstation machines, considerable effort has been devoted to the exploitation of

parallelism in logic programs and the development of parallel Prolog systems for multiprocessor

[Currently on leave at: Dcparunent of Computer Sciences, Purduc University, West Lafayeuc, IN 47907

vlachava@cs.purdue.cdu

- 2-

architectures. The Prolog execution model is sequential and is oriented towards Von Neumann

architectures. The computation proceeds by the successive applications of a resolution

mechanism combined with a top down, left to right search strategy. The search space can be

nonnally represented by an and-or tree, where and-nodes represent the body goals of a clause and

or-nodes represent the alternative clauses matching a body goal.

The motivation for parallel evaluation of logic languages comes from attempting to exploit

concurrently these and w and or-nodes of the search tree. The two main types of parallelism is Of­

parallelism and and-parallelism. The fonner is exploited when alternatives clauses matching a

goal are evaluated in parallel while the later is exploited by solving the goals of a clause in

parallel. The second type is more complicated because of inter-dependencies among the different

goals. Recently there has been considerable interest in exploiting both and- and or-parallelism in

logic programs.

OASys (Or/And System) is a different approach to implementing full and-or parallelism

while retaining the full Prolog semantics. It efficiently implements or-parallelism by viewing the

search space as many independent and detenninistic computations which rarely need to

communicate. In addition, this feature provides the ability of exploiting the deterministic paths of

the proof in an and-parallel way.

Concerning the parallel Prolog implementations, most of the research has focused to shared

memory machines, mainly due to the ease of the runtime environment implementation as well as

the low communication cost. From the other hand, message passing machines are scalable and

large scale mUltiprocessors are commercially available.

OASys aims towards an architecture in which the processing elements perfonning the Of­

parallel computation, possess their own address space while other simple processing units are

assigned with and-parallel computation and share the same address space. Communication is

limited only to scheduling operations, i.e. allocation of work to available processing elements.

The later is accomplished in two different ways: recomputing the alternative path or copying the

computation state.

This paper introduces the OASys computational model [Vlahavas et aI., 1996] and describes

the design of an abstract machine that realizes this model and allows efficient compiled parallel

execution of logic programs on multiprocessor architectures. The abstract machine, is abstract in

the sense that certain details of design are left to the implementation stage. One of the main

objectives of this research was to develop a general system for execution of logic programs that

runs on a variety of parallel machines.

- 3 -

In the rest of the paper, section 2 outlines the main approaches for parallel execution of logic

programming. Section 3 presents briefly the proposed execution model. Section 4 describes the

abstract architecture in terms of data areas, registers and instruction set. Section 5 illustrates some

performance results while section 6 concludes the paper and outlines the directions for further

research. Appendix contains an example of a compiled Prolog program.

2. RELATED WORK

A number of approaches have already been proposed for parallel execution of logic

programming languages [Gupta, 1994J, but the bulk of research has dealt with either Of­

parallelism or and-parallelism.

In principle, or-parallelism is easy to implement since different paths of the or-parallel tree

are independent of each other. However, in practice, implementation of or-parallelism is difficult

due to sharing of variables between paths. The main problem in implementing or-parallelism is

the efficient representation of multiple environments for storing the multiple bindings of the same

variable produced by different paths. A number of methods have been proposed for environment

representation. We can distinguish three main approaches:

• Shared environment, where processors share the same address space while the binding

method records the different bindings to an appropriately defined data structure [Ciepielewski

et al., 1983, Warren, 1984, Lusk et a1., 1990, Delgado-Rannauro et al., 1991].

• Environment copying, where processors are independent and have their own copy of the

environment in which they are currently working on [Ali and Karlsson, 1992, Gupta et aI.,

1994].

• Recomputation, where processors view of the search space as totally independent

computations without having to communicate with others at all [Clocksin, 1987, Araujo and

Ruz. 1994, Mudamb! aud Schimpf, 1994, Gupta and Hennenegildo, 1993].

The main problem in implementing and-parallelism is the handling of common variables

between subgoa1s. The main approaches to implement this kind of parallelism have been the

following:

• Independent and-parallelism, where processors work in parallel only when the runtime

bindings of the variables of two or more subgoals are such that are independent of one

another [Hermenegildo and Green, 1990, Lin and Kumar, 1991, Pontelli et a1., 1995].

•

-4-

Dependent and-parallelism, where processors work in parallel until one of them accesses the

common variable applying then a priority scheme [Sherr, 1992] or work in a producer­

consumer way, communicating through the common variables.

This later approach, called also Stream And-parallelism, is adopted by the Committed Choice

Non-Detenninistic languages [Clark and Gregory, 1986, Veda, 1986] and exploits and-or­

parallelism through explicit language syntax and semantics.

The exploitation of and-Of-parallelism in a single framework, is difficult to implement due to

the overheads introduced by both types of parallelism. In practice, it is more efficient to combine

Of- with Independent and-parallelism [Baron et aI., 1988, Araujo and Ruz, 1994, Gupta et al.,

1994].

Andorra-I [Warren, 1990] supports both dependent and-parallelism, by executing first the

determinate goals in parallel, and or-parallelism, stemming from the non determinate goals. That

is when there is no determinate computation available, the leftmost goal is reduced in an or­

parallel way.

3. OASYS COMPUTATIONAL MODEL

OASys approach imposes a different and much simpler computational model aiming towards

higher performance. It exploits both or-parallelism and dependent and-parallelism respectively

considering the search space as independent or-parallel branches consisting of deterministic

conjunctions. This, in contrast to Andorra model, allows computation to proceed freely without

any need for performing determinacy checking and suspending any non-determinate goals.

