Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1996

Analysis of a Denial of Service Attack on TCP

Christoph L. Schuba
Ivan Krsul

Markus G. Huhn
Aurobindo Sundaram

Eugene H. Spafford
Purdue University, spaf@cs.purdue.edu

Report Number:
96-073

Schuba, Christoph L.; Krsul, lvan; Huhn, Markus G.; Sundaram, Aurobindo; and Spafford, Eugene H.,
"Analysis of a Denial of Service Attack on TCP" (1996). Department of Computer Science Technical
Reports. Paper 1327.

https://docs.lib.purdue.edu/cstech/1327

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ANALYSIS OF A DENIAL OF
SERVICE ATTACK ON TCP

Christoph L. Schuba
Ivan V., Krsul
Markus G. Kuhn
Eugene H. Spafford
Aurobindo Sundaram
Diego Zamboni

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

CSD-TR 96-073
December 1996

Analysis of a Denial of Service Attack on TCP

Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn,
Eugene H. Spafford, Aurobindo Sundaram, Diego Zamboni

COAST Laboratory

Department of Computer Sciences
Purdue University
1398 Department of Computer Sciences
West Lafayette, IN 47907-1398

{s chuba,krsul,kuhn,spaf, sundaram,zamboni }@cs .purdue.edu

Abstract

This paper analyzes a network-based denial of ser-
vice attack for IP (Internet Protocel) based networks.
It is popularly called SYN flooding. It works by an
attacker sending many TCP (Transmission Conirol
Protocol) connection requests with spoofed source ad-
dresses to a victim’s machine. Each single request
causes the targeted host to instantiate data struc-
tures out of a limited pool of resources. Once the tar-
get host’s resources are exhausted, no more incoming
TCP connections can be established, thus denying
further legitimate access.

The paper contributes a detailed analysis of the
SYN flooding attack and a discussion of existing and
proposed countermeasures. Furthermore, we intro-
duce a new solution approach, explain its design, and
evaluate its performance. Our approach offers pro-
tection against SYN flooding for all hosts connected
to the same local area network, independent of their
operating system or networking stack implementa-
tion. It is highly portable, configurable, extensible,
and neither requires special hardware, nor modifica-
tions in routers or protected end systems.

1 Introduction

Since September 1996, several dozen sites on the In-
ternet have been subjected to a denial of service at-
tack, popularly called SYN Flooding [4, 5, 19]. The
attack exploits weaknesses in the TCP/IP (Trans-
mission Control Protocol{ Internet Protocol) protocol
suite. This cannot be corrected without significant
modifications to its protocols. These denial of service

attacks can be launched with little effort. Presently,
it is difficult to trace an attack back to its originator.

Several possible solutions to this attack have been
proposed by others, and some implemented. We have
developed an active monitoring tool that classifies IT?
source addresses with high probability as being fal-
sified or genuine. Qur approach finds connection es-
tablishment protocol messages that are coming from
forged IP addresses, and takes actions to ensure that
the resulting illegitimate half-open connections arc
resct immediately.

This paper is organized as follows. Section 2 de-
scribes background material, such as the IP and TCP
protocols, Section 3 explains the SYN flooding at-
tack. Scction 4 discusses existing approaches to solve
this problem, such as configuration improvements
and firewall-hased approaches. The technical details
of our approach are described in Section 5, followed
by a performance evaluation in Scction 6. Sections 7
and 8 outline future work issues and present conclu-
sions.

2 Background

We will provide a brief description of the [eatures of
the TCP/IP protocol suite that facilitate this attack.
For further details see [2, 15, 16].

2.1 Internet Protocol

The Internet Profocol (IP) is the standard network
layer protocol of the Internet that provides an unreli-
able, connection-less, best-effort packet delivery ser-
vice. IP defines the basic unit of data transfer used

throughout an IP network, called a datagram. The
service is wunreliable, because the delivery of data-
grams is not guaranteed. Datagrams may be lost,
duplicated, delayed, or delivered out of order. IF is
connection-less, because each packet is treated inde-
pendently of others — each may travel over different
paths and some may be lost while others are deliv-
ered. IP provides best-effert delivery, because packets
are not discarded unless resources are exhausted or
underlying networks fail. Datagrams are routed to-
wards their destination. A set of rules characterize
how hosts and gateways should process packets, how
and when error messages should be generated, and
when packets should be discarded.

2.2 ‘'Transmission Control Protocol

To ensure reliable communications for applications
and services that need them, the Transmission Con-
trel Protocol (TCP)} is available. It resides between IP
and the application layer. TCP provides a reliable,
connection-oriented data stream delivery service. As
long as there is link layer communication between
two communicating endpoints, TCP guarantees that
datagrams will be delivered in order, without errors,
and without duplication. It provides these services
by using flow control mechanisms, such as the sliding
window protocol, and adaptive retransmission tech-
niques.

2.2.1 Three-way Handshake

A

G| (M| ID]|[s,
R O

S A - attacker
S;-source M - monitor
D - destination G - gateway

Figure 1: Generic network topology

Before data can be transmitted between a source host
S; and a destination host I), TCP needs to establish
a connection between 5; and D (see Figure 1). The
connection establishment process is called the three-
way handshake (see Figure 2). The first step in the
process is a SYN! packet that is sent from S; to D.

UTCP packet types are distinguished by ag bits (e.g., SYN-
chronize, ACKnowledgment, ReSeT) set in the TCP header
code field. In the remainder of the paper we will abbreviate
TCP cantrol packets by referring to the fiags set in their code

The second message, from D to S;, has both the SYN
and ACK flags set indicating that DD acknowledges
the SYN and is continuing the handshake. The third
message, from S; to D has its ACK bit set, and is an
indication to D that both hosts agree that a connec-
tion has been established. The third message may
contain user payload data.

