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1. INTRODUCTION

The new economic realities require the rapid prototyping of manufactured artifacts and rapid solutions to
problems with numerous interrelated elements. This, in turn, requires the fast, accurate simulation of physical
processes and design optimization using knowledge and computational models from multiple disciplines in
science and engineering. High Performance Computing & Communication (HPCC) Systems facilitate this
scenario. This paper explores the use of advisory egenis to enable harnessing the power of (inter)nelworked
computational resources (agents) to solve scientific computing problems.

Many hitherto dormant and difficult challenges in applied sciences, such as modeling protein folding or
internal combustion engine design, have become feasible to attack using the power of HPCC. The evo-
lution of the Internet into the Global Information Infrastructure (GII), and the concomitant growth of
computational power and network bandwidth suggests that computational modeling and experimentation
will continue to grow in importance as a tool for big and small science. Networked Scientific Computing
(NSC) seems to be Lhe next slep in the evolution of the HPCC. It allows us Lo use the high performance
communication infrastructure (vBNS, Internet Il etc.) to view heterogeneous networked hardware (including
specialized high performance resources such as the proposed terraflops machines) and soltware (e.g. special-
ized solvers, databases of material properiies, perlormance measuring systems) resources as a single “meta
computer” [11](htip://www.cecs.missouri.edu/joshi/sciag/). NSC enables scientists Lo begin to address Lhe
class of complex problems that are envisaged in the Accelerated Strategic Computing Initiative (ASCI) from
DOE. In this type of problems, “lifecycle simulation” is the operative keyword. The design process operates
at the scale of the whole physical system with a large number of components that have different shapes,
obey different physical laws and manufacturing constraints, and interact with each other via geometric and
physical interfaces through time. The scientific computing software of tomorrow, developed with such appli-
cations in mind, will use soltware agent based techniques to build systems [rom software components which
run on helerogeneous, networked platforms. It will allow wholesale reuse of legacy soltware and provide a
natural approach to parallel and distributed problem solving.

Yet, for all its potential payoffs, the state-ol-the-art in Scientific Computing systems is woefully inadequate
in terms of ease of use. Take, for example, parallel computing. Diane (’Leary in a recent article[22] compared
parallel computing of today to the “prehistory” of computing, where computers were used by a select few
who understood Lhe delails of the architecture and operating system, where programming was complex, and
debugging required reading hexadecimal dumps. Computer time had to be reserved, jobs were submitted in
batches, and crashes were common. Users were never sure ol whether an error was due to a bug in Ltheir code
or in the system. One can safely argue that if parallel processing is in its prehistory, then networked scientific
computing (NSC) is probably in the mesozoic era. Clearly, if the NSC based computational paradigm for
the scientific process is to succeed and become ubiquitous, it must provide the simplicity of access similar to
the point and click capability of networked information resources like the web.
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This means that an inlrastructure needs to be developed to allow scientific computing applications to use

resources and services from many sources spread across the (inter)network. The system, however, needs to be
network and evolution transparent to the user. In other words, the user should be presented an abstraction
of the underlying networked infrastructure as a single meta-computer, and details such as locating the
appropriate sofltware and hardware resources for the preseni problem, changes/updates/bug fixes to the
software components etc. should be handled at the system level with minimal user involvement. The first
part of the problem can be handled by creating advisory agenis that accept a problem definition and some
performance/success criteria from the user, and suggest software components and hardware resources that
can be deployed to solve this problem. This is very similar in substance to the idea of recommender systems
that is being mooted for harnessing distributed information resources.

While the problem has been identified in the nelworked information resources scenario, and initial re-
search done[24], the problem remains largely ignored for the domain of networked computational resources.
Note that the problem is different [rom invoking a known method remotely on some object, for which
a host of distributed QO techniques are being deveoped and proposed. To realize the need for such an
advisory system, consider the present day approximation to “Networked” scientific computing. Several
software libraries for scientific computing are available, such as Nellib, Lapack/Scal.apack etc. There are
even some attempls Lo make such systems accessible over the web, such as Web //ELLPACK([rom Purdue,
http://pellpack.cs.purdue.edu/) and NetSolve(from UTK/ORNL, http://www.cs.utk.edu/netsolve/). Soft-
ware such as GAMS[1](http://gams.nist.gov/) exists which enables users to identily and locate the right
class of software for their problem. However, the user has to identify the software most appropriate for the
given problem, download the software and its installation and use instructions, install the software, compile
and (possibly port) i, and learn how to invoke it appropriately. Clearly this is a non-trivial task even for
a single piece of software, and can be enormously complex when multiple software components need to be
used. Using the networked resources of today is the modern day equivalent of programming ENIAC, which
required direct manipulation of connecting wires. Research is needed to provide systems which will abstract
away the detail of the underlying networked system from the user, who should be able to interact with this
system in the application domain. This is where PSEs with inherent “intelligence” come in.

A Problem Solving Environment is a computer syslem that provides the user with a high level abstraction
of the complexity of the underlying compulational [acilities. The design objectives and architecture of
PSEs are described in [29]). It provides all the computational facilitics necessary to solve a target class of
problems[6]. These facilities include advanced solution methods, automatic or semiautomatic selection of
solution methods, and ways to easily incorporate novel solution methods. Moreover, PSEs use the language
of the target class of problems and provide a “natural” interface, so users can use them without specialized
knowledge of the underlying computer hardware or software. The user can not be expected to be well versed
in selecting appropriate numerical, symbolic and parallel systems, along with their assoctated parameters,
that are needed to solve a problem. Nor can s/he be expected to be aware of all possible software components
and hardware resources that are available across the network to solve a problem. An important task of a PSE
is to accept some “high level” description of the problem [rom the user, and then automatically locate and
select the appropriate computational resources (hardware, software) needed to solve the problem. Clearly,
this task requires the use of “intelligent” techniques - it requires knowledge about the problem domain
and reasoning strategies. The purpose of our research is to address the issue of intelligence in the general
networked scientific computing domain. Specifically, we have developed advisory sysfems for the class of
applications that can be described by mathematical models involving Partial Diflerential Equations(PDEs).