The search space in Prolog, can be normally represented by an and-or tree, where and-nodes

represent the body goals of a clause and or-nodes represent the alternative clauses matching a

body goal. In OASys, the search space can be represented by a tree where the nodes, called V­

nodes, denote the unifications between the calling predicates and the heads of the corresponding

procedures. A link between two V-nodes indicates a sequence of procedure calls as it is specified

by the program. Figure 1 shows a Prolog program and its corresponding search tree as it is

represented in OASys .

In Prolog, a node in the execution tree has already produced the variable bindings through

unification. In OASys, unifications in the V-nodes are in progress while new V-nodes are

- 5-

continuously produced, i.e. the V-nodes of the same path are executed concurrently. This has the

effect that a path containing V-nodes may be speculative, i.e. some of the V-nodes generated may

not have existed in the corresponding Prolog execution.

OASys supports or-parallelism by searching simultaneously different paths of the search tree.

It also supports and-parallelism by executing in parallel the V-nodes belonging to the same path.

Execution of a path tenninates either when all links are successful (a solution is found), or one

link is unsuccessful (failure in conjunction), or unification in an V-node fails (mismatch). A link

is called successful if the unifications performed in the two V-nodes produce consistent bindings,

or unsuccessful otherwise.

4. THE OASys ABSTRACT MACIDNE

OASys computational model adopts quite naturally to a hybrid multiprocessor in which parts

of the address space are shared among subsets of processors, as for example in a system

containing multiple shared-memory multiprocessors connected by a message passing local

network (figure 2).

The OASys abstract machine is a distributed (local-memory) multiprocessor system,

employing a group of Processing Elements (PEs) each one of which executes a different path of

the search tree (orRparallelism). Every PE could be a natural host for a team of processors sharing

a common address space executing in parallel the U-nodes belonging to the same path (and­

parallelism).

OASys executes compiled code. The source Prolog program is compiled in two codes,

namely the main code which represents the definitions of clauses and the Compiled Clauses

Dependency (CCD) code produced by the abstract interpretation of the Prolog program. During

the startup phase, both of them are distributed to all PE memories. The machine's main features

are:

• Efficient and-or-parallel execution of Prolog.

• Modular design.

• Simple mechanism for binding shared variables in and-parallelism.

• Simple synchronization mechanism.

• High distribution, i.e. no shared resources.

• Limited inter-PE communication.

- 6-

• Efficient decentralized scheduling.

In the following sections an overview of the PE design, the execution scheme and the various

components of the abstract machine, are presented.

4.1 The OASys Processing Element Overview

The main principles of PE design are the use of multiple functional units that operate

concurrently and the partitioning of memory to increase the memory bandwidth (figure 3). The

units have specialized hardware that enables them to execute a particular set of tasks efficiently.

In order to reduce execution time and balance the processor workload, a special attention has been

given in the design of the indexing mechanism and the work-scheduling algorithm. These two

operations take place concurrently with the execution of the U-nodes in a PE in a producer­

consumer way, communicating through a common work-pool.

Each PE passes through three phases of operation: preprocessing, scheduling and execution.

A PE starts generating choices by executing the CCD code (preprocessing phase) and passes them

to the scheduling unit which decides whether available work could be shared with other PEs

(scheduling phase). The PE's engine works concurrently by consuming the choices passed from

the scheduling unit (execution phase). The sequence of choices are used as directives in order to

construct the sequence of U-nodes which in turn are supplied to the engine and assigned to

special processing units (And Processing Units or APUs) which work in parallel.

So each PE consists of five main parts: a preprocessor for indexing operations, a scheduler for

scheduling and communication operations, an engine for the execution of U-nodes, nine memory

modules and an interconnection network (figure 3). The units of a PE exchange data using the PE

Communication bus while they communicate with the memory modules via an interconnection

network. In the following, theses parts are described analytically.

4.1.1 The Preprocessing Unit

This unit executes the CCD code generating a sequence of choice points along a path which

are then passed to the scheduling unit. The CCD code is an abstract interpretation of the Prolog

program and maps each Prolog clause to its actual address in main code together with the index

table entry for every body subgoal.

-7-

For each procedure in the program there exists an index table called Procedure Index Table

(PIT). The entries of a PIT contain pointers to the clauses of a procedure as well as tags. A tag

specifies the data type of the first argument of the head predicate of a clause (variable, functional

tenn, list, atom, integer, real and nil).

A call to a predicate is represented by a PIT address together with the type of its first

argument. Execution of the call is actually a search in the corresponding PIT to find a clause with

a matching data type. If only one matches, the call is detenninistic. Otherwise we have a choice

point and one of the alternative addresses is sent to the engine whereas the fate of the others is

decided by the scheduler.

Each Prolog clause: Hi: - Bl, B2, ..., Bn is represented in the CCD code notation a:-;:

Ci: Tl(ArgTypeJ), 12(ArgType2), ..., Tn(ArgTypeN), reh'm.

where Ci is the address of the clause in the CCD code used to derive the actual address of the

clause in the main code, Tj is the address of the index table of Bj, and ArgTypej is the data type

of the first argument of Bj. "Return", denotes the end of the clause.

The preprocessor's execution mechanism, initially compares the ArgType (tag) of the

subgoal's first argument with the tag attached in PIT's location Ti and then gives access to the

corresponding clause.

The Procedure Index Table and the CCD code reside in a distinct memory area (the CCD

area) of every PE. The CCD code for the N queens program together with the corresponding PITs

are given in the appendix.