S D

LISTEN
—
SYN ¥ ACK

/ SYN_RECVD

ACK

\Y\ CONNECTED

Figure 2: Three-way Handshake

The three-way handshake also initializes the se-
quence numbers for a new connection between S; and
D. Sequence numbers are needed by the TCP pro-
tocol to enable reliable packet delivery and retrans-
mission. 5; sends an initial sequence number z with
the first datagram: SYN.. In the second message D
acknowledges the first datagram with ACK,,; and
sends its own sequence number y: SYN,,. §; acknowl-
edges D’s packet in the final message of the three-way
handshake: ACK,,.

2.2.2 TCP Data Structures

For any TCP connection, under BSD style network
code, there are three memory structures that need
to be allocated by both endpoints (See [18]). The
socket structure (socket} holds information related
to the local end of the communication link: protocol
used, state information, addressing information, con-
nection quenes, buffers and flags. TCP uses the In-
ternet protocol control block structure (inpeb) at the
transport layer to hold information such as TCP state
information, I’ address infermation, port numbers,
IP header prototype and options, and a pointer to the
routing table entry for the destination address. The
TCP Control Block structure (tcpch) contains TCP
specific information such as timer information, se-
quence number information, flow control status, and
out-of-band data. The combined size of these data

field, e.g., SYN instead of TCP conirol datagram with the SYN
bit sel in its code field.

Operating System | Backlog [Backlog + Grace
FreeBSD 2.1.5 n.a. 128
Linux 1.2.x 10 10
Solaris 2.4 5 n.a.
Solaris 2.5.1 32 n.a.
Sun0S 4.x] 8
Windows NTs 3.51 6 6
Windows NTw 4.0 G 6

Table 1: Backlogs for some Operating Systems

structures for a single TCP connection may typically
exceed 280 bytes.

Different versions of Unix use different data struc-
tures and schemes of allocation, but for the purpose
of this discussion, it is sufficient to understand that
every TCP connection establishment requires an al-
location of significant memory resources.

2.2.3 TCP Connection Establishment

When a SYN arrives at a port on which a TCP server
is listening, the above-mentioned data structures are
allocated. There is a limit on the number of con-
current TCP connections that can be in a halfopen
connection state, called the SYN_RECVD state {i.e,
SYN received — see Appendix A). Not enforcing this
limit would lead to a different denial of service attack:
an attacker could request so many connections that
the target machine's memory is completely exhausted
by allocating data structures for half-open TCP con-
nections. When the maximum number of half-open
connections per port is reached (sce Table 1, [6]),
TCP discards all new incoming connection requests
until it has either cleared or completed some of the
half-open cornections. Overall system resources are
usually sufficient for several ports to be Hooded.

The TCP connection establishment process can be
described as a state machine. Detailed below is what
happens from the point of view of the destination
machine (server):

1. A packet arrives at the destination machine
when the TCP state machine is in the LISTEN
state.

2. If the datagram checksum is incorrect, the packet
will be discarded, and the client is expected to
retransmit it.

3. The tcpcb associated with the connection is
searched for. If it is not found, the server will
discard the packet and will send an RST (ie.,
inform the client that it reset the connection). If

the tcpeb exists, but the TCP state machine is
not in the LISTEN state, the server will discard
the packet, but will not send an RST {this would,
for example, be the case when the server is just
coming up, but has not yet started listening).

4, If the SYN packet arrives for a socket that is
in the LISTEN state, the above mentioned data
structures will be allocated. However, the server
will also set a flag indicating that it will destroy
the connection and associated memory struc-
tures if it encounters an error. If the backlog
queue is full, the server will consider this an er-
ror and will terminate the connection.

[+

. The packet will be ignored if it contains an RST.
If it contains an ACK, it will be discarded and an
RST sent to the other side. The packet will be
discarded if the SYN bit is not set. Otherwise,
the server copies information, such as the client’s
address information, into a buffer, connects its
tcpeb to the client, and initializes its initial send
sequence (1SS} number .

6. The server now sends the second message of the
three-way handshake (SYN,4; and ACK,) to
the client. The state changes to SYN.RECVD.
A connection establishment timer is started for
this half-open connection. The connection re-
mains in the SYN_RECVD state until either an
ACK (the third message of the handshake) is re-
ceived or until the timer expires. This timer is
usually set to 75 seconds. During this period
of time retransmissions of the first and second
message of the three-way handshake may occur.
When the timer expires, all memory structures
associated with the connection are deallocated,
and the server goes back to the LISTEN state.

3 The SYN Flooding Attack

3.1 The Attack

As mentioned above, TCP implementations are de-
signed with a small limit on how many half-open con-
nections per port are possible at any given time. An
attacker A initiates a SYN flooding attack by send-
ing many connection requests with spooled source ad-
dresses to the victim machine ID. That causes D to
allocate resources as explained in Section 2.2.3 and,
once the limit of half~open connections is reached,
to refuse all successive connection establishment at-
tempts — in particular legitimate attempts (see Fig-
ure 3}. It is important to note that neither outgoing

connection attempts nor connections that are already
established are affected by this attack.

A D
LISTEN

Nonexistent spoofed SYN

SYN_RECVD

Port flooding occurs

Figure 3: A system under attack

This condition exists until either the timer expires,
or some connections are completed or reset. If the
timer expires for a particular half-open connection,
the host will reset the connection and release all re-
sources allocated for it.

If a spoofed SYN packet contains the source ad-
dress of a reachable IP host S;, that host will receive
the second message of the three-way handshake gen-
erated by D. Not expecting a SYN+ACK without
having requested a connection, S; will send a RST
packet to DD, and consequently cause I to reset the
connection. It is therefore in the interest of an at-
tacker to forge source addresses that do not belong
to hosts that are reachable from the victim D.

