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Abstract

Several efficient constructions of smooth surfaces following the out-
lines of a polyhedral mesh are based on three-sided patches. To demon-
strate that these constructions are compatible with existing software
based on tensor-product patches, the particular scheme in [3] is ex-
pressed in terms of linearly-lrimmed bicubic patches. Explicit for-
mulas relating the coefficients of the patches to the vertices of an
arbitrary input polyhedron are given. Four of these patches can be
grouped together into a NURBS surface.

1 Introduction

A main criticism leveled at many new and old surfacing schemes, for exam-
ple rational blending schemes [2], generalized subdivision [1] and three-sided
patches [3], is that they can not be represented exactly or efficiently in the
dominant patch representalion, tensor-product B-splines, which serves as the
standard for storage, iransmission and high-level rendering. To show that
three-sided patches fit rather nicely into the B-spline standard, the author has
worked out the details of representing the three-sided surface splines defined
in [3] as linearly-trimmed bicubic palches in Bernstein-Bézier form. Figure
2 displays such a patch with its control net as part of a smooth surface. Fig-
ure 1 shows how four of the resulting patches can be grouped togeiher into
a single NURBS surface, a trick the author uses to interface with OpenGL
routines. This paper gives the formulas defining the Bernstein-Bézier control
net in terms of the input polyhedron.
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Figure 1: NURBS patch with trim region in the range and the domain. The
formulas in Section 2.2 describe one quadrant of the palch in Bernstein-Bézier
representation.

2 High-level description of the algorithm

Let A;, C;, and V; be points in R* as shown in Figure 2. We first refine
the polyhedron to a planar-cut polyhedron with coefficients C; by applying
a sparse linear map M4. Then we map the planar-cut polyhedron to the
bicubic patches with coefficient veclor B using a second local linear map Mp.
In short, the Bernstein-Bézier coefficients of the bicubic surface patches, B,
are obtained from the input polyhedron, A, by

B=MgC=MgM4A.

Since the matrices M, and Mp have more rows than columns more points
are output then input, and just storing A and the local components of M,
and Mp (see the sections below) is more space efficient than the expansion
into Bernsiein-Bézier or NURBS lorm.

2.1 Computing the planar-cut polyhedron: C = M A4

The map M4 locally averages and projects the input polyhedral mesh to
obtain a planar-cut polyhedron, i.e. a polyhedron such that every interior
vertex is surrounded by four facets, the first and third of which are four-
sided and the second and fourth are planar if they have more than four
edges. For example, M, can represent the following geomeiric construction
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Figure 2: Naming conventions: A; — vertices of the input polyhedron, C; —
vertices of the planar-cut polyhedron, and z7 ~ indices of the bicubic patch.
The trimmed patch is shaded purple (dark).




illustrated in Figure 2. First, averaging generates new mesh points by the
rule

o
Co= Ao+ -21(/41 — Ag) + %(Az - AD)

where the blend ratios o; € [0,1] are local to each face-verlex pair. As
displayed in Figure 2, the points of type C are connected as a dual mesh
such that Cq, Co1, Co2, C11 and Cy, Cqy, Ca2, U5 form quadrilaterals. The
other two patches have n; and na (here 3 and 4) edges and centroids V; and
V3. The points of type C are obtained from those of type C’ for example by
the projection

1 t
V = ;ZCI',
e if n <5, )
TV 4 2 cos(2n(i + ) /n)C!,  else

Note that the blend ratios are an intuitive handle for distributing curvature
across the surface. Since they determine the placement of the points C; on
the original facet, small blend ratios correspond to small cuts of the input
polyhedron and hence fast changes of the normal on the final surface.

2.2 Computing Bernstein-Bézier coeflicients: B = MzpC

Where the mesh is regular, i.e. where all four subfacets abutting al a point
Cy are quadrilateral, the points

032 CS] 022
CO] CU 021
CDZ Cl 1 Gl 2

may be inlerpreted as the control points of a biquadratic (B-)spline. Here
('3 and €y are the points compleling the quadrilateral with points Cp,,
Co, Ca1 and Ca1, Cp, Cry respectively. At non-regular vertices, a complex
of four trimmed bicubics surrounding Cy is generated that seemlessly, i.e.
tangent continuously, integrates with any of the above biquadratic B-spline
surfaces. The Bernstein-Bézier control net of one of the four patches is shown
in Figure 2. A three-sided patch is obtained from the tensor-product paich
by restricting the evaluatlion to (u,v} € [0,1]%,2 + v <= 1. The vector of
its Bernstein-Bézier coefficients Bs;y; := b;; is computed [rom the planar-cul
polyhedron
C = [Cn, CO]: Coz; Cu, W, 021, 022, 031, Va]T




as B = MgC where

1
Mp :
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n; is the number of C’s averaging to form Vi, ¢; := cos(27/n;) and
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3 Properties of the surface

The surface consisting of the trimmed patches inherits the properties of sur-
face splines made up from 3- and 4-sided patches (c.f. [3]). These include
tangent plane continuity, the convex hull property, locality, and affine invari-
ance. An example illustrating the iwo stages of the algorithm is given in

Figure 3.




Figure 3: Input polyhedron, planar-cut polyhedron and smooth NURBS
surface.
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