4.1.2 The Scheduling Unit

This unit implements the scheduling strategy of the OASys and communicates with the other

PEs. The different paths of the search tree may be distributed to idle PEs. This unit decides

whether it will assign the alternative paths to other PEs (or-parallel execution) or keep them for

its own engine (sequential execution).

Each scheduling unit maintains a table of the PEs with available work and can be found in

one of the following fOUf states:

i) It has available work (unexplored paths):

It informs all the other PEs and continues executing its current path.

ii) It is asked, by another PE, to give work:

• It is locked against other requests,

- 8-

• it simulates failure until the nearest to the root alternative (this decreases the amount of

information transmitted),

• it transmits the appropriate information,

• if there is no more available work, it informs the other PEs accordingly in order to update

their tables,

• it unlocks and continues executing its current path.

iii) It is asked, by its corresponding Engine, to give work. This situation arises when the Engine

completes the execution of its current path either successfully or not.

• It is locked against other requests,

• it backtracks to the most recent choice point, if any.

• if there is no more available work, it informs the other PEs accordingly in order to update

their tables,

• it unlocks and continues executing its new path.

IV) Its work is exhausted:

It is declared as idle, consults its table and requests work from another PE (scheduling unit).

If the other scheduling unit is locked, it requests from another one.

The current implementation supports two possible ways of work distribution which IS

determined at compile time:

• Send the links followed so far from the root to the node and force the other PE to recompute

that specific path and continue execution with one alternative.

• Copy the computation state of that node and let the other PE to continue execution with one

alternative. Each PE has an identical but independent logical address space so that stack

portions can be copied without relocating any pointers.

Besides the above infonnation, the scheduling unit sends in both cases a CCD code address

associated to the specific node, to be used by the preprocessing unit as a starting address to

produce the choices for the rest of the path.

4.1.3 The Engine

The engine consists of a work pool, a control unit and a number of special processing units

(APVs) that operate in parallel sharing a common memory.

The work pool accumulates choices supplied by the scheduling unit. The control unit

executes the machine instructions (main code), constructs V-nodes taking directives from the

-9-

work pool, and distributes them to the APUs. A V-node is represented by a tuple of the form [Gi,

Ci] where Gi is a subgoal and Ci is the head of a clause which has the same name and arity with

Gi.

The APUs receive the addresses of a subgoal and the head of the corresponding clause and

perform the unification operation efficiently. Every APU is equipped with an argument

prefetching unit (not shown in the figure) which fetches and buffers arguments from the memory

while the corresponding APU unifies the previous arguments.

The instruction set is described later in this section while an example IS given in the

Appendix.

4.1.4 Memory Organization

Since Prolog execution is memory intensive, a high bandwidth access to memory is required.

With parallel operation of multiple units this requirement is even greater. In order to achieve as

much parallelism of the units operation as possible, the address space of each PE is partitioned

into nine distinct segments. Each segment contains only one kind of objects and there is no

sharing among them. The segments are mapped into nine separate memory modules that can be

accessed in parallel. The memory modules of a particular PE are shown in figure 3.

The Program area contains the compiled Prolog program (main code) with a symbol table

containing all constants, functors and predicate names. The Head and Goal areas store the

arguments of the head and the body of the clauses respectively. The Environment stack is used for

building environments. The Heap (or Copy stack) stores the structures created by unification. The

Trail stack contains state information of goals still to be executed, i.e. information about the

search tree. The Backtracking stack contains state information to be restored upon backtracking

and the Reset stack contains the addresses of the variables that must be unbound during

backtracking.

-10-

4.2 The OASys Processing Element Architecture

4.2.1 nata Types

OASys supports 16 data types of data arguments which result in a better indexing of clauses

and reduces the unification time. They are grouped in fOUf categories: variable, constant,

functional term and list (Table 1).

Variable data types are used to represent Prolog variables and are distinguished in six kinds.

Void variable (VVAR) is a variable with a single occurrence in the clause. Temporary variable is

any variable that is not void and occurs only in the head of the clause or in a single goal in the

body. TFVAR and TBVAR denote the first and a subsequent occurrence of a temporary variable

respectively. Skelet variable (SVAR) is any variable that is not void or a temporary variable.

During a procedure call a number of cells are allocated in the Environment stack which

correspond to the skelet variables of the clause and are declared as free variables (FVARs).

BVAR is a FVAR or TFVAR which, during unification, has been bound to another Prolog term.

Constant data types represent the Prolog constants, i.e. Atom, Integer, Real and Nil.

Functional Term and List data types are used to represent the Prolog structures. They are

distinguished in three categories: i) Ground (GFrERM, GLIST), if they contain no variables, ii)

Source (SFrERM, SLIST), if they are non ground and reside in the Program area and iii) Copy

(CFrERM, CLIST), if they are non ground and reside in the Copy stack (Heap) This distinction

gives the possibility of different structure handling. The Ground structures are represented in a

structure sharing manner while the rest in structure copying.

4.2.2 The Register Set

The set of PE registers can be divided, according to their use, in three groups. There are

registers to control the computation flow, stack pointers to access the different memory areas and

a set of registers to handle the process of unification and parameter passing in APUs (Table 2).

The Program Counter (PC) points to the next instruction to be executed in the program area.

The TE, IT, TH, TB and TR registers, point to the top of the environment stack, trail stack, heap,

backtracking stack and reset stack respectively. The stack pointers, except TB, and the CA and

CE registers represent the machine state that must be saved into the backtracking stack in the case

of a choice point.