If the attacker wants the denial of service condition
to last longer than the timeout period, he needs to
continuously keep requesting new conncctions from
the victim machine. The amount of CPU and net-
work bandwidth required by an attacker for a sus-
tained attack is negligible.

The basis of the attack is that TCP/IP does not of-
fer strong authentication on its control packets. Fur-
thermore there is a requirement for an inappropri-
ately burdensome allocation of memory and compu-
tation resources on the target side.

3.2 Different Attack Modes

Typical SYN Hooding attacks can vary several pa-
rameters: the number of SYN packets per source ad-
dress sent in a batch (=: bateh-size), the delay be-
tween successive batches (=: delay), and the mode of
source address allocation {=: mode).

We consider only source addresses of hosts that are
not reachable from D, be it because the addresses are
not yet allocated, assigned, or the associated hosts

are very slow in response, virtually or physically dis-
connected, or down. We classify three possible modes
of source address allocation: The attacker can be us-
ing a single address, 2 short list of addresses, or no
list at all?,

Single address: The attack scripts published in the
hacker magazines Phrack [6] and 2600 [8] take as
a parameter a single spoofed address that is used
as the source address of all 5YN packets. In the
absence of any defense, this mode of attack is as
effective as the other three modes described.

Short list: An attacker can generate a small pool of
addresses and use them as source addresses to
generate SYN packets.

No list: The attacker can use a different, randomly
generated source address for each successive
batch of SYN packets.

4 Solutions

In our opinion a good solution should have the fol-
lowing characteristics:

» independence of operating system and network
stack implementation of the protected end sys-
tems

« no requirement for IP or TCP protocol modifi-
cations

o capability to protect sets of machines, and not
only a single machine

* no special hardware requirements
s portability

» extensibility

¢ configurability

The countermeasures described in this section have
been proposed by others to date. None of these pro-
posals provides all the characteristics we are looking
for.

4.1 Configuration Optimization

There are several ways of reducing the likelihood and
effects of an attack that involve changes in the con-
figurations of end systems and routers.

2We list the “single address” mode separately, because it
represents an important special case of the “lisl of addresses"
mode.

4.1.1 System Configuration Improvements

To defend against the exhaustion of resources in
the systems under attack, an obvious approach is
to increase the number of resources devoted to half-
open TCP connections, and to reduce the timeouts.
These measures have been suggested by different
sources {11], and can be summarized as:

1. Reduce the timeout period from the default to a
short time, e.g., 10 seconds. This helps in prun-
ing half-open connections from the TCP queue.

2. Significantly increase the length of the backlog
queue from the defaunlt {see Table 1). This makes
the system able to cope with more simultaneous
half-open connections than before.

3. Disable non-essential services, thus reducing the
nutnber of ports that can be attacked.

These measures help in dealing with attacks, but
also have severe shortcomings:

1. Lowering the timeouts may deny legitimate ac-
cess for machines to which the round trip times
exceed the timeout period.

2. Increasing the backlog leads to a potential in-
crease in resource usage. One vendor recom-
mends upgrading systems to a minimum of
128 MB RAM to allow them to cope with at-
tacks.

4.1.2 Router Configuration Improvements

The measures proposed in the first reactions to the re-
cent attacks [4], as well as several other sources [L, 9],
attempt to make it difficult for packets with spoofed
source addresses to traverse routers. The solutions
praposed can be summarized as follows:

1. Configure external interfaces on routers to block
packets that have source addresses from the in-
ternal network.

2. Configure internal router interfaces to block
packets to the outside that have source addresses
from outside the internal network. This limits
the ability to launch a SYN fooding attack from
that network, because the attacker would only be
able to generate packets with internal addresses.

These measures can be effective, but only if taken
in large scale. As more Internet Service Providers
(ISPs) configure their routers appropriately, the fer-
tile ground for launching SYN flooding attacks may
be reduced.

4.2 Infrastructure Improvements

Router configurations can be improved if the ad-
dress spaces rcachable over their various interfaces
arc disjoint and well-defined [9]. This is the case for
routers that attach an organization or a local ISP
to a backbone network. The address prefixes sepa-
rate the inside and the outside. An example where
this scheme is deployed is the international telephone
system. Phone mumber assignment is based on the
geographical location of the end system.

Currently, there are practical problems for this ap-
proach to work: in gencral, routers in large back-
bone networks with complex topology cannot make
a clear distinction between inbound and ounthound
traffic. Packets are routed in backbones based on eur-
rent link avatlability and load and can take numerous
possible paths througl the network. Genuine packets
from the same source address can reach a backbone
router legitimately over various interfaces.

As long as a significant number of sites can trans-
mit packets into the backbone networks without any
source address checking, hosts are still subject to un-
traceable attacks. Thercfore, additional backbone
mechanisms should be implemented to cope with a
large number of network based attacks.

The implementation and deployment of a scheme
to cryptographically sign IP source addresses of all
packets would allow tracing the physical transmis-
sion path of any II* packet to its source. Although
this wouldn not prevent SYN fooding, the threat of
tracing and subsequent prosecution should serve as a
deterrent to at least casual attacks. In this case, on-
line tracing mechanisms are especially useful, because
a successful SYN flooding attack requires sustained
network activity. The Internet infrastructure lacks
basic mechanisms that have been present and suc-
cessfully used in telephone networks for a long time.

4.3 Connection Establishment Im-
provements

This solution addresses the fact that TCP imposes
asymmetric memory and computation requirements
on the two endpoints during each connection estab-
lishment process. The destination host needs to al-
locate large data structures in response to any SYN
packet, without any guarantee of its authenticity.