The numerical solution of partial differential equation models depends on many factors including the nature
of the operator, the mathematical behavior of its coefficients and its exact solution, the type of boundary and
initial conditions, and the geometry of the space domains ol definition. There are many numerical solvers
(soltware) for PDEs. These solvers normally require a number of parameters that the user must specify, in
order to obtain a solution within a specified error level while satisfying certain resource (e.g., memory and
time) constraints. The problem of selecting a solver and its parameters for a given PDE problem to satisly
the user’s computational objectives is difficult and of great importance. With the heterogeneity of machines
available across the network to the PSE, including parallel machines, an additional decision that has to be
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made is regarding on which machine and with what configuration should the problem be solved. Depending
on the mathematical characteristics of the PDE models, there are “thousands” of numerical methods to
apply, since very often there are several choices of parameters or methods at each of the several phases of
the sclution. On the other hand, the numerical solution must satisfy several objectives, primarily involving
error and hardware resource requirements. It is unrealistic to expect that engineers and scientisls will or
should have the deep expertise to make ”intelligent" selections of both methods and their parameters plus
the selection of computational resources that will satis{y their computational objectives. Thus, we propose
to build a multiagent advisory system to help the user make the optimal, or at least satisficing, selections.

In this paper, we start by describing some related research on “expert systems” for scientific computing, and
briefly introduce the PYTHIA project, an intelligent advisory system that performs automatic algerithm
selection in well defined scienlific domains using hybrid (neuro-fuzzy and bayesian) techniques. We then
describe a scenario where several PYTHIA agents exist on the network, each containing a part of the total
knowledge corpus. We show how they can interact to share their knowledge, and illustrate how neuro-fuzzy
techniques help to identily the most “reasonable” agent to seek advice [rom about a particular problem.
While it is not the focus of this paper, we are at present experimenting with gathering data about the
amoun{ of traffic our multiagent systems generate, and how our learning and adaptation schemes can help
to reduce it.

2. RELATED WORK

We have remarked earlier on systems such as Netsolve, GAMS, Web //Ellpack etc. which are being created
to realize the idea of networked scientific computing. We now briefly describe some attempts at developing
intelligent systems for assisting in various aspects of the PDE solution process. In{25], Rice describes an
abstract model for the algorithm selection problem, which is the problem of determining a selection (or
mapping) from the problem feature space to the algorithm space. Using this abstract model Rice describes
an experimental methodology for applying this abstract model in the performance evaluation of numerical
soltware. In [21], Moore et al. describe a strategy for the automatic solution of PDEs at a different level.
They are concerned with the problem of determining (automalically) a geometry discretization that leads
to a solution guaranteed to be within a prescribed accuracy. The refinement process is guided by various
"refinement indicators” and refinement is affected by one of three mesh enrichment strategies. At the
other end of the PDE solution process, expert systems can be used to guide the internals of a linear system
solver[17]. This particular expert system applies self-validating methods in an economical manner io systems
of linear equalions. QOther expert systems that assist in the selection of an appropriate linear cquation solver
for a particular matrix are also currently being developed. In [3; 4], Dyksen and Gritter describe an expert
system for selecting solution methods for elliptic PDE problems based on problem characteristics. Problem
characteristics are determined by textual parsing or with user intcraction and are used to select applicable
solvers and to select the best solver. This work difiers significantly [rom our approach, which is based on
using performance data for relevanl problems as the algorithm selection methodology. Dyksen and Gritter
use rules based solely on problem characleristics. We argue that using problem characteristics solely is not
sufficient because the characlerization of a problem includes many symbolically and a priori immeasurable
quantities, and also because practical software performance depends not only on the algorithms used, but
on the particular implementations of those algorithms as well. In [16], Kamel et. al. describe an expert
system called ODEXPERT for selecting numerical solvers for initial value ordinary diflerential equation
(ODE) systems. ODEXPERT uses Lexiual parsing to determine some properties of the ODEs and performs
some automatic tests (e.g., a stiffness test) to determine others. Once all the properties arc known, it uses
its knowledge base information about available ODE solution methods (represented as a set of rules) to
recommend a certain method. After 2 method has been determined, it selects a particular implementation
of that method based on other criteria and then generates source code (FORTRAN) that the user can use.
If necessary, symbolic differeniiation is used to gererate code for the Jacobian as well. Leake bas recenily
begun some work in the area of using traditicnal case based reasoning systems to select appropriate methods
for solving sparse linear systems[19]. QOur group has also been actively involved in using several techniques,
such as neural nets, neuro-fuzzy systems and Bayesian nets ([30; 15; 23; 14; 12; 13]} to address related issues
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of classifying PDE problems based on their characteristics, and then using this classification to predict an
appropriate solution method for new problems.

3. PYTHIA

PYTHIA[8; 30] is a knowledge based system that helps select scientific algorithms to achieve desired tasks
in computation. PYTHIA attemnpts to solve the problem of delermining an optimal strategy (i.e., a solution
method and its parameters) for solving a given problem within user specified resource (i.e., limits on execution
lime and memory usage) and accuracy requirements (i.e., level of error). While the techniques involved are
general, our current implementations of PYTHIA operate in conjunction with systems that solve (elliptic)
partial differential equations (PDEs) [30] and problems in numerical quadrature.

In its current preliminary implementation, a PYTHIA agent accepts as input the description of an elliptic
PDE problem, and produces the method(s) appropriate to solve it. Its strategy is similar to that believed
to underlie human problem solving skills. There is a wealth of evidence from psychology that suggests that
humans compare new problems to ones they have seen before, using some metric of similarity to make that
judgment. They use the experience gained in solving “similar” previous problems to evolve a strategy to
solve the present one. This same strategy has been defined as case based reasoning in the Al literature. In
effect, the strategy of PYTHIA is to compare a given problem to the ones it has seen belore, and then use
its knowledge about the performance characteristics of prior problems to estimate those of the given ane.
The goal of the reasoning process then is to recommend a solution method and applicable parameters that
can be used to solve the user’s problem within the given computational and performance objectives. This
goal is achieved by the following steps

—Analyze the PDE problem and identify its characteristics.
—From the previously solved problems, identily the set of problemns similar {0 the new one.

