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1 Motivation

Mecasuring the similarity between two strings, through such standard measures as Hamming
dislance, edit distance, and longest common subsequence, is one of the fundamental problems
in pattern matching. Tn this paper, we consider the problem of finding the longest common
subsequence of two slrings. The standard dynamic programming algorithm compules the
longest common subscquence of strings X and Y i O(|X] - |¥]) time. Here, we develop
significantly faster algorithms for a special class of strings which emerge frequently in pattern
malching problems.

A string is run-length encoded if it is described as an ordered sequence of pairs, each
consisting of an alphabet symbol o and an integer counting the number of consecutive
occurrences of . For example, the string aaaabbbbcecabbbbee can be encoded as abicdalb*c?.
Such a run-length encoded string can be significantly shorter than the expanded string
representlalion. Indeed, run-length coding scrves as a popular image compression technique,
since some classes of images, e.g., binary images in facsimile transmission, typically contain
large patches of identically-valued pixels.

The need to approximately match run-length encoded sirings emerged during develop-
ment of an OCR system in concert with Data Capture Systems Inc. [8], which has been
designed to achieve a low substitulion error-rate via fixed-font character recognition. The
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zth row or column of pixels in a given query character image will define a binary string con-
taining a small number of white-black transitions. By comparing this run-length encoded
string against the ¢th row or column of each of the character image-models, we can identify
similar characlers. Since a typical row/column contains approximately 50 pixels but only
3-4 white-black transitions, a time savings of roughly two orders of magnitude would follow
by matching in time proportional to the product of the run lengths, instead of the full string
lengths.

This problem ol malching of run-length encoded strings is a natural generalization of
the original slring matching problem. Indeed, any matching algorithm which takes time
proportional to the product of the run lengths on encoded strings would have the samc
worst-case complexity as standard matching algorithms while exploiting any runs which
happen to exist.

Our problem is a simplified version of the previously studied Set LCS and the Set-Set
LCS problems [6, 9]. In this paper, we present the first algorithm for finding the longest
common subsequence of strings X and ¥ which runs in time polynomial in the size of the
compressed strings. Our final algorithm runs in O(kllog(&{)) time, where £ and ! arve the
compressed lenglhs ol strings X and Y, and is a substantial improvement on Lhe previously
best algorithm of Bunke and Csirik [3], which runs in Q({]Y| + £|X|) time. Our algorithm
is elegant but non-irivial, and suitable for implementation.

2 Previous Work

Throughout this paper, we use the (ollowing notation. Let X{ X, ... X; denote the run length
encoding of string X, where X; is a maximal run of identical characters and |X;| denoles
the length of this run. The length of string X, denoted | X]|, represents the total number of
characters in X, so | X| = ¥4_, | Xi]. Let z; denote the unique character comprising run X;.
Similarly Y1Y2 ... Y denoles the run length encoding of string Y.

A string W i1s said Lo be a subsequence of X if W can be obtained from X by deleting one
or more symbols. The Longest Common Subsequence (LCS) problem for input strings X
and Y consisls of finding a longest string W which is a subsequence of both X" and ¥'. String
editing and LCS problems have been extensively studied, resulting in a copious literature
for which we refer, e.g., to [2].

When the size of the alphabet ¥ is unbounded, an Q(]X|log|X|) lower bound for com-
puting LCS applies, due to Hirschberg [4]. The best known lower bound for bounded ¥ is
linear. Aho, Hirschberg and Ullman [1] showed that, for unbounded alphabels, any algo-
rithm using only "equal-unequal” comparisons must take (| X|?) time in the worst case.
The asymptotically [aslest general solution rests on the corresponding solution by Masek
and Paterson [7] Lo the siring ediling, and hence takes time O(}X|? loglog | X |/ log [ X]).