The three-way handshake requires the sequence
number y to match between the second and third
messape to protect against accidentally reopened old
connections and unauthorized access (see [3]). The
destination therefore needs to either store its ISS y

between sending the second message and receiving
the third message, or be able to regenerate y at the
time the third message of the three-way handshake is
received. If there were no mechanism to regenerate
y and the destination didn’t store g, any host could
establish a connection by sending only the third mes-
sage.

One such mechanism is to caleulate y as a cryp-
tographic hash value of source and destination IP
addresses, ports, the source's IS8 z, and a destina-
tion specific secret key. D would calculate y in that
manner and use it in its SYN+ACK message. At
the time I received the third message of the three-
way handshake it can recalculate ' by using its se-
cret key, sequence number, the addresses, and the
ports found in that message. If ¥’ matches the ¥ in
ACKy, 1, the conncction is legitimate, otherwise it is
not. Note that this solution also provides some pro-
tection against sequence number prediction ([3]), be-
cause of the statistical properties of good hash func-
tions.

Although this approach prevents the SYN flood-
ing attack, it has considerable drawbacks. This so-
lution requires the modification of the TCP stan-
dard and consequently every TCP implementation.
It is impossible to provide the fault tolerance that
TCP currently oflers without the destination keeping
state about cach half-open connection. Furthermore,
this mechanism makes it impossible for the source
to include data in the third message of the three-
way handshake, because z needs to be part of the
hash function argument. As therc are only 232 TCP
scquence numbers, this technique introduces a small
probability that an old or a single forged packet might
open a connection. Section 4.4.1 discusses an exten-
sion of this approach.

4.4 Firewall Approach

As many sites connected to the Internet are already
somewhat protected by firewalls, it makes sense to
try to use firewalls to protect against SYN flood-
ing. Several firewall vendors have already made prod-
ucts available to increase protection against the at-
tacks (13, 14], and some other solutions have been
proposed.

Firewall-based protection approaches are based on
the idea that every packet destined to a host inside
the firewall has to be examined by the firewall first,
and thus decisions can be made on its authenticity
and actions can be taken to protect the internal hosts.
This ¢an be effective if, apart from the normal block-
ing done by the firewall, some other specialized mech-

anism is put in place to deal with SYN Aooding.

The drawbacks of this approach are delays on every
packet for additional processing. Not every firewall
product is capable of adding functionality, such as a
module to protect against SYN fAooding.

The two main approaches are described below.

4.4.1 Firewall as a Relay

In this approach, when a packet for an internal host
is received the firewall answers on its behalf. Only af-
ter the three-way handshake is successfully completed
does the firewall contact the host and establish a sec-
ond connection.

1. In the case of an attack (see Figure 4), the fire-
wall answers to the SYN sent by the attacker.
Because the final ACK never arrives, the firewall
terminates the connection, and the host never re-
ceives the datagram. This mode of protection is
only effective if the firewall itself is not vulnera-
ble to SYN flooding.

A Firewall D
s
SY ;L}}EE/’

Tigure 4: Attack scenario with a relay-firewall pro-
tection

2. In the case of a legitimate connection {Figure 5),
after the firewall receives the final ACK, it cre-
ates a new connection to the internal host on
behalf of the original client. This makes the pro-
tected machines vulnerable to the new degrada-
tion of service attack described in Section 2.2.3.
Once the connection is established, the firewall
has to keep acting as a proxy to translate the se-
quence numbers in the packets that flow between
the client and the server.

This method has the drawback of introducing new
delays for legitimate connections. Delays are intro-
duced by extra processing done at the firewall, both
at connection establishment time and for each data
packet. The obvious advantage is that the destina-
tion host never receives spoofed SYN packets.

8 Firewall D

SYN
T
SYN+ACK
\.
SYN+ACK
o
_____ Data <1 ACK
S Y
! p=2--__Data
' -
¢ Data]
it
Data IR B
e — =~ 7 .| 7-.Sequence
) number
conversion

Figure 5: Legitimate connection with a relay-firewall
protection

An alternative approach in which the firewall could
predict the sequence number that is going to be used
by the host (see Section 4.3) would allow the firewall
to intervenc in the same manner when establishing
the connection, without the need for translating se-
quence numbers for each data packet.

4.4.2 Firewall as a Semi-transparent Gate-
way

In this approach, the firewall lets SYN and ACK
packets go through, but monitors the traffic and re-
acts to it. We call this the semi-transparent gateway
approach.

The firewall passes SYN packets destined to inter-
nal hosts. When the host responds with a SYN+ACK
packet, the firewall forwards it, but reacts by generat-
ing and sending an ACI{ packet that seems to come
from the client. This has the effect of moving the
connection out of the backlog queue in the host, thus
freeing the resources that were allocated for the half-
open connection.

1. In the case of an attack (see Figure 6), when
the host sends the SYN+ACK, the gateway lets
it pass and generates and sends the ACK that
moves the connection out of the backlog queue.
If the firewall has not received the legitimate

ACK after some (arguably short} period of time,
it will send a RST packet, terminating the con-
nection.

A Firewall D

SYN
“\‘_—\————_

SYN+ACK

Timeout

Figure G: Attack with semi-transparent gateway fire-
wall protection

2. In the case of a legitimate connection (Figure 7}
the firewall generates and sends an ACK packet.
When the legitimate ACK packet arrives, the
firewall lets it pass, and the “duplicate” ACK
packet arrives at the host. TCP is designed
to cope with duplicate packets, so the duplicate
packet. is silently discarded. Now data can flow
freely in both directions, without further firewall

intervention.
S Firewall D
S
—
SYN+ACK
Fo--- - ACK
————ACK CK_
—
I TRREE MU -
PR
Data

Figure 7: Legitirmatc connection with semi-
transparent gateway firewall protection

The main advantage of this approach over the pre-
vious one is that no delays are introduced for legit-
imate connections once they are established. The

price to pay is a large number of illegitimate open
connections at the destination if it is under attack.
However, the limit on the number of open connec-
tions is much higher on most systems (in the order
of thousands, limited only by the CPU and memory
Tesources available at the host), so it is an extra load
that most server class systems can withstand with-
out many problems. Again, this approach requires
the timeout period to be very cavefully selected, so
as to not deny access to legitimate hasts with long
response times.

