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Abstract

Combining the advantages of a low-degree polynomial
surface representation with Gauss' divergence theo
rem allows efficient and exact calculation of the mo
ments of objects enclosed by a free-form surface. Vol
ume, center of mass and the inertia tensor can be
computed in seconds even for complex objects with
105 patches while changes due to local modification of
the surface geometry can be computed in real time as
feedback for animation or design. Speed and simplic
ity of the approach allow solving the inverse problem
of modelling to match prescribed moments.

1 Introduction

Realistic animation and geometric design must both
pay close attention to the physics implied by the first
few moments, the volume, center of mass and inertia
frame, of the objects they manipulate. A jug whose
fill level is inconsistent with the amount of water filled
into it, or that does not topple over when the projec
tion of the center of mass moves outside the support,
puzzles and distracts the viewer and can lead to dis
aster when unobserved in the design process. While
animators and designers often have an excellent in
tuitive grasp of the approximate physics implied by
shape, the immediate and exact feedback from a tool
like the one developed below can save the user both
time and energy. Real time visual feedback and vi
sua!i7;ation of moments and the solution of simple in
verse problems help identifying critical points in the
moment distribution.

The key to fast and exact computation of moments
of smooth free-form surfaces is to combine the advan~
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tages of a low-degree polynomial surface representa
tion with Gauss' divergence theorem. In Section 2,
we show how Gauss' divergence theorem reduces the
computation of the moments of a solid to the evalua
tion of an integral over the surface that can be eval
uated explicitly if the surface has a piecewise polyno
mial parametrization. In Section 3, we select surface
splines [10] as the currently most appropriate repre
sentation of smooth free-form surfaces for fast and
exact moment computation. In Section 4, we discuss
the details of the evaluation of the surface integrals as
simple averages and bOWld the computation effort. In
Section 5, we measure and visualize moments and in
Section 6 we model geometry to match moments. Sec
tion 7 lists extensions and more applications ahead.

1.1 Prior work

A search through the list of standard text books on
geometric modeling did not unearth any reference to
the moments of the objects modeled. The engineer
ing literature is rich in applications of moments but
the computation is typically based on cellular, i.e.
piecewise constant, or polyhedral, i.e. piecewise lin
ear, approximations to the object (see e.g. [8], and
the massprop command in the ACIS solid modeler).
The direct and exact computation of the moments of
smooth (and non-smooth) free-form surfaces as ex
plained in this paper should in principle be familiar
to anyone who studied advanced calculus but appears
to be new in the context of free-form surfaces of arbi
trary patch layout and topological genus.



2 The elegant divergence theo
rem

1f· n dudv = L 1. f· n ' duidv i
.

U i U,

We now consider specific choices of f that allow us
to determine the first three moments of a solid with
uniform mass distribution. It is efficient to choose
f = [0,0,13] so that we need to compute only

The zeroth moment, Jvto = Iv dV, measures the vol
ume enclosed by S. With 13 = z,

IJvto = Iu z n:l dudv. I
The first moments Jvt i = Iv XidV represent the com
ponents of the center of mass. Choosing 13 as xz, yz
and z2/2 respectively yields

Jvt1 = Iu xz n3 dudv

Jvt 2 = Iu yz n3 dudv

M 3 = Iu z2/2 n3 dudv

M ll = Iu x 2z n:l dudv

Jvt l2 = Iv xyz n3 dudv

Jvt13 = Iu xz2/2 n3 dudv

M 22 =Iuy2z n:ldudv

M 23 = Iv yz212 n3 dudv

M 33 = Iv z3/3 n3 dudv

ax ay ax ay
n3=-----·

au av avau

The second moments yield the components of the in
ertia tensor

We list M ij = Iv xixjdV.

The above formulas assume that the volume has ho
mogeneous density. If this is not the case but the
anti-derivative of the moment-weighted mass distri
bution p(x, y, z) is known, we can easily adapt the
h term and work with similar formulas in the same
framework.

ax ax
n=-A-.

Bu av
where

x(u) = [x,y,zj(u,v) = (;~:::l),
z(u,v)

and the domain of x by U, i.e. (u, v) E U. The surface
normal is the vector

i '\7·fdV= hf . NdS

i.e. that the integral of the divergence of f over the
volume V equals the integral of the normal component
over the surface S of V.

To apply the theorem to moment calculation de
note the parametrization of the surface S by

First mentioned by Gauss in 1813, the divergence
theorem (see e.g. [11} 10.51), relates a volume inte
gral to an integral over the surface. Given a map
f : R'J I-t R3

, its divergence \l . f = L j)~, /; and its
normal component r·N::: L fiN" the theorem states
that

The crucial observation is that by change of vdriable

Is dS::: L[nl dudv.