—Extract all information available about this set of problems and the applicable solvers and select the best
method.
—TUse performance information of this method to predict its behavior for the new problem.

When deciding on which previously seen problem is the closest to the new one, one could directly compare
the new problem with all previously seen problems. Such lockup can be done efficiently using specialized data
_structures such as multidimensional search trees. Alternatively, one could classify problems into meaningful
classes, and use these to find similar problems. This would imply that finding the closest problem would be
a two stage process, where one would first find the appropriate class for a new problem, and then look for
close problems amongst the members of that class. We will investigate both thesc strategies in our proposed
work. For the case of Elliptic PDEs, we identify five classes of problems that seem to be relevant in choosing
a solution method, namely Solution Singular, Solution Analytic, Solution Oscillatory, Solution Boundary
Layer, and Boundary Conditions mixed. A sixth class identifies problems which do not belong to any of the
above. The classification of problems into subsets and determining which subset a particular problem belongs
to can be implemented in several ways. One approach is Lo use a deterministic membership strategy where a
class of problems is represented by the centroid of the characteristic vectors of all the members of that class.
Then, class membership is defined as being within a certain radius of the centroid in the characteristic space.
To classily a new preblem, we compute the distance from it to all centroids. The problem is said to belong
to that class whose centroid is closest to it. Distance between characteristics is again used to determine
which particular member of a class is closest to the new problem. The technique described above produces
classes in a deterministic way and computes a characteristic centroid for each elass. Tlen a new problem
is classified by computing its distance from these centroids using some norm. While there are some classes
where there is a completely deterministic (and simple) way to determine class membership, for other classes
such a priori determination is not possible. We have to determine the class structure based on samples seen
thus far. In other words, the class structure has to be learnt given the examples. We will develop appropriate
architectures for addressing the learning issue using a variety of "Intelligent” approaches. We propose to
experiment with a variety of symbolic, fuzzy, connectionist and hybrid approaches to learning and determine
what kind of a learning system works well in this domain. An initial work, describing a moderate sized
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comparative study we did was recently published[24]. We also propose to generate performance data for a
wider variety of PDEs, and extend the capabilities of the PYTHIA agent in terms of the kinds of problems
it can assist a user with.

In this paper, we shall be concerned with the former application domain. The strategy of PYTHIA is to
compare a given problem to the ones it has seen before, and then use its knowledge about the performance
characteristics of prior problems to estimate those of the given one. Together with a good method to solve a
given problem, PYTHIA also provides a factor of conftdence that PYTHIA has in the rccommended strategy.
For example, a typical PYTHIA output for a PDE problem would be: “Use the §—point star algorithm with
a 200 x 200 grid on an NCube/2 using 16 processors: Confidence ~ 0.857.

It can be easily seen that the above case-based reasoning strategy does not scale up when the population
of problems becomes huge. We, therelore, have a revised two-stage reasoning process wherein PYTHIA
first classifies the given problem into one {(or more) of pre-defined problem classes, and having thus pruned
the search space, uses performance criteria [rom its database to map from the problem class space to the
algorithm space. Due lo space limilations, we are unable to dwell on the intelligent mechanisms in the
funciioning of PYTHIA. The interested reader is relerred fto [30; 15; 23; 13] for delails. As PYTHIA
encounters new problems and ‘predicts’ strategies for solving them, it adds to its Knowledge Base (KB),
information about these problemns and their solutions and thus, refines its KB.

4. COLLABORATIVE PYTHIA

The underlying model of computation as used by the above mechanism is quite primitive — it is essentially
a stalic paradigm dealing with a single PYTHIA agent. In the networked scenaric, several PYTHIA agents
exist across Lhe Internet, each (possibly) with a specialized knowledge base about problems. For example,
in the domain being discussed here, there are many different types of partial differential equations and
most scientists tend to use only a limited kind. As such, any PYTHIA agent they are using will gather
information about and be able to answer questions effectively only about a limited range of problems. I
there were mechanisms that allowed PYTHIA agents of various application scientists to collaborate, then
each agent could share its knowledge to others and potentially solve a broader range of problems. This [orms
the main focus of our paper. We describe how we make PYTHIA a collaborative multi-agent system which
operates in the networked environment.

PYTHIA cutputs a strategy for solving a given problem and also a quaniitative measure of its confidence
in the answer. In our collaborative scenario, if an agent discovers that it does not have “enough” confidence
in the prediction it is making, it could query all other PYTHIA agents and obtain answers from all of them.
These answers are, as mentioned before, suggestions on what resources to use to solve a given problem. It
can then pick up one of the suggestions and follow it. This olten entails a huge amount of traffic on the
system which is not desirable. A better approach is to use the information obtained by the initial looding
type of queries to learn/infer a mapping {rom a problem to a PYTHIA server, best able Lo suggest solution
resources for the given problem.

As remarked upon earlier, it is likely that some given PYTHIA agent will know a great deal about a
certain type of problem. Thus [rom the answers received by an agent, we want it to learn a mapping from
the Lype of the problem to the agent which is most likely to have a correct answer. In [uture, it could
direct queries more effectively, rather than using a broadcasting technique to seek answers. Additionally, the
situation can be dynamic — the abilities of individual PYTHIA agents can be expecled to change over time
(as they add more problems to their KB), more PYTHIA agents might come into exisience ete. Thus any
mapping technique utilized should perform efficient classification and yet have the ability to learn on-fine.
This means that assimilating new data should not entail going over previously learned information, so as
to avoid long learning periods. Interestingly, this rather uselul [eature is absent in many popular ‘learning’
algorithms mooted by the Artificial Intelligence community.