In praclice, the [ollowing @(| X| x |Y'|} dynamic programming algorithm from Hirschberg
[3] is used. The algorithm starts with a matrix L[0...[Y],0...|X|] filled with zeroes, and then
transforms L in such a way that L[¢,7] (1 <i<|Y|,1 < j < |X|) contains the length of an
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LCS between z;%...2; and y,y,...3;, as follows.

forz=1to |Y]| do
for j = 1 to |X| do if 2; # y; then L[5,j] = Max {L[i,j — 1], L[i — 1, 3]}
else L{i,j] = Li—1,7—-1] + 1

‘The correctness of this paradigm lollows [rom the [ollowing rclations:

Lit, 7 — 1] < Lfgl £ L -1+

3 Longest Common Subsequence — initial algorithm

In this section, we present an algorithm for computing the longest common subsequence of
run length encoded strings X = X)X, ... Xj and ¥ = V1Y¥;...Y; in O(ki(k 4+ 1)) time. This
algorithm maintains an { X & matrix M of blocks, such that M[i, j] contains the value of an
optimal solution between prefixes X() = X1 X,... X; and YW =YY, ... Y;. The correctness
of our algorithm follows because M contains all the essential information of the standard
|X| x |¥| alignment matrix L associated with Lhe uncompressed strings.
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Figure 1: Light and dark blocks delined by strings X and Y.

Figure 1 illustrales Lhis malrix of blocks for inpul strings X = «®6*¢®0® and ¥ = «®t°cle’.
We say that block (7, ) is derk if the corresponding characlers match, i.e. z; = y;. Block
(7,7) is light if 2; # y;. Any common subsequence defines a monotonically non-decreasing
path from (0,0) to ({.X[,|Y]). Each rightward step on this path denotes the deletion of a
character from X, and each downward step a deletion from Y. The matched characters in
the common subsequence correspond to diagonal down-right steps across M, hence the LCS
maximizes the total number of such diagonal steps through the dark blocks ol M.
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Any such path can exit a dark block in onc ol three ways — al the lower right corner,
along the bottom side, or along the right side. The longest common subsequence ol Figure 1
(shown as the solid line), happens to enter and exit each dark block only through its corners.
An optimal path with this additional constraint is computed easily in O(k!) by dynamic
programming. However, paths which exit dark blocks through sides are more complicated to
account [or, since Lhe number of possible exil points on cither side of a block can dominate
the number of blocks on very long runs.

We now consider wo special classes of paths across M. We define a corner path as one
which enters dark blocks only at the upper-left corner and exits only through the lower-right
corner. We say that a path beginning at the upper-left corner of dark block (s, 7} is forced if
it exits through a side of (7, j), and proceeds to the next dark block by a straight horizontal
or vertical “leap”, according to the case. As illustrated by the dolted line in Figure 1, there
is precisely one forced path beginning from the upper lefthand corner of any dark block.

A subpath p;...p; of path P is a contiguous chain of edges from £. Subpaths of forced
and corner paths can bhe composed to define an interesting class of paths through M:

Lemma 1 There is always e longest common subsequence W of X and Y such that W s
defined by e path composed of subpaths of forced and corner paths.

Proof: Consider any path through A which defines the longest common subsequence of
X and Y. We now describe a sequence of transformations which reduce it to a path of the
prescribed shape.

Firsl, consider any maximal subpath passing only through light blocks. Such a subpath
consists only of rightward and downward moves, [or il contributes no matched characlers to
the longest common subsequence. Therelore, without loss of generality, all of Lhe rightward
moves can be collecled Lo appear belore any ol Lhe downward moves.
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Figure 2: Converting an arbitrary subpath into a forced subpath.

Second, consider any maximal subpath through dark block (Z,j). This path cannot
contain both a rightward and a downward move, since by replacing these with a diagonal




move we increase the length of the putative longest common subsequence. Therefore, without
loss of generality, all of the diagonal moves can be collected to appear before any of the
vertical/horizontal moves.

Finally, we consider the dark blocks in the order they are encountered on the path [rom
(0,0) to (JX|,|Y|). Consider the first dark block which is either (1) not cnlered through
its upper-lefthand corner or (2) is not exited through its lower-righthand corner. Case (1)
cannot occur in a longest common subsequence, since the subsequence will be lengthened
by entering in the upper-lelthand corner. Case (2) describes the start of a forced subpath,
unless dark blocks are nol completely traversed. The reduction of Figure 2 converts this
subpath into a forced subpath, thus giving the claimed result. g

Theorem 2 A longest common subsequence of run length cncoded strings X = X1Xo. .. X,
and ¥ = Y1Y,... Y can be compuled in O(Ll(k + 1}) time.