5 Active Monitor — synkill

We have developed a software tool that can lessen the
impact of SYN flooding attacks, and in many cases
defeat attacks completely. It provides all character-
istics as described in Section 4.

5.1 Description

The program requires the ability to monitor and in-
ject network traffic to and from the machines it is
protecting. Ethernet is an example for a networking
technology that satisfies this requirement. The pro-
gram is called a moniter, because it reads and exam-
ines all TCP packets on the LAN after setting its net-
work interface into promiscuous mode. The program
is called active, because it can generate TCP packets
in response to observed traffic and inject them into
the network. In the following sections we will refer to
the algorithm, and its implementation as synkill.

5.1.1 Algorithm

The synkill algorithm classifies the source IP ad-
dresses of TCP packets as never seen (=: null), be-
longing to correctly behaving (=: good) hosts, as po-
tentially spoofed addresses (=: new), or as most cer-
tainly spoofed addresses (=: bad). This classification
is based on observed network traffic and administra-
tively supplied input. Addresses that are adminis-
tratively configured as good (bad) are called perfect
(evil).

Synkill performs several processing steps on ev-
ery TCP packet that is observed on the local area
network, and handles asynchronous events, such as
administrative input and timer expirations. TCP
packet processing can be divided into:

¢ address prefiltering, where the program classifies
the observed address as impossible, unassigned,

or administratively configured as perfect or evil
(see Section 5.1.2)

s a decision process based on a state machine to
determine correct state membership and actions
(see Section 5.1.3).

A M D

—s

SYN+ACK T

Figure 8: Attack scenario: synkill generates RST
packet in response to bad or evil IP source addresses.
The connection at D is immediately moved into the
CLOSED state and resources are released.

A M D

SYN
‘‘_‘_—_‘_—‘——
| LISTEN

SYN+ACK |] SYN_RECVD
r T~ s
= ACK CONNECTED
=9
=
[}
ot
e .
CLOSED

Figure 9: Attack scenario: synkill sends an ACK
packet to complete the connection. After ezpiry has
passed, synkill generates a RST.

The program can take two possible actions:

¢ Synkill sends RST packets whenever it observes
connection establishment attempts from impos-
sible, bad, or ewil IP addresses or networks (Sce
Figures 8, 9, and 11). The purpose of this action
is to release the resources allocated at the desti-
nation machine for connection establishments.

¢ Synkill completes TCP connections by gener-
ating the third message of the three-way hand-
shake, and sending it to the destination (See Fig-

— S|
SYN+ACK

\

Figure 10: Normal access scenario: synkill gener-
ates and sends an ACK packet to complete the pend-
ing connection. The “duplicate” ACK from the orig-
inal source A reaches I} later and is ignored.

ures 9, 10, and 11). The purpose of this ac-
tion is to move a connection quickly from the
SYN_RECVD to the CONNECTED state. This
is useful if synkill considers the connection es-
tablishment attempt to be illegitimate. This ap-
proach is similar to the semi-transparent gate-
way solution described in Section 4.4.2 and is
also potentially subject to the new degradation
of service attack described in 2.2.3.

5.1.2 Operation

In addition to the address classification, synkill per-
forms the following processing steps.

* process administrative input (asynchronously)
¢ handle ezpiry events (asynchronounsly)
» handle steleness events (asynchronously)

¢ send RST for all impossible addresses {e.g., net
0.0.0.0 or 127.0.0.0)

s send ACK to complete observed SYN+ACK
connections

e send RST for all evil addresses (e.g., nets
10.0.0.0, 172.16.0.0, and 192.168.0.0; see [17])

5.1.3 State Machine

After the preprocessing steps are taken, synkill
operates as a state machine (see Figure 12). The

5 M D
T
iyl
: ‘—--______% LISTEN
T SYN#ACK|l—— | SYN_RECVD
e ACK ™~~~ ~ - |
AR . CONNECTED
< : Expi
A LRST
DUNACK | T T "> cLosED
__________—-——-_- Too late
- ,_-———-'__' RET
A
‘-é—-—’—_-;’

Figure 11: Normal access scenario: the connection
delay between a valid source machine and the des-
tination is large. Synkill will generate a RST too
early if the ezpiry timer value is not chosen carefully!

source address of each TCP packet is examined to de-
termine the set membership of the address (null, new,
bad, or good). Null addresses are not saved explicitly,
because it is not practical to keep data structures for
all possible IP addresses. If an address is not present
in the database, it is considered to be in state null

Figure 12 depicts the state machine. The symbol u
denotes when the timestamp of a given address is up-
dated. These timestamps are used to generate timer
events (see below). Record denotes where datagram
information (II* addresses, ports, and sequence num-
bers) is recorded, so that a RST can be generated
later if necessary. There are several distinct sets of
events: observed TCP packets, timer events, and ad-
ministrative commands:

1. Observed T'CP packets

SYN TCP packets with the SYN bit set are the
initial message of any TCP connection es-
tablishment attempt. The state machine is
designed to ignore SYNs [or addresses that
are in the new, good, or perfect states. For
addresses in the bad or ewil states, a RST
packet is generated and sent.