That is, the area element Inl is the inverse of the
normalization factor of the normal direction so that

i V'·f dV = l f·n/lnl dS

= Lf·n dudv

Now if both f and x are polynomial the integrand is
polynomial; and if U is a simple domain, say a tri
angle or square, then it is clear, and made precise in
Section 4, that the integral can he determined effi
ciently, explicitly and exactly. This remains true if
the parametrization x of S consists of patches Xi and
U is the union of the patch domains Ui:
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3 Selecting an efficient represen
tation

The previous sec~ion did not depend on a particular
representation of the surface S. However, it pointed
out that for efficient and exact computability of the
moments the following properties of the surface patches
are desirable.

1. polynomial patches

2. low degree patches

3. few patches

4. simple domains

These properties rule out several otherwise excellent
surface representations. For example, S-patches [3]
and the recent construction by Hughes and Grimm [7]
arc rational and of high degree so that integrals are
best evaluated by numerical approximation. Simplex
splines [6] use a large number of pieces and generalized
subdivision surfaces, e.g_ [4] [1] [12], lack a global an
alytic definition for application of the divergence the
orem. Standard tensor-product B-splines match the
requirements but fail at modeling smooth surfaces of
arbitrary patch layout or topological genus. Trimmed
NURBS patches on the other hand generically violate
the requirement of simple domains.

Surface splines [10] seem to best fit the bill. Sur
face splines define a piecewise cubic manifold capa
ble of modeling smooth and non-smooth surfaces of
arbitrary patch layout and topological genus. The
embedding of the smooth manifold into R 3 is locally
governed by so-called cut ratios. These numbers al
low for local distribution of curvature and fine-tuning
of shape; where they are set to zero sharp edges and
vertices result so that also purely polyhedral objects
can be modeled in this frame work. Surface splines
come in three flavors, with an underlying representa
tion of exclusively 4-sided, exclusively 3-sided and a
mixture of 3-and 4-sided patches, respectively. Exclu
sively 4-sided patches have recently been used for re
construction [5]. However, the exclusively 3-sided and
the mixed representation have better shape proper
ties, satisfy the strong local convex hull property and
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have lower algebraic and parametric degree. Accord
ing to [9] the 3-sided patches can be represented as
standard linearly-trimmed NURBS quilts and hence
stored, transmitted and rendered in standard form.
The appendix has additional remarks and details of
surface splines.

4 Computing surface integrals

To determine the moments, integrals of type

1xiyizkn3 dudv

are evaluated. For cubic surface splines, the inte
grands of the qth moment are scalar-valued polyno
mial pieces in Bernstein-Bezier form of totat degree

d ~ 3(q+ 1) +4

in two variables, i.e. degree 7, 10 and 13 for the first
three moments. These pieces arc exactly integrated
by taking the average of the Bernstein coefficients (see
e.g. [2]); that is integration consists of summing the
k:= (d + 2)(d + 1)/2 coefficients and dividing by k.

To verify that the moment calculation fits into an
interactive environment, we compute a bound on the
number of operations. The polynomial n3 is a prod
uct of derivatives. Algorithms for differentiation and
multiplication of polynomials in the Bernstein-B&zier
form are standard and can be found in most CAGD
text books and in the short article [2]. Differenti
ation of a vector-valued polynomial of degree d re
quires d(d - 1)/2 vector differences. Multiplication
of two scalar-valued polynomials of degree d1 and d2

respectively, requires (d l + l)dj (d2 + 1)d2/4 multipli
cations and additions. Thus computing n3 requires
3*4*6+2*2*9+15 = 123 additions and 2*2*9 = 36
multiplications. The additional work for each moment
is tabulated below.

moment d + •n, 4 123 36
volume 7 28+60 60
centroid 10 55+56*3 56*3
inertia 13 91+110*3 110'3



Hence, we can compute all components of the first
three moments of a patch in less than 6K operations.
On a 100 MHz processor this allows computing at
least 10 patches per millisecond, enough for interac
tive feedback when updating the surface.

Figure 2: Change of the inertia frame under distortion
of the transparently rendered brick.

.,-------,o-
..... -
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Figure 1: The inertia frame of a smoothed brick
shape. The inertia frame is formed by the principle
directions of the inertia tensor attached to the center
of mass.

The ability to measure moments efficiently as demon
strated in the previous section is the key to solving
the inverse problem of designing geometry to match a
prescribed (set of) moments. In general this problem
is underconstrained since the geometry offers many
degrees of freedom. The standard approach to regu
larizing the problem is to add variational constraints.
Rather than grazing on this fertile field, we look at
some practically relevant problems where the geome
try is restricted to change only in one parameter.

