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Abstract

Several efficient constructions of smooth surfaces following the out
lines of a polyhedral mesh are based on three-sided patches. To demon
strate that these constructions arc compatible with existing software
based on tensor-product patches, the particular scheme in [3] is ex
pressed in terms of linearly-trimmed bicubic patches. Explicit for
mulas relating the coefficients of the patches to the vertices of an
arbitrary input polyhedron are given. Four of these patches can be
grouped together into a NURBS surface.

1 Introduction

A main criticism leveled at many new and old surfacing schemes, for exam
ple rational blending schemes [2], generalized subdivision [1] and three-sided
patches [3], is that they can not be represented exactly or efficiently in the
dominant patch representation, tensor-product B-splines, which serves as the
standard for storage, transmission and high-level rendering. To show that
three-sided patches fit rather nicely into the B-spline standard, the author has
worked out the details of representing the three-sided surface splines defined
in [3] as linearly-trimmed bicubic paLches in Bernstein"Bezier form. Figure
2 displays such a patch with its control net as part of a smooth surface. Fig
ure 1 shows how four of the resulting patches can be grouped together into
a single NURBS surface, a trick the author uses to interface with OpenGL
routines. This paper gives the formulas defining the Bernstein-Bezier control
net in terms of the input polyhedron.
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Figure 1: NURBS patch with trim region in the range and the domain. The
formulas in Section 2.2 describe one quadrant of the patch in Bernstein-Bezier
representation.

2 High-level description of the algorithm

Let Aj , Gj , and Vi be points in R3 as shown in Figure 2. We first refine
the polyhedron to a planar-cut polyhedron with coefficients Gj by applying
a sparse linear map M A . Then we map the planar-cut polyhedron to the
bicubic patches with coefficient vectoT B using a second local linear map Ms.
In short, the Bernstein-Bezier coefficients of the bicubic surface patches, B,
are obtained from the input polyhedron, A, by

Since the matrices M A and M B have more rows than columns morc points
are output then input, and just storing A and the local components of M A

and ME (see the sections below) is more space efficient than the expansion
into Bernstein-Bezier or NURBS form.

2.1 Computing the planar-cut polyhedron: C = MAA

The map MA locally averages and projects the input polyhedral mesh to
obtain a planar-cut polyhedron, i.e. a polyhedron such that every interior
vertex is surrounded by four facets, the first and third of which are four
sided and the second and fourth are planar if they have morc than four
edges. For example, MA can represent the following geometric construction
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Figure 2: Naming conventions: Ai - vertices of the input polyhedron, Ci 

vertices of the planar-cut polyhedron, and ij - indices of the bicubic patch.
The trimmed patch is shaded purple (dark).
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illustrated in Figure 2. First, averaging generates new mesh points by the
rule

/ 01 a2
Co = Ao + 2(A, - Ao) + 2 (A, - Ao)

where the blend ratios aj E [0, 1] are local to each face-vertex pair. As
displayed in Figure 2, the points of type C are connected as a dual mesh
such that Co, COl, CO2 , Cll and Co, C2h C22 , C31 form quadrilaterals. The
other two patches have n1 and n3 (here 3 and 4) edges and centroids ~ and
V3 . The points of type C are obtained from those of type C' [or example by
the projection

V:~ ~LC:,
n

{
C'C,'- J

,.- V + ~ 2::, c05(271"(i + j)(n)C:,
if n < 5,

else

Note that the blend ratios are an intuitive handle for distributing curvature
across the surface. Since they determine the placement of the points C i on
the original facet, small blend ratios correspond to small cuts of the input
polyhedron and hence fast changes of the normal on the final surface.

2.2 Computing Bernstein-Bezier coefficients: B = MBG

Where the mesh is regular, i.e. where all four subfacets abutting at a point
Co are quadrilateral, the points

C32 C31 C22

Cal Co C21

CO2 Cll e12

may be interpreted as the control points of a biquadratic (B-)spline. Here
C32 and C12 are the points completing the quadrilateral with points COl,
Co, C31 and C21 , Co, en respectively. At non-regular vertices, a complex
of four trimmed bicubics surrounding Co is generated that seemlessly, i.e.
tangent continuously, integrates with any of the above biquadratic B-spline
surfaces. The Bernstein-Bezier control net of one of the four patches is shown
in Figure 2. A three-sided patch is obtained from the tensor-product patch
by restricting the evaluation to (u, v) E [0,1]2, U + V <= 1. The vector of
its Bernstein-Bezier coefficients B 3i+i := b'i is computed from the planar-cut
polyhedron
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as B = MBG where
1

MB := 288 [Ml> M2 ],

n; is the number of G's averaging to [arm Vi, Cj:= cos(21r/nd and

156-6eJ- 6el
156-12el

96
o

156-6eJ- 6cI
156 -12 CJ

96
o

120
4cJ - 4Cj + 120
2~+10q+60

12cl-36

""-6cJ + laCj + 12
-12cJ + 24cl - 84

18-3cJ+3Cj

6+ 6cl
o
o

36- 6~ +6CI
lIq -cJ+16

4CI +4
o

"<IcJ +4CI +40
-7CI +3cJ +18

_lSq +6

"24
-6cJ -18cl -12

-39Cj -15cJ -36

6+3cJ+3Cj
6+6Cj

o
o

12+6eJ+ 6cl
<:.:l+lICI+12

4Cj +4
o
24

24+4q -4cJ
-3cJ + 14 -7cj

-ISCI +6

""60- 18cI+6cJ
l5cJ - 39c] + 48

l8-3q+3cJ
30 - 6Cl

48
o

36-6c] +6cJ
cJ-lIc]+56

84 - 4cj
48

"-<lcl-<IcJ+l04
7CI+H6-3cJ

126 + 18c]

"120
laCI + 6cJ + 180

l5cJ + 39cI + 180

24 18-3q +3cJ 6+ 3cJ + 3cj 18-3cJ+3c] 24
18 30-6cl 6+6Cj 6+ 6cI 0
96 18 0 0 0
288 0 0 0 0
24 0 0 0 24
48 4-c]-cJ -CJ + Cl CJ _4+cl 0
96 12 + <I CI -4 - 4Cl -4 - 4c] 0

M 2 :=
288 -48 0 0 0

0 0 0 0 0
18 0 0 0 -16
56 3el +2+cJ -2+cJ-3c] 2-cJ -3q -8

240 -66 - 6c] 6+6Cj 6 + 6Cl 0
0 0 0 0 0
0 0 0 0 0

24 0 0 0 24
192 -72-15q -3cJ -3<:.:l+12+15Cj 15c] +3cJ 48

3 Properties of the surface

The surface consisting of the trimmed patches inherits the properties of sur
face splines made up from 3- and 4-sided patches (c.f. [3]). These include
tangent plane continuitYI the convex hull property, locality, and affine invari
ance. An example illustrating the two stages of the algorithm is given in
Figure 3.
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Figure 3: Input polyhedron, planar-cut polyhedron and smooth NURBS
surface.
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