We have developed a neuro—[uzzy method of learning suitable for this purpose. Neural techniques provide
melhods to model complex relationships and find application in classi{ying concepts into predcfined classes.
Fuzzy techniques provide a more natural means to model uncertainty and are useful to represent applica-
tions where we talk of membership of concepis in classes to varying degrees. QOur technique combines the
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advantages of both and is natural for the application considered here. The reason that a fuzzy system finds
application in the PYTHIA scenario is that classification of PDE problems is not crisp. In the domain of
PDIEs, our problem classes are defined based on Lhe properties possessed by the solutions of the PDEs. For
instance, the solution of a given PDE could have a singularity, and also show some oscillatory behavior on
the boundaries. Thus the given PDE would have membership (to different extent}) in the classes represent-
ing “solution-singular” and “solution-oscillatory”. A conventional, binary membership function would not
model this situation accurately. We feel that such fuzziness is inherent in the learning task whenever agents
model complex, real world, scientific problems. The neural part is used to learn such fuzzy functions.

In this paper, we use a quantitative measure of reasonableness [10] to automatically generate exemplars Lo
learn the mapping from a problem to an agent. This is needed because the user cannot be expected to have
information about the most reasonable resource(s) for a given problem in such a dynamic scenario. To do
this in an unsupervised manner, we combine two factors, one which denotes the probability of a proposition
g being true, and the other which denotes its utility. Specifically, the reasonableness of a proposition is
defined as folliows [20]:

r(g) = p(9)Uelq) + p(~ q)U/ (g},
where U(q) denoles the positive utility of accepling g if it is true, U;(q) denotes the negative utility of
accepting g if it is false and p(q) be the probability that ¢ is true.
In the case of PYTHIA, each agent produces a number denoting confidence in its recommendation being
correct, so p(g) is trivially available, and p(~ ¢) is simply 1 — p(g). For the utility, we use the following
definition:

Vilg) = —Us(g) = J(N.),

where f is some squashing function mapping the domain of (0, co) to a range of (0, 1], and N, is the number
of exemplars of a given type (that of the problem being considered) that the agent has seen. We chose
f(z) = !—_l_-%-_—, — 1. The reason for choosing this expression as the measure of the utility of an agent is that it
should reflect the number of problems of the present type that it has seen. The value of an utility function is
to measure the amount of knowledge that an agent appears to have. The more the problems of a certain kind
in an agent’s KB, the more appropriate will its prediction be for new problems of the same type. Hence,
we have designed the utility to be a function of N,. The above formulation is not unique, though. Fer
example, assume that the probabilities of the two hypotheses being true are identically p (where p < 0.5),
and the positive utilities are Uy and Upn (with Uy > Uz2). In suech a case, then the second hypothesis will
be assigned a greater reasonableness than the fitst one (in spite of the fact that the first hypothesis has a
greater utility). This problem arises because multiplying ar inequality by a negative quantity reverses its
direction. Therefore, we check for this occurrence and invert the signs of {/; and Uy to keep our notion of
reasonableness consistent.

Thus, the goal of the PYTHIA collaborative system is to use the neuro-fuzzy approach to automatically
map the mosl reasonable agent for a particular problem.

5. NEURO-FUZZY APPROACHES

While we have worked on several techniques (our studies have utilized standard statistical methods, gradient
descent methods, machine learning techniques and other classes of algorithms), it has been our experi-
ence that specialized techniques developed for this domain perform better than conventional ofi~the-shelf
approaches [13]. In particular, our neuro-fuzzy technique infers efficient mappings, caters to mutually non-
exclusive classes which characterize real-life domains and learns these classifications in an on-line manner.
Tor the sake of brevity, we provide only those details of this algorithm here that are relevant in the current
context. For a more detailed exposition, we refer the interested reader to [23].

Qur neuro-fuzzy classificalion scheme [23; 15] is based on an algorithm proposed by Simpson [27]. The
basic idea is to use fuzzy sets to describe pattern classes. These fuzzy sets are, in turn, represented by the
‘fuzzy’ union of several hyperboxes. Such hyperboxes define a region in n-dimensional pattern space that
contain patterns with full-class membership. A hyperbox is completely defined by a min—point and max-
point and also has associated with it a fuzzy membership function (with respect to these min-max points).
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This membership function helps to view the hyperbox as a fuzzy set and such “hyperbox {uzzy sets” can be
aggregated to form a single fuzzy set class. This provides inherent degree-of-membership information that
can be used in decision making. The resulting structure fits neatly into a three layer feed-forward neural
network assembly. Learning in the network proceeds by placing and adjusting these hyperboxes. Recall in
the network consists ol calculating the fuzzy union of the membership function values produced from each
of the fuzzy set hyperboxes.

Initially, the system starts with an empty set (of hyperboxes). As each pattern sample is “tanght” to the
neuro-fuzzy syslem, either an existing hyperbox (of the same class) is expanded to include the new pattern
or a new hyperbox is created to represent the new pattern. The latter case arises when we do not have an
already existing hyperbox of the same class or when we have such a hyperbox but which cannot expand
any {urther beyond a limit set on such expansions. Simpson’s original method assumes that the pattern
classes underlying the domain are mutually exclusive and that each pattern belongs to exactly one class.
But the pattern classes that characterize problems in many real world domains are frequently not mutually
exclusive. For example, consider the problem of classifying geometric figures into classes such as polygon,
square, rectangle etc., Note that these classes are not mutually exclusive (i.e., a square is a square and a
rectangle and a polygon). It is possible lo apply Simpson’s algorithm to this problem by first ‘reorganizing’
the data into mutually disjoint classes such as ‘rectangles that are not squares’, ‘polygons that are not
rectangles’, and ‘polygons’ etc., but this strategy does not reflect the natural overlapping characteristics of
the underlying base classes. Thus Simpson’s algorithm [ails to account for a situation where one pattern
might belong to several classes. Also, the only parameter in Simpson’s method is the maximum hyperbox
size parameter - {his denotes the limit beyond which a hyperbox cannot expand to “enclose” a new pattern.