- 11 -

The Call element address (CA) points to the beginning address of the goal arguments in the

goal area. The Call environment (CE) and the Head environment (HE) point to the environments

of the clauses to which the goal and the head belong.

The contents of these three registers together with the address of the head arguments of a

clause (incorporated in the syntax of the UNIFY instruction) are sent to an APU (where are stored

into local registers) to perfonn the unification of a goal and the head of the corresponding clause.

4.2.3 The Instruction Set

The instruction set is broadly based on the APIM [Vlahavas and Kefalas, 1993]. It includes

only one unify instruction, it offers a simplified compilation process and allows the parallel

operation of the PE's various units. The instruction set reflects specialized operations that

perform clause control, indexing and construction of U-nodes. It also provides a mechanism to

implement arithmetic and other built~in operations.

The OASys instruction set differs from other implementations III that is smallest and of

higher level and mainly in that it allows the parallel execution of three distinct operations, namely

the clause control, the indexing and the unify operation.

The table driven indexing scheme of clauses, facilitates the representation of the search tree

allowing the sharing of paths among different PEs (or-parallelism), permits the parallel operation

of the preprocessing unit with the other units of a PE and requires only two kinds of simple

indexing instructions, one for the detenninistic goals and one for the non deterministic ones.

The data flow design philosophy of the APUs, permits their efficient parallel operation (and­

parallelism), leads to a simplified architecture design and requests a single unify instruction for

the implementation of unification.

The instructions are grouped in four categories, i.e. procedural, indexing, the unify and

miscellaneous instructions. They are listed, (except miscellaneous) in Table 3.

The procedural instructions deal with clause control and environment management. These

are:

• CRENV N : This is the first instruction of every clause having N skelet variables. It allocates

space in the environment stack for the skelet variables of the clause, updating the contents of

the HE register..

- 12-

• PROCEED: This instruction terminates a fact and transfers control to the next goal that

remain to be executed. If the goal executed was the last one of the clause (instruction EXECL

or TRYL), the rewind operation takes place (see REWIND instruction).

• WIND: This instruction terminates the head of every clause that is not a fact. It saves state

infonnation of the suspended goals into the Trail stack and updates the contents of CE register

copying the contents of the HE register into it.

• REWIND: This instruction terminates the final goal in the body of a clause. It is used to

retrieve the state (from the Trail stack) of the goal which is the continuation of the currently

executed goal. It can be omitted if the previous instruction is the EXECL or the TRYL

instruction.

• FAIL: This instruction corresponds to a goal "FAIL" in the body of a clause. It causes the

termination of the path execution and signals back to the scheduling unit requesting new

work.

• ESCAPE N, Gi : This instruction provides a mechanism to support operating system calls and

built-in operations that cannot be realized with the existing OASys instruction set. These

operations are implemented in a low level instruction set (of the host machine) and are

invoked by the ESCAPE instruction via the address N of the corresponding routine. Gi is the

address of the arguments to which the operation will take place.

The indexing instructions limit the amount of search required to solve a query for a given

program implementing the indexing mechanism. In the description that follows, Ci and Gi denote

a pointer into the Program area and Goal area. respectively.

• EXEC 0, Gi : This instruction represents a deterministic goal. It sets the Program counter to

point to the address (Ci) of a clause with head predicate name and first argument that match

the goal's predicate name and it's first argument. Gi is the address of the goal's first argument.

• EXECL Ci, Gi : This instruction represents a deterministic goal which is the last one in the

body of a clause. It's operation is identical to the above described with the difference that it

affects the operation of the PROCEED instruction.

• TRY Gi : This instruction represents a non deterministic goal. It stores the address of his first

argument (Gi) into the CA register, it fetches an address from the work pool and stores it into

the Program Counter. This address points a clause with head predicate name and first

argument that match the goal's predicate name and it's first argument. The instruction checks

also the work pool for alternative addresses (this is actually an indication sent by the

scheduling unit) and if exist, it saves the current machine state into the Backtracking stack.

- 13 -

• TRYL Gi : This instruction represents a non deterministic goal which is the last one in the

body of a clause. It's operation is identical to the above described with the difference that it

affects the operation of the PROCEED instruction.

The Unify instruction, "UNIFY N, Hi" activates an idle APU to perfonn the unify operation.

It sends to the APU the number and the address of the head arguments (N and Hi), the address of

the goal arguments (contents of the CA register) and the addresses of the environments of the

clauses to which the goal and the head belong (contents of the CE and HE registers).

Finally, the miscellaneous instructions include arithmetic and logic operations, as well as

instructions that control the I/O devices (input and output data).

An example of a compiled Prolog program is given in the Appendix.

4.2.4 Operation

During the startup phase the compiled Prolog program, i.e. the main code, the CCD code and

the procedure index table, are distributed to all PEs. A PE starts operate after the activation of its

scheduling unit. The flow of control between the three main units of a PE, i.e. the preprocessing

unit, the scheduling unit and the engine, is depicted in figure 4, while the operation of each unit is

presented in the following.

Scheduling Unit: This unit has a three fold operation. It acts as an interface between a given

PE and the rest of the OASys, it schedules the available work and manages the other units of the

PE. It accepts as input a node address and either computation state describing that node (copying

approach) or a list of nodes representing the links followed so far from the root to that node

(recomputation approach). It then activates the preprocessing unit by sending the node address

and either sends the computation state to the engine (in case of copying) or keeps for itself the list

of nodes (in case of recomputation). The scheduling unit maintains a stack of nodes (node stack)

which contains the executed nodes and alternative nodes (choices) not yet executed.