Proof: Lemma 1 guarantees that a longest common subsequence of X and ¥ can always be
oblained by concatenation of subpaths of forced and corner paths. The following algorithm
cxhaustively constructs all such subpaths via dynamic programming;

LCS1(X,Y)
Mlz,7]=0, 1<i<!, 1<5<k%
fori=1tok
forj=1to!

if (color(i,j) == “light”) then M[:, j] = max(M[i — 1, 4], M[,7 — 1])
else begin (* dark block *)
d = min(|X;),|¥;)
Mli, 5] = max(M[i — 1,5 — 1] + d, M[i, 5], M[i — 1, ], M[s, j — 1))
ForcedPathUpdate(i, j, M)
end

The procedure ForcedPathUpdate explicitly traces out Lhe forced path originating at
block (7,7), proceeding vertically il |X;| > |Y;| and horizontally il |X;| < [|¥;|, until the
next dark block (say (¢,j)) is encountered. On exiting each dark block (i, ;) along this
forced path, the block value is updated where M|z, 7] = max(M[¢, j], M[i, ] + &'), where
d' is the diagonal length of the forced path through (#, 7). This process continues until the
forced path exits the corner of a block, or the end of one of the slrings is encountered. This
ForcedPathUpdate operation can be computed in O(k + {) time [or any block (7, ).

Each light block requires conslant time to update, while each dark block takes O(& + ).
The total time complexily follows since there are O(&{) dark blocks. §




4 Longest Common Subsequence — a faster algorithm

In this section we present an algorithm that computes the T.CS of the run length encoded
strings in O(kllog(k!)) time.

In the previous algorithm, cach iteration (i,7) was compuled in O(1) if color(i, ;) is
“light”. When color(i, ) is dark the iteration computed M([z,7] in O(1) time before per-
[orrming a I'orcedPathUpdate operation in O(k + {) time. In this seclion, we show how to
replace this ForcedPathUpdate by a much more efficient, operation.

The ForcedPathUpdate operation starts from (7, 7) and updates all M[#', 7']s encounicred
on the way foward the lower right corner. Eventually, each dark M[¢, 7] is updaled by all
forced paths thal cross its block. In this improved algorithm, the ForcedPathUpdale is
eliminated. While computing M2, j], only two lorced paihs [rom previous iterations will be
considered, and their relevant values will be computed upon request.
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Figure 3: Two [orced paths that match the character A.

Lemma 3 All characiers which are malched on any given forced path will be identical. Also,

two forced paths which proceed on maiches of the same characler will never cross each olher

(I'ig 3).

Consider a forced path that starts in an upper lefl corner of a dark block (z,7) Lhat
matches the character «. Its initial value v is M[i — 1,j — 1]. This path moves down and
to the right in light blocks and diagonally on dark blocks that matich «’s. By Lemma 3,
this path will not cross blocks that match characters other then a. A record is kept for each
forced path, including the following mformation: (a) (¢,) - starting location of the path;
(b) the letter of the match; and (c) its inilial value ».

Define 7'0OP3(a) to be the number of occurrences of the letier o in the uncompressed
version of X;...X;, and LEFT'(a) to be thc number of occurrences of the letter a in
¥i...Y;. For example. when string ¥ = caaabbbbceccabbbbec is encoded as a'licialbic?,




LEFI%(b) is 8. LEFT'(e) will be defined only when ¥; = « or Yy, = a, and TO Pi(a)
defined only when X; =« or X3, = a.

Consider a forced path which starls al (7, j) and matches a with an inilial value v. When
this path crosses column j' > j its value will be v = v + TOP? () — TOP~ (o) (Fig 3).
Moreover, it crosses column 3’ al row 7*, where ¢* is the minimum row such that

LELT (@) = LEFT™(a) + TOPY (a) = TOPI™(a)

Similarly, when Lhis palh crosses row i > 1, its value will be o' = v + LEFT"(a) —
LEFT*(a), and il crosses tow ¢’ on column ;= such thal

TOPY (a) = TOP*~'(a) + LEFT"(a) — LEFT™(a)

Lemma 4 Consider a forced path which starts al (z,7) and malches « with an initial value
v. (fiven a column j' (rowi’), the value of each forced path thal crosses this column (row)
can be computed in O(1) time following O(k + 1) time preprocessing.