The way we enhance our scheme to overcome this apparent drawback is to allow hyperboxes to ‘selectively’
overlap. In oiher words, we allow hyperboxes to overlap if the problem domain so demands it. This,
consequently, aids in the determination of non-exclusive classes. It also allows our algorithm to handle
“nearby classes” : Consider the scenario when a pattern gets associaled with the wrong class, say Class
1, merely because of its proximity to members of Class 1 that were in the Lraining samples rather than to
members of its characteristic class (Class 2). Such a situation can be caused due to a larger incidence of
the Class 1 patterns in the training set than the Class 2 patterns or due to a non uniform sampling, since
we make no prior assumption on the sampling distribution. In such a case, an additional parameter in our
scheme gives us the ability to make a soft deciston by which we can associate a pattern with more than one
class.

A more interesting and rather ‘natural’ requirement in collaborative internet based systems is what is
known as clustering to ‘automatically’ (using some criterion) group entities (in this case, agents) into several
‘clusters’ based on some notion of similarity. For example, in this paradigm, we would be able to automat-
ically ‘group’ Agents 1 and 3 as most suited to problems of Type X and Agents 2 and 4 to be of Type Y.
Thus, X and ¥ are clusters that have been inferred to contain ‘samples’ that subscribe to a common notion
of similarity. We have proposed a multi-resolution scheme, similar to computer vision [9], to parlition the
data into clusters. The basic idea is to look at the clustering process at differing levels of detail (resolution).
For clustering at the base of the multi-level pyramid, we use Simpson’s clustering algorithm [28]. This is
looking at the data at the highest resolution. Then, we operate at diflerent zoom/resolution levels to obtain
the final clusters. At each step up the pyramid, we treat the clusters from the level below as points at
this level. As we go up the hierarchy, therefore, we view the original data with decreasing resolution. This
approach has led to encouraging results from clustering real world dala sets {12; 13], including the PYTIIIA
agent data set described here.

In this paper, we shall conline ourselves to the original problem of classifying agents into known, predefined
categories and as described earlier, we utilize our neuro-fuzzy algorithm to achieve this purpose.

6. STRATEGIES FOR LEARNING

An interesting question arises as to whete to ‘house’ the neuro-fuzzy algorithm that we just described. In
our current implementation, we assume an ageni (called PYTHIA-C) whose main purpose is to learn this
mapping. PYTHIA-C operates our neuro—{fuzzy scheme to model the mapping from a PDE problem to an
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appropriate PYTHIA agent for that problem. We have chosen such a ‘master agent’ purely for demonstration

purposes as this brings out the learning aspect of the agents as being distinct from their PDE problem solving
abilities. In practice, this ability could be integrated into every PYTHIA agent and potentially, anyone of
them could serve as an appropriate ‘server’ for PDE problems. Thus, while other PYTHIA agents provide
information aboul PDE problem solving, the purpose of PYTHIA-C is to help in directing queries about
PDE problems to appropriate PYTHIA agents.

Further, PYTHIA-C can be in either a “learning” mode (LM) or a “'stable mode” (SM}. During the LM,
PYTHIA-C asks all octher known agents for sclutions about a particular type of problem. It collects all
the answers, and then checoses the best result as the solution. In effect, PYTHIA-C uses what has been
deseribed in [18] as “desperation based” communication. For example, if we have 6 agents in our setup,
PYTHIA-C would ask each one of these agents to suggest a solution strategy for a given problermn, solicit
answers and assign reasonablencss values based on the formulation above. It would then recommend the
strategy suggested by the agent that had the highest reasonableness value. While in this mode, it is also
learning the mapping from a problem to the agent which gave the best solution. The best solution ir LM is
computed by the episternic utility formulation described earlier. After this period, PYTHIA-C has learned
a mapping describing which agent is best for a particular type of problem. From this point on, PYTHIA-
C is in the SM. It now switches to what we label as stable communication. In other words, it will only
ask the best agent to answer a particular question. If PYTHIA-C does not believe an agent has given a
plausibie solution, it will ask the next best agent, until all agents are exhausted. This is fzcilitated by cur
neuro—luzzy learning algorithm. By varying an acceptance threshold in the defuzzification step, we can get
an enumeration of “not so good” agents for a problem type. If PYTHIA-C determines no plausible solution
exists among its agents or itsell, then PYTHIA~C will give the answer that “was best”. When giving such
an answer, the user will be notified of PYTHIA-C’s lack of confidence.

While this scheme serves most purposes, an issue still pending is the mode of ‘switching’ belween LM and
SM. PYTHIA-C switches from LM to SM after an a priori fixed number of problems have been learned.
The timing of the reverse switch from SM to LM is a more interesting problem that we chose to attack by
threc different methodologies.

—Time based: This is, by far, the simplest approach in which PYTHIA-C reverts to LM after a fixed time
period in SM.

—Reactive: In this scheme, a PYTHIA agent sends a message to PYTHIA-C whenever its confidence for
some class of problems has changed significantly. PYTHIA-C can then chose to revert to LM when it
next receives a query about that type of problem.

—Time based Reactive: A combination of the two approaches outlined above would have PYTHIA-C
send out a “has anyone’s abilities changed significantly” message at fixed time intervals, and switch to LM
il it received a positive response.

6.1 System Details of a PYTHIA agent

The PYTHIA agents are implemented by a combination of C language routines, shell scripts and systems
such as CLIPS (the C Language Integrated Production System) [7].

The agents communicate using the Knowledge Query and Manipulation Language (KQML) [5], using
protocol defined performatives. All PYTHIA agents understand and utilize a private langrage (PYTHIA-
Talk) that describes the meaning (content) of the KQML performatives. Examples of KQML performatives
exchanging messages in PYTHIA-Talk format are provided in the next section. There is also an Agent Name
Server (ANS) in this scenario whose purpose is to determine the URL (Uniform Resource Locator) associated
with a particular PY'THIA agent. We use the TCP transport protocol to access the individual PYTHIA
agents. In other words, the URL for the agents would have the format tcp://hostname:portnumber. When
a new PYTHIA agent comes into existence, the URL for this agent can be dynamically registered with the
ANS by an appropriate KQML Application Programming Interface call. PYTHIA-C comes to know of this
new enbry by querying the ANS. In our experimental studies however, we used an abstraction of this dynamic
network resource querying. In other words, PYTHIA-C is told of a new agent by adding the appropriate
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entry in its learning input. In ongoing work, we are adding facilities for collaborators to automatically add
PYTHIA agents (consistent with our PYTHIA specifications) and for PYTHIA-C to become awarc of them
via the ANS.