Preprocessing Unit: This unit accepts as input a starting (node) address and starts executing

the CCD code. It produces a sequence of choice points along a path and supplies them to the

scheduling unit.

Engine: This unit is activated by the scheduling unit, accepting a sequence of choice points

which are accumulated in a work pool. It consists of a control unit and a number of And

Processing Units (APUs).

- 14-

The Control Unit; This unit executes the machine instructions and generates the V-nodes. It

is microprogrammed because of the complex nature of the instruction set and operates in parallel

with the other units. It executes the machine instructions sequentially up to the point where a

UNIFY instruction is encountered. Then, it constructs a V-node and sends that to an idle APU.

The Control unit continues its operation executing the next instructions, up to the point that a

UNIFY instruction is encountered again.

In case that the Control unit encounters an instruction corresponding to a particular built-in

operation or an arithmeticllogic operation, it halts awaiting termination of all the APUs and then

continues. In the case where a unify operation fails, the corresponding APU interrupts the Control

unit operation causing the tennination of the path execution. Upon failure or successful

termination, the Control unit signals back to the Scheduling unit.

The APU: The APU is a hardware unit that performs the unification operation efficiently. It

is equipped with an argument prefetching unit that fetches the call and head arguments from the

memory while the APU unifies the previous arguments. Inputs to the APU are five terms

(addresses and data) supplied from the UNIFY instruction.

The APU is microprogrammed and contains a jump table followed by a number of

microroutines. The jump table is used to decode the tag values of two input tenns generating the

address of the unify-microroutine that is to perfonn the required operation. When an APU

terminates its operation signals to the Control unit and is placed in a wait state until a new

activation occurs from the Control unit.

Synchronization; The parallel execution of APUs requires synchronized access to unbound

variables which may also be accessed by other APUs. This does not add considerable additional

complexity since, according to the execution algorithm, unbound variables may be bound in any

order, either left to right as in Prolog, or right to left. The mechanism used for the variable

bindings is a lock-test-and-set operation. According to this, whenever an APU tries to bind a

variable, initially locks the variable and then it tests if the variable is still unbound. If so the APU

proceeds setting a value. Otherwise, the variable binding is retrieved and a consistency check

takes place.

Heap writing operations are also synchronized by setting a lock to the starting address of the

space available for writing. An APU cannot allocate space on the heap until an already heap­

writing operation by another APU has been completed. However, access operations are free up to

the locked address.

- 15 -

5. PERFORMANCE MEASUREMENTS

In order to test the actual behavior of the OASys computational model and measure its

efficiency. an experimental system has been developed in ANSI C under UNIX, emulating the

abstract machine instruction set and several example programs were executed. This software

system comprises two versions, the single-processor version and the multiple-processor version.

The former, is actually an implementation of a sequential version of OASys, including one PE

with one APU without scheduling mechanism.

The later is an emulation of the proposed system that used to verify the feasibility of

implementing the OASys model on a multiprocessor machine and to estimate its performance. To

run a program on a given number of PEs each one of which comprises a preprocessing unit, a

scheduling unit and a given number of APUs, the implementation creates the same number of

UNIX processes. This type of implementation adapts quite natural to the proposed abstract

architecture; it offers a simple way of units' representation, an accurate method of timings

estimation and almost a straightforward port to a real parallel machine.

Table 4 compares the measured performance of the sequential version of OASys and the

estimated performance of the parallel version comprising 1 PE and 1 APU, with other Prolog

systems (Eclipse, C-Prolog and AndoITa~I Prolog). All timings were made on a uniprocessor SUN

(Sparc Classic) and the benchmarks considered are:

• nrev 140: naive reverse of a list of 140 elements,

• merge200: mergesort of a list of 200 element'i,

• map: the map colouring problem,

• zebra: who owns the zebra problem,

• queens8: the 8-queens problem,

• hamilton: the search for hamilton paths in a graph.

We see that the sequential version of OASys is comparable in speed to C-Prolog while it is,

in some cases 6, times slower than Eclipse. The runtimes of Andorra-I were obtained without

preprocessing for determinacy checking. The performance of sequential Andorra-I with

preprocessing of programs [Yang et aI., 1993] is actually much better and reaches that of Eclipse.

The performance is actually worst than that of some sequential products and this is because

the objective was to demonstrate the correctness and investigate the feasibility of implementation

of the proposed computational model instead of optimising its sequential performance. It is

- 16 -

strongly believed that current work in applying various optimisation techniques in the coding

level concerning the operation of a single PE (sequential implementation) will result in improving

the overall OASys performance thus achieving better actual timings of at least an order of

magnitude compared to sequential Prolog implementations, as it is shown in the speedup tables.

In order to test how the system exploits or-parallelism, and-parallelism and the combination

of both types, we ran the same programs varying either the number of APUs or the number of PEs

or both of them.

The results presented in the following concern only the copying approach. This not affects the

derived conclusions because the two approaches proved to be quite similar with a small number

of PEs, giving a precedence to the copying approach as the number of PEs increases. Although

the data transfer in recomputation is approximately 4-7 times less than in copying, the above

results are justified by the fact that the transfer time in the copying approach is much less than the

re-execution time in the recomputation approach.

Figure 5 shows the speedup obtained by exploiting or~parallelism when runmng the

benchmark programs with 1 to 10 PEs, each PE containing only one APU. As expected the

speedup is high, since the programs considered can exploit or-parallelism and increa"ies linearly

due to small overhead. In comparison, the same figure shows the speedup obtained by the Parallel

Eclipse running on the same uniprocessor machine for the hamilton program increasing the

number of PEs (workers in eclipse terminology).