5 Measuring Moments

The principal inertia directions are axes of symmetry
with respect to mass distribution and are computed
as eigenvectors of the inertia tensor I. The eigenval
ues of the inertia tensor measure resistance to torque.
Both sets of information are displayed in the inertia
frame, a stencil attached to the center of mass whose
legs are aligned with the principal inertia directions
and stretched according to the corresponding eigen
values. A smoothed brick shape as shown in Figure
1 is probably the simplest example illustrating the
inertia frame. Figure 2 shows three snapshots of a
real time design sequence that modifies the geometry
of the brick. More complicated objects are shown in
Figure 3. In Figure 3(a), the geometry of the object
is changed by moving one arm of the robot gripper,
the result of lifting the surface spline control net. In
Figure 3(b), the geometry of the object is changed by
smoothing, the result of changing the surface spline
cut ratios from zero to 0.5. The shadow is generated
as an identical object with all z-components collapsed
to zero.

6 Modeling to match moments
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Figure 3: Change of the inertia frame under deforma
tion and smoothing.

5

6.1 Volume matching

Consider filling water into a jug held in fixed posi~

tion. Here, until overflow, the geometry of the water
is fixed by the geometry of the container; the only
degree of freedom' is the height of the water level. A
well-posed problem is to ask for the fill height h of
the container x given a fixed water volume Va. The
problem is non-trivial, since the top surface of the wa
ter at rest is a plane that cuts the container patches in
algebraic curves resulting in challenging boundary in~

tegrals when an exact solution is sought. Rotating the
container if necessary so that the negative z-direction
agrees with the direction of gravity the problem can
be formally written as

find h, such that volume x(h., u) = Va.

The problem has the nice property that h is a mono-
tone function of the volume so that bisection will not
only succeed if the volume fits into the container but
also yield a sequence of upper and lower bounds in the
process. Newton's method guarantees no such bound
and has to cope with the fact that h is generaUy not
a differentiable function of Va: consider the rate of
change at the branch point when filling an extruded
T-shape.

Each bisection step requires computing a volume
bounded by the intersection of a piecewise cubic free
fonn surface and a half-space. To avoid the exact
intersection computation, we subdivide the patches
in the vicinity of the intersection such that we overes
timate or underestimate the volume already enclosed.
The computation is fast enough to allow the real time
animation shown in Figure 4. Here the volume is kept
constant and the fill height is recomputed while the
containing shape is interactively deformed.

6.2 Mass matching

As a second example, we determine the point of insta
bility of a gripper placed on a table top. Here the free
parameter is the opening angle D: and the condition is
that the projection of the center of mass m(x) comes
to lie on the on the table edge E, i.e.

find a: such that m(x((a:, u)) C E.



Bisection with a call to the mass computing module
rather than the volume module solves the problem.
The sequence of computations is animated in Figure
5. Note that as 0' varies the blend of the finger with
the body is affected. Therefore the standard engi
neering approach of decomposing the gripper into a
fixed and a moving part and adding their respective
centers of mass to compute the center of mass of the
whole object yields a less accurate result.

6.3 Inertia matching

The inertia tensor I is a positive definite, symmetric
matrix. As pointed out in Section 5, its eigenvectors
and eigenvalues can be used, together with the center
of mass, to define a frame that is unique if the eigen
values are distinct. We can use this inertia frame to
efficiently find an unknown rigid motion by which an
object is displaced with respect to a reference posi
tion. For example, in object registration, a cloud of
measured points from a physical object and a sur·
face model of this object (Figure 6) are to be brought
in agreement by a rigid motion. This motion is effi
ciently computed as an affine transformation relating
the inertia frames of the two entities. In practice,
this method works very well even when the sampled
points are not exactly on the given model and is vastly
faster than sampling the surface model and attempt-
ing a least-squares fit of the two point clouds.

Figure 4: Deformation of an object alters the fill
height for a fixed fill volume.
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7 A sketch of further applica
tions

Moment-based tools will give animators and design
ers a much better feel for the objects they are work~

ing with and undoubtedly inspire innovative uses. A
likely application, hinted at in Figure 6, is physics
based animation. Mechanical engineers for their part
may appreciate exact moment information for com
plex objects.

The authors of this paper, varying from under
graduate to postgraduate, learned and appreciated
multivariate calculus anew while implementing and
using the tool. Consequently we used it to generate
non-trivial applications of Gauss' divergence theorem
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Appendix: Surface spline synop
sis

Surfacing with surface splines consists of two stages.
In the first, illustrated in Figure 7, an arbitrarily con
nected input polyhedron is transformed into a planar
cut polyhedron by (edge and) comer cutting (cf [10J

8

Figure 7: Input polyhedron and planar-cut polyhe
dron.

pp 649-650). A planar-cut polyhedron is a polyhe
dron with every interior vertex surrounded by four
facets. The first and third facet are four-sided, the
other two must be planar if they have more than
four edges. - Zero depth cuts, corresponding to a
non-smooth embedding of the C 1 manifold into Jl3,
are pennitted so that also purely polyhedral approx
imations can he modeled and measured in this frame
work. - In the second step, the Bezier coefficients
of the cubic patches are computed as simple convex
combinations of the planar-cut polyhedron (cf [10] P
652).
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