7. EXPERIMENTAL RESULTS

In this section, we describe the results of applying the above mentioned ideas to a collection of networked
PYTHIA agents. Our current implementation deals with finding svitable agents for selecting methods to
solve elliptic partial differential equations (PDEs). In other words, it is envisioned thal there will ex-
ist several agents, each with specialized expertise about a class{es) of PDEs and it is required to deter-
mine the agent that can best suggest a solution to the problem at hand. An experimental version of this
system can be accessed on-line by using the demos link from the WWW URL of the PYTHIA project:
http://www.cs.purdue. edu/research/cse/pythia. An example of a session where the user specifies the
details of the PDE problem is provided in Fig. 1. The recommendations (rom the PYTHIA-C agent can be
seen in Fig. 2.

For this case study, we have restricted our study to a representative class of PDEs (linear, second-
order PDEs) and our initial problem population consisted of filty—six of such PDEs. Of these, 42 are
‘parameterized’ which leads to an actual problem space of more than two~hundred and fifty problems. Many
of these PDEs have been taken from ‘real-world’ problems while some have been artificially created so as to
exhibit ‘interesting’ characteristics. In this paper, we uiilize 167 of these PDEs. An example of a PDE is
given in Fig. 3.

From this population of PDIs, we defined the [ollowing six non-exclusive classes:

(1) SoLuTiON-SINGULAR: PDEs whose solutions have at least one singularity (6 problems).

(2) SorLuTioN-ANALYTIC: PDEs whose solutions are analytic (35 problems).

(3) SoLuTioN-OsciLLATORY: PDEs whose solutions oscillate (34 problems).

(4) SoLuTiION—-BOUNDARY-LAYER: PDEs with a boundary layer in their solutions (32 problems).

(5) BounNDARY—-CoNDITIONS—MIXED: PDEs that have mixed boundary conditions in their solutions (74
problems).

(6) SpeciaL: PDEs whose solutions do not fall into any of the above classes (10 problems).

As can be easily seen from the size of these classes (the total number of exemplars in the above classifi-
cation is more than 167), they are not ‘mutually-exclusive’: one PDE can belong to more than one class
‘simultaneously’.

7.1 Experimental Setup

This set of 167 problems was divided into two parts — the first part containing 111 exemplars (henceforth,
we refer to this as the larger training set) and the second part containing 56 exemplars (hereinafier referred
to as the smaller training set). We created four scenarios with 6, 5, 4 and 3 PYTHIA agents respectively.
In each case, each PYTHIA agent ‘knows’ about 2 certain class(or classes) of PDE problems. For example,
in the case where there were 6 PYTHIA agents, each agent knew about one class of problems as described
above. Exact information about these scenarios is provided in the table below:
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O polsson Operatar
U Laplace Operator

1 Helmholtz Operator

O Self Adjoint?

T Constant Coefficlents?
U single Derivatives?

Ul Mixed Derlvatives?

Fig. 1. Web Session with C-PYTHIA, inpui




Step 5: Solution (Best Recommendatinns)

The following KQML performative was received (back):

(tall :ontology S-KIF :langquage PYTHIA-Talk :in-reply-to
Problem—276B5 :receiver PYTHIA-C :content{suggest_scheme {HR.3-20
47/14746 p-20-2 23 24.408 5.56021le-06 2.33346e-06 )))

Interpretation: {of this RKQML performetive)

s The given problem belongs to the class of PDE problems known as HR.3-20.

o Therecommended strategy to solve the problem is given by the coded Identification of the solutlen
yrocess, namely 47/14/46 . Use the below table to map ceded strategjes to actual algorithms for
solving PDE problems.

© 1/13/46: 5—point star discretization, as Is indexing and band gauss elimination.

© 47/14/46; Hermite collocation, as Is Indexing and band gauss eiminaton.

o 12//: Finite differences with Dyaknov conjugate gradient solver.

© 13/: Finite differences with fourth crder extrapelation of Dyawnev conjugate gradient solver.
© 9jorder=2%: FFT (Fast Fourler Transform}) 9—point algorithm (2nd order method).

O 94: FFT {Fast Fourier Transform) 9—point algorithm {4th order method).

O % jonder=6/; FFT (Fast Fourier Transform) 9-point algorithm {$th order method).

® The closest problem known to this agent that has characteristics most simlar to the ohe presentedis
p-20-2 . Performance data for this problem has bezn used to prescribe the above mentioned
strategy.

® The number of grid polnts to use for this solutdon strategy s 23 .

® An estimate of the time taken to solve the problem by this strategy [s 24.408 s2conds.

o Likewise, an estimate of the error (relative error) Is 9.56021e-06 .

» Yet another estimate of the error (by a different technique) is 2.33346e-06 .

End of PYTHIA Consultation Sessionll

Tig. 2. Web Session with C-PYTHIA, output
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ProBLEM #28 (wus); + (wuy), =1,
o, f0<r,y<1

where w = 1, atherwise,

DOMAIN [-1,1] x [-1,1]

BC u=0

TRUE unknown

OPERATOR Sclf-adjoint, discontinuous ¢oelficients

Rient S10E Constant

BounpaRy CoNDITIONS  Dirichlet, homogeneous

SoLuTION Approximate solutions given for ¢ = 1, 10, 100. Strong
wave [ronts lor o > 1.

PARAMETER o adjusts size of disconlinuity in operator coeflicients which
inlraduces Jarge, sharp jumps in solution.

Fig. 3. A problem from the PDE population.