Figure 6 shows the speedup obtained by exploiting and-parallelism when the number of the

APUs is increased from I (sequential execution) to 10 in a single PE. As it seems, some of the

programs (e.g. nrev140, merge200) present good speedup since they are purely deterministic

while others (e.g. queens8, map) present low speedup as the number of APUs increases to 4 and

then remains constant. This is because the search spaces of these programs have short paths and

therefore they don't exploit much and-parallelism.

However for all programs we do not expect better performance III execution time if the

number of APUs is greater than 10. This is due to the fact that the preprocessor's total operation

time is only 8%-15% of the total execution time of an engine with 1 APU. As the number of

APUs increases the above percentage increases and the times become roughly equal.

Figure 7 shows the behavior of the system exploiting and-or-parallelism. This is

demonstrated executing the queens8 program varying both the number of PEs (from 1 to 10) and

the number of APUs (from 1 to 6) in each PE. We can see that speedups obtained when exploiting

- 17-

both and-or-parallelism are greater that the speedups obtained from either kind of parallelism

alone.

6. CONCLUSIONS AND FUTURE WORK

An abstract machine for the and-or-parallel execution of logic programs which implements

the OASys computational model was presented.

The computational model supports and~or-parallelism considering the execution as distinct

alternative independent computations consisting of deterministic conjunctions. The OASys

abstract machine is a distributed multiprocessor system, employing a group of Processing

Elements (PEs) each one of which executes a different path of the search tree (or-parallelism).

Every PE consists of a team of dedicated processors sharing a common address space executing

in parallel the goals belonging to the same path (and-parallelism).

The machine executes compiled code and features modular design, easily expandable. It is

highly distributed with limited inter-processor communication and efficient decentralized

scheduling mechanism.

A prototype software system, compnsmg a compiler and an interpreter of the abstract

machine's instruction set, has been developed and several example programs were executed and

compared with other Prolog systems.

As OASys is a prototype system, there are many issues that need further exploration. Current

work focuses on improving the scheduling mechanism to decide, at run time, to allocate work

using one of the two methods depending on the estimated overhead. An increase of the

perfonnance is expected, since the overhead from communication in copying together with the

overhead from re-execution time in recomputation will be further optimized.

In addition, current work includes the implementation of the parallel version of OASys in two

phases. During the first phase (which has started) OASys will be implemented in a network of

workstations while in the second phase, it will be implemented on a real parallel machine. This is

relatively straightforward because of the already developed process based emulation. Since most

of the overheads taken into account in the estimation of speedups have been overestimated, the

final system is expected to have at least equivalent (or better) performance.

- 18 -

Ackno~ledgnrren~

I would like to thank D. Xochellis, D. Benis and C. Berberidis for their help in the prototype

and the collection of perfonnance data. Many thanks to Rang Yang for the help with Andorra-I. I

also thank the anonymous referees for the reviewing of the manuscript and their comments and

suggestions which improved this work.

REFERENCES

Ali, K. and Karlsson, R., Scheduling Speculative Work in MUSE and Performance Results, Int. J.

of Parallel Programming, 21 (6),449-476 (1992).

Araujo, L. and Ruz, I.J., PDP: Prolog Distributed Processor for Independent AND/OR Parallel

Execution of Prolog, Proceedings of the 11th ICLP (P.Van Hentenryk ed.), MIT Press (1994).

Baron, U., Kergommeaux, J.e., Hailperin, M., Ratcliffe, M., Robert, P., Syre, J. and Westphal,

R., The parallel ECRC Prolog system PEPSys: An overview and evaluation results, Future

Generation Computer Systems '88 Conference, 841-849, Tokyo (1988).

Ciepielewski, A. and Haridi, S., A fonnal model for OR-Parallel Execution of Logic Programs,

Proc. in Format Processing, IFIP ,299-305 (1983).

Clark, K.L. and Gregory, S., Parlog: a parallel programming in logic, ACM Transactions for

Languages and Systems, 8 (1), 1-49 (1986).

Clocksin, W.F., Principles of the DelPhi parallel inference machine, The Computer Journal, 30

(5),386-392 (1987).

Delgado-Rannauro, Sergio, Dorochevsky, M, Schuerman, K, Veron, A and Xu, J, A Shared

Environment Parallel Logic Programming System on Distributed Memory Architectures, Proc. Of

2nJ European Distributed Memory Computing Conference, Munich, April 91.

Gupta, G. and Hermenegildo, M., AndROr Parallel Prolog: A Recomputation Based Approach,

New Generation Computing, 11,297-321 (1993).

Gupta, G., Hennenegildo, M., Pontelli, E., Costa, V.S., ACE: And/Or-Parallel Copying-Based

Ex.ecution of Logic Programs, Proe. of the 11th ICLP (P.Van Hentenryk ed.), MIT Press (1994).

- 19-

Gupta, G., Multiprocessor Execution of Logic Programs, Kluwer Academic Publishers, 1994.

Hermenegildo, M. and Green, K., &-Prolog and Its Performance: Exploiting Independent And­

Parallelism. Intern, Conference on Logic Programming ICLP 90, MIT press, 253 - 268 (1990).

Lin, Y. and Kumar, V., AND parallel execution of Logic Programs on a Shared- Memory

Multiprocessor, The J. of Logic programming, 10, 155 - 178 (1991).