The very first packet received from an ad-
dress with its SYN bit set is moved into the
ncw state to indicate suspicion. As soon
as further valid TCP traffic from that ad-
dress is observed (ACIK, RST) the address
is moved into the good state.

ACK v RST

Staleness
record A

ACK v RST

ACK, RST If synkill receives a valid ACK

or RST packets from an address, it means
that the host generates valid packets and
the address can be considered good. The
address is moved into the good state.

2. Timer events

expiry An ezpiry event occurs if the timer asso-

ciated with an address in the new state ex-
pires. This means that aynkill has not ob-
served any valid TCP traffic from that ad-
dress. The address is therefore moved into
the bed state and RST packets are gener-
ated and sent for all SYN packets from that
address that were observed while the ad-
dress was in the new state. Ideally, the ex-
piry timer should be much smaller than the
current 75 seconds timeocut. The smaller
the chosen value the more likely it is for le-
gitimate connections to be erroncously de-
nied by synkill. Because RSTs are sent
after the SYN was observed, the destination
machine will respond with a SYN+ACK
and thus trigger the third message of the
three-way handshake. This third message
(an ACK) will cause synkill to reclas-
sify the observed address as good. Sub-
sequent connection establishment attempts
will therefore succeed.

staleness The notion of staleness was intro-

duced as a mechanism to allow addresses in

record A u

SYN

S¥YN
send RST

SYN
send RST

ACK v RST

Figure 12: The synkill finite statc machine

10

the good state to leave the good state after
no TCP traffic was observed from that ad-
dress for a period of time, i.c., the staleness
period. This allows synkill to correctly
classify spooled IP addresses as bad cven if
they were once good — as long as they first
became stale.

This can be implemented either with explicit
timer events, or with a timestamp per address
that is examined the next time the address is
processed.

5.2 Implementation

We have implemented this algorithm in the program-
ming language C with a Tel/Tk graphical user inter-
face {See Appendix B). The program can execute in
the foreground or as a daemon. Its output can be
redirected to syslog. Currently, the program’s classi-
fication database can grow to over 47600 entries and
it garbage collects database entries if the database
is filled beyond a certain watermark. It utilizes the
Packet Capture library from the Lawrence Berkeley
National Laboratory, a high level interface to packet
capture systems, to make all packets on the moni-
tored network accessible in a highly portable manner.

There is a rich set of administrative commands
to manipulate the address classification database,
display statistics and modify the configuration of
synkill. Refer to the manual page for details.

(Note: URL for software missing here. Not included
to facilitate blind refereeing.)

5.3 Discussion

The philosophy behind our approach was to build a
tool that can detect the conditions of a SYN fleoding
attack and react appropriately to defeat, or at least
lessen the impact of, the attack. Synkill neither re-
quires any special hardware (such as particular fire-
wall products), nor certain certain operating systems,
network stacks, or even modifications in the protected
end systems. Our software is highly portable, exten-
sible, and easily configurable.

In our testbed, we successtully protected a set of
losts of a wide variety of vendors and operating sys-
tems against the attack. Section G details some of
the operational characteristics of the synkill appli-
cation. Furthermore, the active monitor approach
allows for replication of the software to improve reli-
ability and performance because of decentralized and
distributed action.

6 Performance of Synkill

6.1 Experimental Evaluation

The performance of the synkill application was
evaluated using the configuration illustrated in Fig-
ure 1. The attacker A performs a SYN flooding at-
tack against machine D. The synkill application
runs on machine M protecting all hosts on the local
area nctwork. Host S, evaluates the accessibility of D
in the following way: S, starts 25 processes that at-
tempt to establish connections to the target computer
simultaneously. Wach of these processes performs one
hundred sequential attempts with a random delay be-
tween zero and four seconds. The machines utilized
for the evaluation environment are SUN Sparc Ul-
tra 1 workstations with 32 MB of RAM, running So-
laris 2.5.1.

Two metrics are considered during the performance
tests: 1) success rates and 2) average delays. (Note:
definitions for metrics missing here.) Upon successful
connection completion, the connection is closed im-
mediately. Typical TCP connections do not exhibit
this behavior. However, we are interested only in de-
termining hiow many connection establishments can
succeed under attack. To simulate maximum con-
tention, we performed all connection establishment
attempts against a single port on the server.

11

Test | Defense | Attack Configuration

mode delay batch-

sec. size

1 none None

2 | none Single Addr. 10 100

3 aynkill | Single Addr. 10 100

4 synkill | Single Addr. 1 20

5 synkill | 20 Addrs. 1 2

] synkill | No list 1 10

Table 2: Summary of test cases used for performance
evaluation of synkill

This simulates a scenario where 25 hosts perform,
on the average, one TCP connection establishment
attempt every two seconds. This means the accessed
server must service 750 requests a minute — about
an order of magnitude more than the aunthors’ de-
partmental Web server.

6.2 Explored Evaluation Space

We use six test cases to evaluate the performance of
the synkill program. The test cases are summarized
in Table 2. The terms mode, delay, and batch-size are
explained in Section 3.2. They are used to character-
ize instances of SYN attacks.

6.3 Evaluation Results

The first two test cases are included as points of ref-
erence. Test 1 executes the evaluation scripts without
D being under a SYN flooding attack. The sccond
test runs the evalnation scripts with D being under
attack, but without any defenses. Figures 13 and 14
show the sueceess rates and average delays for these
two test cascs.

In the second test case the attacker sends twenty
batches of one hundred spoofed SYN packets each
with a delay of ten seconds between batches. Note
that the areas marked with the letter & correspond
to a small window of opportunity that the evaluation
program has when the attacked machine releases the
first set of blocked ports. The delay in this case in-
dicates that, on the average, these were successes in
the first TCP retry attempt. The area marked with
the letter 8 shows how once the attack has stopped
the connections succeed but only after a very large
delay.