Proof: By a performing a prefix-sum computation, the functions L1 and TOP can be
precomputed in O(k + {) time, such that TOP?(a) or LEFT"(e) can retrieved in constant
time. The appropriate values can be computed using the formulas above. j

As described in Section 3, [z, 7] is the maximum of Mz — 1,7], M{i,j — 1] and the
forced palhs thal cross its block, including the one that starts on ils upper lell corner. The
set of forced paths can be divided into two groups. The first group contains all paths that
cross column j above row 2, while the second group contains all paths that cross row i left
to column j. QOur goal is to find the path wilh the highest score in each group, so that
MT[i, 7] can be computed in O(1) time. Below, we discuss only how to find the highest in
the first group, considering forced paths that match the character o; the second group and
other characters can be handled in Lhe same way.

since two forced paths that match the same characler never intersect, the forced paths of
character e defline a lop-down order. We define the order of a path starting from M7, j] as
ORDER(x;i,7) = TOP™ (@) — LEFT"-'(a). The paths intersect any column j* according
to the value of ORDI/R. However, the values of the forced paths al column 7' do nol
increase monotonically in their crossing order, because cerlain paths may begin with lower
inilial values, and they maintain the following properiy:

Lemma 5 Consider two forced paths with values vy and vy when they cross column j', and
v and vi when they cross column j”. These palhs mainlein the equalily: v} — vl = o) — vl

(Fig 3).

Therefore, if a forced path p| intersect column j' lower than another forced path p, and
its value on j’ is smaller than the value of p; on 7°, then path p; can be deleted. Our goal is
to maintain, in order, only the paths which have higher values than the paths above them.
A balanced binary search tree can be built with Lhe records of the forced paths matching e,

7




with Lhe key of each palh defined by its ORDER function. This tree will be pruned so as
to insure that for any given column j’, the values of the paths in the nodes increase during
an in-order traversal.

We will maintain lwo balance binary search trees for each lelter o, one maintaining the
order of paths crossing columns, the other maintaining the order of paths crossing rows.
Thesce same two trees will be used in dealing with all dark blocks that match o. For each
such block M[i, j], we inscrt, separately, to both trees a new forced path that starls [rom
the upper left corner ol M|z, 7]. Then we get the highest scores crossing the lower and right
sides of Mz, 7], one from each trec. When computing a dark block M[z, ;] the following
opcralions are performed:

o Step l. Insert a new forced path.
e Step TI. Find the highest score (C) of the forced paths on column j, above row 1.
e Step ITI. Find the highest score (R) of the forced paths on row i, left Lo column j.

o Step V. M[¢, j] = max(M[i — 1,7], M[z,5 — 1],C, R).

Step [ - insertion of a new path.

(a) Compute ORDER(cv;1,7) := TOPI~ o) — LEFT Ya).

(b) Compute v := Mz —-1,7 —1].

(c) Insert the new path into the trec.

(d) Compute the value of the path thal is stored in the leaf on the lelt. If its value is grealer
than v delete the new path.

(¢) Compute the value of the path that is stored in the leaf on the right. If its value is
smaller than v delete the old path. Continuc till you reach a path with a greater value.

Step Il - Finding the highest score of the forced paths on column j, above row 3.
(a) Compute O := TOPi(a) — LEFT (c).

(b) Find the localion of O in the tree.

(c¢) Compute the valuc C, of the path that is stored in the leaf on the left.

slep I1I is compuled in an analogous way to Step I1.

Theorem 6 A longesi common subsequence of run length encoded strings X = X, Xy ... X;
and Y =Y1Ya.. Yy can be computed in O(kllog(k+ 1)) time.

Proof: The correctness of this procedure follows from the fact that all the relevant forced
paths [rom the algorithm of Theorem 2 are evaluated in the dynamic programming phase of
the current algorithm. The time complexity may be analyzed as follows. Precomputing the

variables LEFT and 1'OF as in Lemma 4 takes O(k 4 {) time. Kach of the 2 - £ balanced
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binary scarch trees has at most &I nodes, so any inscrlion, deletion or membership operation
takes O(log(kl)) time. We perlorm Steps I to IV [or cach of the &I blocks. Step I takes
O(log(kl) + (number of deletions)log(kl)) time. Since cach deleted block must previously
have been inserted, the total number of deletions is O(k). Steps 11 and IIT are computed
in O(log(k!)) while Siep TV requires O(1) time. Therefore, O((k)log(k!)) time suffices to

compute the longest common subsequence of X and Y.

5 Open Problems

What can be said aboul. more general versions of string matching, in particular edit distance
computations?
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