Lusk, E., Butler, R., Disz, T., Olson, R., Overbeek, R., Stevens, R., Warren, D.H.D., Calderwood,

A., Szeredi, P., Haridi, S" Brand, P., Carlsson, M" Ciepielewski, A. and Hausman, B., The

Aurora OR-parallel Prolog system, New Generation Computing, 7 (2,3) 243-271 (1990).

Mudambi, S. and Schimpf, J" Parallel eLP on Heterogeneous Networks, Proceedings of the lith

ICLP (p.van Hentenryk ed.), MIT Press (1994).

Pontelli, E., Gupta, G. and Hermenegildo, M., &ACE: A High-Performance Parallel Prolog

System, In Proc. IPPS'95, IEEE Computer Society (1995).

Shen, K., Exploiting Dependent AndwParallelism in Prolog: the Dynamic Dependent And-parallel

Scheme (DDAS), Proceedings of the 9th JICSLP (Krzysztof Apt ed.), MIT Press (1992).

Ueda, K., Introduction to Guarded Hom Clauses. ICOT Research Center, TR~209, Tokyo (1986).

Vlahavas, I. and Kefalas, P., The AND/OR Parallel Prolog Machine APIM: Execution Model and

Abstract Design, The Journal of Programming Languages 1,245-261 (1993).

Vlahavas, 1., Kefalas, P. and Halatsis, C., OASys: An AND/OR Parallel Logic Programming

System, submitted for publication, available as a Technical Report (1996).

Warren, D.H.D., The extended Andorra model with implicit control. International Conference on

Logic Programming '90, Workshop on Parallel Logic Programming, Israel (1990).

Warren, D.S., Efficient Prolog Memory Management for Flexible Control Strategy, Int. Symp. on

Logic Programming, 198-202 (1984).

Yang, R., Beaumont, T., Santos Costa, V. and Warren, D.H.D., Performance of the Compiler­

based Andorra-I System, Proc. of the 10th Intern. Conference in Logic Programming (D.S.

Warren ed.), MIT Press, 150-166 (1993).

- I -

Appendix

Consider the following Prolog program for N queens:

queens([],R,R).
queens([HIT],R,P):-

delete([A,[HIT] ,L),
safe(R,A,1),
queens(L,[AIR],P).

dele'e(X,[XIY],Y).
dele'e(X,[YIZ],[YIWj):­

delete(X,Z,W).

safe([L,_)·
safe([HIT],U,D):-

XI is H-U,

XI =\=D,
X2is U-H,
X2=\=D,
Dl is D+I,
safe(T,U,Dl).

%CI
%C2

%C2.1
%C2.2
%C2.3

%C3
%C4

% C4.1

%C5
%C6

% C6.1
% C6.2
% C6.3
%C6,4
%C6.5
%C6.6

Given the query for 4 queens:

?- queens([1,2,3,4],K,M). % Query
the CCD code and the Procedure Index. Tables follow while the main code is listed in the next
page:

Tl nil CI

(queens) lis' C2

% CCD Code
CI: RETURN
C2: CALL T2, var

CALL T3, var
LCALL Tl, var

C3: RETURN
C4: LCALL T2, var
C5: RETURN
C6 : LCALL T3, var
Q : CALL Tl, list

RETURN

T2:~
(delete)~

T3 nil C5
{safe} list C6

- 2-

% Main Code G4: SVAR 1 % Goal arguments of C4. 1
SVAR 2

C1: UNIFY 3,H1 % Head 01 clause C1: SVAR 3
PROCEED % queens(O,R,R).

C5: UNIFY 3,H5 % Head of clause C5:
H1: NIL % Head arguments of C1 PROCEED % safe(ll._,J

TFVAR
TSVAR H5: NIL % Head arguments of C5

VVAR
C2: CRENV 6 % Head 01 clause C2: VVAR

UNIFY 3,H2 % queans({HIT],R,P):-
WIND C6: CAENV 7 % Head of clause C6:
TRY G1 % C2.1: delete({A,[HIT],L), UNIFY 3, H6 % safe([HfTJ,U,D):-
TRY G2 % C2.2: sale(R,A, 1), WIND
TRYL G3 % C2.3: queens(L,[AIRj,P). ESCAPE 4, G5 % G6.1: Xl is H-U

ESCAPE 5, G6 % C6.2: Xl =1= D
H2: SUST % Head arguments of C2 ESCAPE 4, G7 % e6.3: X2 is U-H

SVAR 1 ESCAPE 5, G8 % G6.4: X2:::/= 0
SVAA 2 ESCAPE 3, G9 % e6.5: 01 is D+ 1
SVAR 3 TRYl G10 % e6.6: safe(T,U,D1).
SVAR 4

H6: SUST % Head argum. of C6
G1: SVAR 5 % Goal arguments of C2. 1 SVAR 1

SUST SVAR 2
SVAR 1 SVAR 3
SVAR 2 SVAR 4
SVAR 6 G5: SVAR 1 % Goal arguments of C6. 1

SVAR 3
G2: SVAR 3 % Goal arguments of C2.2 SVAR 5

SVAR 5 G6: SVAR 5 % Goal arguments of C6.2
INTEGER 1 SVAR 4

G7: SVAR 3 % Goal arguments of C6.3
G3: SVAR 6 % Goal arguments of C2.3 SVAR 1

SUST SVAR 6
SVAR 5 G8: SVAR 6 % Goal arguments of C6.4
SVAR 3 SVAR 4
SVAR 4 G9: SVAR 4 % Goaf arguments of C6.5