[ Scenario No. | No. of PYTHIA Agents | Details ]
1 6 One Agent [or each class
2 5 same as (1) except that

classes (d) and (e)
are the combined expertise of one agent
3 1 same as (2) except that

classes (a) and (c)
are the combined expertise of one agent
4 3 same as (3) except that

classes (b) and (f)
are the combined expertise of one agent

Qur experiments consisted of two main kinds: (i) The knowledge of the various PYTHIA agents in
each setup was assumed to be ‘static’ (fixed apriori). In other words, the expertise of each agent contained
information about the enlire class(es) as described above and (ii) Each agent starts with a very small fraction
of its representative PDE knowledge base and this gets subsequently refined over time. For example, Agent 2
(whose expertise is of the analytic PDE nature), starts with information about 9 problems and progressively
improves with time to the [ull set of 35 problemns. We refer to the first kind as the static case (where the
knowledge of the various agents is assumed to be static and it is required to learn a one-shot mapping to
these agents) and the second kind as the dynamic case (where the knowledge of the agents improves with
time and we need to switch between learning and stable modes as appropriate).

This switeh between learning and stable modes, can itself be done in a variety of ways. In this paper, we
concentrale on the time—based, reactive and time-based reactive techniques. We detail these experiments in
deiail next. As mentioned before, there is also assumed to be a ‘central agent’ (PYTHIA-C) in this setup.

7.2 Static Scenario

In the static scenario, the expertise of each agent is fixed and equals the cardinality of the ¢lasses as described
carlier. PYTHIA-C starts off with no knowledge about which agent is suitable for which PDE problern. To
determine this information, PYTHIA-C uses a flooding technique to shoot cut queries about each problem
to each of the agents in the setup and soliciting recommendations from them. An example of a query by
PYTHIA-C is as [ollows:

(tell :ontology S-KIF
:language PYTHIA-Talk
:reply-with Problem-22750
:sender PYTHIA-C
rreceiver PYTHIA-Agentl
:content ({select_solution_schema
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are presented with all the three algorithms considered in this paper.

(200000000101000.50.51
0.50.50100110000.560.50.50.5))

)

This message implies that the sender is the PYTHIA-C agent, the Teceiver is one of the agents in the
setup, and the content requires the agent PYTHIA-Agent] to select a solution scheme [or the PDE
problem whose characteristic vector is given by the above sequence of numbers. This sequence is understood
to be provided in the PYTHIA-Talk language in the S-KIF ontology. The tag Problem—-22760 indicates a
reference that PYTHIA-Agent! can reply with when communicating an answer. Similarly, an output from
PYTHIA-Agent 1 would be:

(tell :omtology S-KIF
:language PYTHIA-Talk
:in-reply-to Problem—-22750
ireceiver PYTHIA-C
:sender PYTHIA-Agenti
:content (suggest_scheme
(HR.3-20 47/14/46 p-20-2 23
24.408 9.560210-06 2.33346e-06))
)

In this case, PYTHIA-Agent] suggests the scheme described in the content field. This again refers to a
PYTHITA-Talk description of the solution strategy.

Then, each of these recommendations is given a ‘reasonableness’ value and PYTHIA-C chooses the best
agent as the one which has the highest recasonableness value as described in Section 4. Thus, this piece of
information forms one exemplar to the PYTHIA-C setup. In this way, mappings of Lhe form problem, agent
are determined for all problems in each of the 4 agent scenarios.

We conducted two sets of experiments: we first trained PYTHIA-C on the larger training set of problem,
agent pairs and tested our learning on the smaller training set of exemplars. In effect, the smaller training set
formed the test set for this experiment. In the second experiment, the roles of these two sets were reversed.
We also compared our technique with two very popular gradient—descent algorithms for training feedforward
neural networks, namely, Vanilla (Plain) backpropagation (BProp) [26] and Resilient Propagation (RProp)
[21. Fig. 4 summarizes these results.

It can be easily seen that our neuro—fuzzy method consistently outperforms BProp and RProp in learning
the mapping from problems to agents. Also performance using the larger training set was cxpectedly better
than that on the smaller training set. Moreover, our algorithm (housed in PY THIA-C) operates in an on-line
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Fig. 5: On-Line Adaptation: The '6-Agent' scenario was trained with the larger training set, The graph on the lelt shows the
incremental formation of hyperboxea. The one on the right shows the corresponding decrease in the error.

mode. new data do not require retraining on the old. For the larger training set, we incrementally trained
our algorithm on the 111 exemplars and the accuracy figures on the test set were found to steadily rise to
the values depicted in Fig. 4. For example, in the 6~Agent scenario (with the larger training set), we plotted
the gradual decrease of error with increasc in the number of problems seen by PYTHIA-C. Fig. 5 shows this
steady improvement in accuracy alongside the number of hyperboxes utilized by the neuro—fuzzy technique
housed in PYTHIA-C. (It is to be noted that the hyperboxes are incrementally added to the neuro—fuzzy
scheme to better represent the problem space characteristics). The number of hyperboxes created for this
scenario was 53. The progressive increase {rom zero 1o this number can also be seen in Fig. 5.

In a collaborative networked scenario, where the resources change dynamically, this feature of our neuro-
fuzzy technique enables us to automatically infer the capabilities of multiple PYTHIA agents. The graphs
in Fig. 5 should thus be viewed in an incremental learning scenario where the abilities of each of the agents
are being continually revealed in the dynamic setting.

7.3 Dynamic Scenario

In this scenario, the abilities of the agents are assumed to change dynamically and the question is to decide
when PYTHIA-C should switch from a stable mode to a learning mode of operation. As explained earlier,
this switch could be done in one of several ways — Time-Based, Reactive and Time-Based Reactive. We
now describe results [rom each of these experiments.