In test cases 3 and 4 synkill protects the target
machine against a single address SYN fooding attack

1?/ Gz s Fata Tag 1 —
(=]

Sec_))) Amndq'l'nlll -—

wr This delay comes from the lact
that starting the test puts a large
o load on the st machine. Tt takes
the maching a while 10 allocate
Lthe resources needed to execute
the test. Expect similar delays on

[all ests,
.| (.
Y

Figure 13: Test case 1: Connection establishment success rates and average delays for normal operation of

D (without attack).

O/D) ’ ’ ’ Slezanm Fur..-‘l'-d: —_— Sec-)))) Average D-h;' T2 —
Auack __ _ | “r Attack : ([—3)
il Stopped) ol Stopped)
B3k - . Y 0 Y
(&) | . | *
ot = | i (“) I
4 | = [!
|‘ ! v !
=r | ok |
| | —|
o 2 L | L X a rl A L | '] I
o 1ot oo xo L] E Sec. -] -] w0 x0 0 - Sec_

Figure 14: Test case 2: Connection establishment success rates and average delays while D is temporarily

under attack, without active defense by synkill.

of different delays and batch-sizes. In both cases sim-
ilar performance results can be observed. Synkill
learns the spoofed address, classifies it as bad, and
releases half-open connections from that address as
soon as they are observed. All legitimate connections
succeed, and only small delays are observed.

Test case 5 evaluates access to a machine under
SYN flooding attack using a list of 20 spoofed ad-
dresses, 400 batches, a batch-size of 2 and a delay
of 1 second. Figure 17 shows the success rates and
average delays in this test case. Note that the only
noticeable effect the attack has on the machine pro-
tected by synkill is a small increase in the delay ex-
perienced during connecction establishment. A lead
increase of the attacked machine is responsible for
this delay.

Finally, test case 6 consists of evaluating the perfor-
mance of synkill during an attack in which spooled

12

addresses are not repeated. The attack script sends
one thousand batches of ten SYN packets cach, with
a delay of one second, using a new address for every
batch. In some sensc this is the worst case scenario
for synkill, because it cannot utilize its learned
knowledge of bad addresses and reset future connec-
tions that use the bad addresses as spoofed source
addresses.

The measurements of this test case are displayed in
Figure 18. We observed considerable delays and some
failures in connection ecstablishment attempts. They
happened because the attacked machine ran out of
swap space and empty process table entries to han-
dle further incoming connections. For this attack the
load in the attacked machine increased dramatically
and at one point had ten processes waiting for atten-
tion in the ready queue. These observations suggest
that even better performance of synkill can be ex-

D/D ! ' ' Suerens Ihh‘;ul: —_— sec- ' ! i Arerwgy D.h,';.“; J—
(1=] r
an ol
&0 &
Load on
] r attacked
=t michine
——
oo H
L]
0) ,,erﬂ |'|..—F|-FLH. I'H
a 2] oG [|~] frar] SEC_ o o 1] 153 -] SEC.
Figure 15: Test case 3: Connection establishment success rates and average delays.
120 T T T L T T T
% Succoun Aals Taal 4 — Sec. Avmragm Duley Twal 4 —
ok
100
wH ol
e b a b
0}
o
20 H
. . . e et Moo 0
o ED 1w 150 Sec. o ED m 1D SEC,

Figure 16: Test case 4: Connection establishment success rates and average delays.

pected if the host-based configuration optimizations
discussed in Section 4.1.1 are used in conjunction
with synkill.

7 Future Improvements

This section describes future Improvements to
synkill that would make the tool more effective
against improved SYN flooding attacks.

7.1 Connection State Tracking

Currently, it is possible for an attacker to “teach”
synkill good addresses that are in fact spoofed, by
spoofing ACK or RST packets. That could be ex-
ploited to first teach synkill a spoofed address and
then use that same address for a SYN Hooding at-
tack. Although synkill artificially completes each

13

connection, thus avoiding port Hooding, the attacker
may still be able to start a large number of server
processes in the target machine. This again leads to
the degradation of service attack described in Sec-
tion 2.2.3.

Synkill could respond to this improved attack by
keeping state about all observed TCP connections on
the LAN. That would make successful SYN flooding
for an attacker as hard as sequence number predic-
tion attacks. Furthermore, this approach would facil-
itate the detection of other classes of network based
attacks (see e.g., [3]).

7.2 Maultiple-network Monitoring

Currently, synkill is implemented to monitor a sin-
gle network interface. It may be desirable to allow
the tool to monitor several network interfaces simul-
taneously, thus allowing the sharing of the acquired

T T T
% Sucearns Ade Tadl § —

Averags Debay Tz ——

Sec.

m L

JHIh M Hl oo M o
o =] o 150

’ = = b Sec. Sec.
Figure 17: Test case 5: Connection establishment success rates and average delays.
(-4 T T T T T) T T
% Suzzews Rats Tewz o — Sec_ Averna Doty Tmila —
mb
walbh— slEm __—__H|__
[— “r
B [~] —
| wl
&0 H
an H
=
0 ,
o o] A 2o = 1000 SEC_

Figure 18: Test case 6: Connection establishment success rates and average delays.

address classification database,

7.3 Attack Interval and Source Ad-
dress Prediction

The basic idea of this approach is to protect against
attacks based on timing or random number generator
artifacts of the attack scripts, and not the generic
attack method.

Our analysis of SYN flooding attack software
showed that the delays between successive SYN pack-
ets in one batch, and between successive batches are
almost censtant. This same timing behavior can be
observed at the targeted hosts, because all spoofed
packets travel the same route over the internetwork

and in a stable internetwork only little jitter is intro-
duced.