INTEGER 1
C3: UNIFY 3,H3 % Head of clause C3: SVAR 7

PROCEED % delete(X,fXIYj, Y). G10: SVAR 2 % Goal arguments of C6.6
SVAR 3

H3: TFVAR % Head arguments of C3 SVAR 7
SUST
TBVAR 1 C, WIND % Code of Query:
TFVAR 2 EXECL C2, G11 % ?- queens([1,2,3,4],K,M).
TBVAR 2 ESCAPE 0, 0

C4: CRENV 3 % Head of clause C4: G11: GUST % Goal arguments of Query
UNIFY 3,H4 % delete(X,[yfZ],[yIW)):- INTEGER 1
WIND GUST
TRYL G4 % C4. 1: delete(X,Z, W). INTEGER 2

GUST
H4: SVAR % Head arguments of C4 INTEGER 3

SUST GUST
TFVAR 1 INTEGER 4
SVAR 2 NIL
SUST NIL
TBVAR 1 VVAR
SVAR 3

Figure and Table Captions

- 3-

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Table I:

Table 2:

Table 3:

Table 4:

Representation of tbe search tree in OASys

Overview of the OASys architecture

Configuration of the Processing Element (PE)

Control flow in a PE

Or-parallel speedups

And-parallel speedups

And-or-parallel speedups

Data types

The PE register set

The OASys instruction set

Runtimes (in seconds) for OASys and other Prolog systems

q(X,Y):- a(X,Y).

a(X,Y):-b(X,Y),c(Y).

a(X,Y):-d(X),e(Y).

b(1,2).

c(3).

d(l).

d(2).

e(3).

?- q(A,B).

q(A,B)=q(X,Y) 0

,(X,Y)=,(X',Y') (

b(X',Y')=b(1,2) (

c(y')=c(3)

- 4-

- - - -- -0 'ex,Y)=,(X',y')

d(X')=d(l) () ?d(X')=d(2)

,(Y')=,(3) 0 6,(Y')=,(3)

Figure 1

System Communication Network

dl1 ttt
I

RE- CHEDULINC PRE-
CHEDULING ROCESSING WROCESSING

[JNIT UNIT
UNIT UNIT

I I T I I I... rI Memory Interconnection Network I Memory Interconnection Nel\vork

I I I I I I I I

I I MEMORY,
I Il 11 I I MEMORY I I II I I I

PE PE

- 5-

Figure 2

System Commullication NetlVork

PE Communication Bus

SCHEDULIN
UNIT

CCD code IProgram II Head I~ Environ IHeap I
Area Area Area ~ Slack

Trail
Stack

Backtr.
Stack

Reset
Stack

-6-

Figure 3

-7 -

other PE

[5J

oLhcr PE
[1

[3]

I t • I Engine

Preprocessing Scheduling Conlrol
Unil Unit Unit

• I [6] I •
2 [4]

[1, 6J : Node address and Computation state or List of nodes

[2] : Node Address

[3] : Choices

[4J: Choices or Computation state

5] : Com utation State

Figure 4

- 8-

PIC>
2

6

7

9r-;::~====....=....~...... . . .--+-- map - -
-D--ham
-6-qucens
-'-zebra
-£!-Par.Eclipse

8

4

5

:k·~·····:..~.....~~.... :=:::..=..... ::::::
or=~·~··~·~·~·~+-----+-------:-5----~8~---___:1O

3

Figure 5

7

6

5

4

3

2

o

--+-map
-ham
---lr-queens
-e--zebra
---?lE--nrev

---+-merge

2 4
APUs

6 8

- 9-

10

Figure 6

- 10-

-+--1 APU
---+-2 APUs
---6-4APUs
___ 6APUs

20,--------------------,
I8

16

14

12

10

4

2

: t-::-_: -::--::-_: _: _:_:~::::- ~____ ~__ :::::::~:=1:~:>:::::1
~ _ _---------- _-

o
1 2 3 5 s IO

PE.

Figure 7

Variable Constant

Void Variable rvvAR) Alom

Skelet Variable (SVAR) Integer

Free Variable (FVAR) Roo]

Bound Variable (BVAR) Nil

Temp. Free VaT. (TFVAR)

Tcmn . Bound VaT. fTBVAR

Functional Term List

Ground Term (GFTERM) Ground List

Source Term (SFTERM) (GLlSn

Copy Term (CFI'ERM) Source Lisl (SLISn

Conv Lisl (CLISn

Table I

- II -

Name Rep'ister

PC Program counter

1E Top of the environment stack

IT Top of lhe lrail sLack

TH Top of lhe heap

TB Top of the backtracking slack

TR Top of the resel stack

CA Call elemenl address

CE Call environment

HE Head environment

Table 2

- 12-

Procedural Indexinp- Voifv

CRENV N EXECCi,Oi UNIFYN,Hi

PROCEED EXECLCi, Gi

WIND TRY Oi

REWIND TRYL Gi

FAIL

ESCAPEN,Gi

Table 3

- 13 -

Sequential Parallel Eclipse C-Prolog Sequential

OASvs OASvs Andorra -I

oueens8 4.1 5.3 3.5 6.5 17.2

hamilton 55.5 61.3 11.0 32.3 229.5

map 1.8 2.5 0.3 1.4 9.3

zebra 153.6 197.2 21.8 58.0 326.5

meme200 4.3 6.1 l.l 2.1 16.0

nrevl40 6.6 7.0 0.6 2.4 18.9

Table 4

- 14-

	Exploiting And-Or Parallelism in Prolog: The OASys Computational Model and Abstract Architecture
	Report Number:
	

	tmp.1307986960.pdf.b5k4E