7.3.1 Time-Based. In the time—based scheme, PYTHIA-C reverts to learning mode at periodic time steps.
At such points, PYTHIA-C cycles through its training set, shoots out queries to other agents, gets back
answers, determines reasonableness values and finally learns new mappings for the PDE problems. This
might involve adding or madifying hyperboxes in the fuzzy min-max network. Figs. 6, 7, 8 and 9 depict the
results with the four agent scenarios and the time-based scheme with the larger training set. i.e., at periodic
time intervals, PYTHIA-C switches to learning mode and cycles through the larger training set with each
of the agents in the setup. The performance is then measured with the smaller training set. As can be
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Fig. 6: Results with the Time Based Scheme for 6 Agents with the larger training set. The graph on the left shows the periodic
incrense in the abilitics of the agents and the one on Lhe right shows Lhe corresponding improvement in accuracy of PYTHIA-C

seen, the accuracy figure steadily improves in all of the cases to the accuracy observed in the previous set
of experiments. Fig. 10 shows the accuracy figures for all the agent scenarios with the time-based reactive
scheme. The steeper lines are the results for the case when the number of agents was maximal (in this case
6), and the one on the top of the graph is Lthe case when there were 3 agents. (This phenomenon is common
to all the three schemes.) As is expected, the scenarios with a lesser number of agents start ofl at a higher
accuracy level and converge to the figures already discussed. This is because, these agents actually combine
the expertise of the individual agents in the first scenario. PYTHIA-C’s accuracy improves from 40.85% to
98.20% in scenario 1, from 59.15% to 98.20% in scenario 2, from 59.28% to 98.20% in scerario 3 and from
68.86% to 98.20% in scenario 4 (In fact, this is true for all the three dynamic schemes discussed. The only
diflerence is the rate of progress towards these values). For the sake of brevity, we are not illustrating the
figures with the smaller training set. The graphs [tom this set ol experiments are very similar to those with
the larger training set except that PYTHIA-C's learning converges to smaller accuracy figures.

We conducted yet ancther series of experiments wilh this scenario, which are more realistic of real multi~
agent systems. Rather ihan having each agenl with approximately 1/3rd of their initial knowledge as a
starling situation, we began with a scenario when there are no ‘known’ agents in the setup. i.c., PYTHIA-
C does not know about the existence of any agents or their capabilities. Then, each agent was slowly
introduced into the scenario with a small inifial knowledge base and then their abilities were slowly increased.
For example, Agent 1 comes into the setup with a ‘small’ knowledge base and announces its existence to
PYTHIA-C. PYTHIA-C creates a ‘class’ for Agent 1, reverts to learning mode (though wasteful) and learns
mappings from PDE problems to agents (in this case, there is only one agent in the setup). Aftcr some time,
Agent 3 comes inlo the seenario and this process is repeated. While the addition of new classes is taking
place, the abilities of existing agents (like Agent 1) also increase simultaneously. Thus, these two events
happen in parallel; i.e., addition of new agents and refinement in the knowledge (abilities) of existing agents.
Because our neuro-fuzzy scheme has the ability to introduce new classes on the fly, PYTHIA-C can handle
this situation well. Needless to mention, the accuracy figures converged to the values already mentioned.

7.3.2 Renctive. In the reaclive scenario, PYTHIA-C doesn't do polling at regular intervals, but instead
waits for olher agents to broadcast information if their confidence for some class of problems has changed
significantly. Again, each agent started with the same initial level of ability and their expertise was slowly
increased. Because, each agent indicates this change of expertise to PYTHIA-C, the latter reverts to learning
mode appropriately. Thus, the accuracy figures approach the same values as in the time-based scheme but
follow a more progressive pattern, in tune with the pattern of increase in the abilities of the other PYTHIA
agents. Figs. 11, 12, 13 and 14 illustrate the results with each of the agent scenarios deseribed in this
paper. As can be seen, there is a more progressive increase in the accuracy figures and these curves begin
more to resemble a 'staircase’ pattern. Figs. 15 summarizes these curves for zll the agent scenarios.
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Fig. 7: Resulis with the Time-Based Scheme [or 5 Agents with the larger Lraining set. The graph on the left shows the periodic
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Fig. 8: Results with the Time-Based Scheme for 4 Agenls with the larger training set. The graph on the lelt shows the periodic
increase in the abilitics of the agenis and the one on the right shows the correspending improvement in accuracy of PYTHIA-C
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Fig. 9: Results with the Time-Based Scheme for 3 Agents with the larger training set. The graph on the left shows the periodic
increase in the abililies of the agents and the one on the right shows the corresponding improvement in accuracy of PYTHIA-C
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Fig. 12: Resulls with the Reactive Scheme for 5 Agents for the larger training set. The graph on the lelt shows the periodic
increase in the abilities of the agents and the one on the right shows the corresponding improvement in accuracy of PYTHIA-C
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Fig. 13: Results with the Reactive Scheme lor 4 Agenis for the larger Lraining set. The graph on the leli shows the periodic
increase in the abilities of the agents and the one on the right shows the corresponding improvement in accuracy of PYTHIA-C
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Fig. 14: Results with the Reactive Scheme for 3 Agenis for the larger training sel. The groph on ihe left shows the periodic
increase in Lhe abililics of the agents and the one on the right shows the corresponding improvement in accuracy of PYTHIA-C
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Fig. 16: Results with the Time-Based Reactive Scheme for 6 Agents for the larger training set. The graph on the left shows
the periodic increase in the abililies of the agents and the one on the right shows the corresponding improvement in accuracy

of PYTHIA-C

7.3.3 Time-Based Reactive. In the time-based reactive paradigm, we use a combinalion of the two ap-
proaches previously outlined. PYTHIA-C sends out a “has anyones abilities changed significantly” message
al periodic time intervals and reverts to learming mode if it receives a reply in the afirmative. Each agent, as
before, started with the same initial level of ability and their expertise was slowly increased. I was observed
that the accuracy figures follow an cven more stable pattern of improvement because PYTHIA-C waits for
other agenis to signal change in expertise but only at regular intervals. Figs. 16, 17, 18 and 19 illustrate
the results with each of the agent scenarios. Figs. 20 summarizes the accuracy curves for all the four agent

Scenarios.
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Fig. 17: Results with the Timc-Based Reactive Scheme for 5§ Agenta for Lthe larger Lraining set. The graph on the left shows
the periodic increase in Lhe abilities of the agents and the one on the right shows the corresponding improvementl in accuracy

of PYTHIA-C
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Fig. 18: Results with the Timec-Based Reactive Scheme for 4 Agents for the larger training set. The graph on the left shows
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