The synkill software could therefore measure in-
ter arrival times and use statistical models to pre-

dict the most likely arrival time of the next spoofed
SYN packet. All SYN packets that fit into the pre-
dicted arrival times would be considered spoofed and
immediately reset. The obvious response of the at-
tacker will be to vary the delay between successive
SYN packets.

Similarly, the random numbers used in many pub-
lished exploitation routines are generated by cryp-
tographically weak standard library routines. They
do not [ollow good cryptographic practices as de-
scribed in [7, 10, 12]. We could implement a num-
ber of algorithms that automatically detect and pre-
dict pseudo random number sequences generated by
simple common generators and use predicted pseudo-
random IP addresses to identify malicious packets
quickly. Again, there is an obvious countermeasure
on the side of the attacker to harden attack imple-
mentations against these artifacts.

14

7.4 Trusted Address Space Ranges

Once the source address filtering mechanisms dis-
cussed in Sections 4.1.2 and 4.2 become more widely
implemented a limited IP address space will be avail-
able for spoofed source addresses. Synkill could in-
corporate information about these secured address
space ranges and automatically include them in its
address preprocessing steps.

8 Conclusions

This paper has described and analyzed a network
based denial of service attack, called SYN flooding.
It has contributed a detailed analysis of this attack
and a description and discussion of existing and pro-
posed countermeasures. Furthermore, it has intro-
duced a new solution approach, explained its design,
and evaluated its performance.

The design is based on the philosophy that this ac-
tive anomaly detection tool can detect the conditions
of a SYN flooding attack and react appropriately to
defeat, or at least lessen the impact of, an attack.
Synkill neither requires any special hardware (such
as particular firewall products), nor certain operat-
ing systems, network stacks, or even modifications in
the protected end systems. Qur software is highly
protable, extensible, and casily configurable.

Our evaluation of the tool shows that synkill is
capable of effectively protecting all machines on a
LAN against a wide range of attack configurations.
Many of the lessons learned from this study can be
applied to the protection against other denial of ser-
vice attacks.

References

[1] Cisco Systems Inc. Defining Strategies to Protect
Against TCP SYN Denial of Service Atfacks,
September 1996.

[2) Douglas E. Comer. Internelworking with
TCP/IP. Prentice-Hall, Englewood Cliffs, New
Jersey, third edition, 1995.

[3) Computer Emergency Response Team {CERT),
Carnegie Mellon University, Pittsburgh, PA. IP
Spoofing Attacks and Hijacked Terminal Con-
nections, January 1995. CA-95:01.

[4] Computer Emergency Response Team (CERT),
Carnegie Mellon University, Pittsburgh, PA.

15

TCP SYN Flooding and IP Speofing Attacks,
September 1996. CA-96:21.

[5] Elizabeth Corcoran. Hackers strike at N.Y. In-
ternet Access Company. The Washingion Post,
Sep. 12, 1996.

(6] daemon9, route, and infinity. Project neptune.
Phrack Magazine, 7(48), 1996.

[7] Donald E. Eastlake, Stephen D. Crocker, and
Jelfrey 1. Schiller. RFC-1750 Randomness Rec-
ommendations for Security. Network Working
Group, December 1994,

[8] Jason Fairlane. Flood warning. 2600, 13(2):6-
11, Summer 1996.

[9] Paul Ferguson. Network ingress filtering. Inter-
net draft, Cisco Systems, Inc., September 1996.

[10] Simson Garfinkel and Gene Spafford. Practs-
cal UNIX & Internet Security. O’Reilley & As-
sociates, Inc. Sebastopol, CA., second edition,
1996.

[11) Mark Graff. Sun Security Bulletin 00136. Moun-
tain View, CA, QOctober 1996.

[12] Donald E. Knuth. The Art of Computer Pro-
gramming, Volume 2. Addison-Wesley Publish-
ing Company, Inc., second edition, 1981.

[13] Livermore Software Laboratories. Livermore
Software Labs. Announces Defense agains SYN
Floading Attacks, October 1996.

[14] Check Point Software Technologies Ltd. T'CP
SYN Fleoding Attack and the FireWall-1 SYN-
Defender, Qctober 1996.

[15] Jon Postel. RFC-791 Internet Protocol Infor-
mation Science Institute, University of Southern
California, CA, September 1981.

[16] Jon Postel, editor. RFC-793 Transmission
Datagram Protocol. Information Sciences Insti-
tute, USC, CA, September 1981.

[17] Y. Rekhter, B. Moskowitz, D. Karrenberg, and
G. de Groot. RFC-1597 Address Allocelion
for Private Internets. Network Working Group,
March 1994.

[18] Richard W. Stevens and Gary R. Wright.
TCP/IP Riustrated, Volume 2, The Implementa-
tion. Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1995.

[19] Bart Ziegler. Savvy Hacker Tangles Web For Net
Host. The Wall Street Journel, Sep. 12, 1996.

anything / reset

begin

passive open

syn/syn + ack

send/syn

reset

syn/syn + ack

close/ fin

close/ fin

fin/ack »LLOSIN

fin-ack /ack

ack/

fin/ack TIMED

active open/{ syn

timeout after 2 segrment lifetime

Y

/

)
Figure 19: The TCP finite state machine

A TCP State Machine

Figure 19 depicts the TCP state machine.?

B Screenshot xsynkill

Note: The final version of the paper will contain
a screenshot of the GUI of synkill. To facilitate
the blind refereeing of our submission, we have not
included the screenshot in this version of the paper.
It contains information identifying the (affiliation of
the) authors.

*Courtesy of Douglas E. Comer, [2].

16

	Analysis of a Denial of Service Attack on TCP
	Report Number:
	

	tmp.1307986960.pdf.HBtiK

