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Abstract

Several efficient constructions of smooth surfaces following the out­
lines of a polyhedral mesh are based on three-sided patches. To demon­
strate that these constructions arc compatible with existing software
based on tensor-product patches, the particular scheme in [3] is ex­
pressed in terms of linearly-trimmed bicubic patches. Explicit for­
mulas relating the coefficients of the patches to the vertices of an
arbitrary input polyhedron are given. Four of these patches can be
grouped together into a NURBS surface.

1 Introduction

A main criticism leveled at many new and old surfacing schemes, for exam­
ple rational blending schemes [2], generalized subdivision [1] and three-sided
patches [3], is that they can not be represented exactly or efficiently in the
dominant patch representation, tensor-product B-splines, which serves as the
standard for storage, transmission and high-level rendering. To show that
three-sided patches fit rather nicely into the B-spline standard, the author has
worked out the details of representing the three-sided surface splines defined
in [3] as linearly-trimmed bicubic paLches in Bernstein"Bezier form. Figure
2 displays such a patch with its control net as part of a smooth surface. Fig­
ure 1 shows how four of the resulting patches can be grouped together into
a single NURBS surface, a trick the author uses to interface with OpenGL
routines. This paper gives the formulas defining the Bernstein-Bezier control
net in terms of the input polyhedron.
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Figure 1: NURBS patch with trim region in the range and the domain. The
formulas in Section 2.2 describe one quadrant of the patch in Bernstein-Bezier
representation.

2 High-level description of the algorithm

Let Aj , Gj , and Vi be points in R3 as shown in Figure 2. We first refine
the polyhedron to a planar-cut polyhedron with coefficients Gj by applying
a sparse linear map M A . Then we map the planar-cut polyhedron to the
bicubic patches with coefficient vectoT B using a second local linear map Ms.
In short, the Bernstein-Bezier coefficients of the bicubic surface patches, B,
are obtained from the input polyhedron, A, by

Since the matrices M A and M B have more rows than columns morc points
are output then input, and just storing A and the local components of M A

and ME (see the sections below) is more space efficient than the expansion
into Bernstein-Bezier or NURBS form.

2.1 Computing the planar-cut polyhedron: C = MAA

The map MA locally averages and projects the input polyhedral mesh to
obtain a planar-cut polyhedron, i.e. a polyhedron such that every interior
vertex is surrounded by four facets, the first and third of which are four­
sided and the second and fourth are planar if they have morc than four
edges. For example, MA can represent the following geometric construction

2



Figure 2: Naming conventions: Ai - vertices of the input polyhedron, Ci ­

vertices of the planar-cut polyhedron, and ij - indices of the bicubic patch.
The trimmed patch is shaded purple (dark).
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illustrated in Figure 2. First, averaging generates new mesh points by the
rule

/ 01 a2
Co = Ao + 2(A, - Ao) + 2 (A, - Ao)

where the blend ratios aj E [0, 1] are local to each face-vertex pair. As
displayed in Figure 2, the points of type C are connected as a dual mesh
such that Co, COl, CO2 , Cll and Co, C2h C22 , C31 form quadrilaterals. The
other two patches have n1 and n3 (here 3 and 4) edges and centroids ~ and
V3 . The points of type C are obtained from those of type C' [or example by
the projection

V:~ ~LC:,
n

{
C'C,'- J

,.- V + ~ 2::, c05(271"(i + j)(n)C:,
if n < 5,

else

Note that the blend ratios are an intuitive handle for distributing curvature
across the surface. Since they determine the placement of the points C i on
the original facet, small blend ratios correspond to small cuts of the input
polyhedron and hence fast changes of the normal on the final surface.

2.2 Computing Bernstein-Bezier coefficients: B = MBG

Where the mesh is regular, i.e. where all four subfacets abutting at a point
Co are quadrilateral, the points

C32 C31 C22

Cal Co C21

CO2 Cll e12

may be interpreted as the control points of a biquadratic (B-)spline. Here
C32 and C12 are the points completing the quadrilateral with points COl,
Co, C31 and C21 , Co, en respectively. At non-regular vertices, a complex
of four trimmed bicubics surrounding Co is generated that seemlessly, i.e.
tangent continuously, integrates with any of the above biquadratic B-spline
surfaces. The Bernstein-Bezier control net of one of the four patches is shown
in Figure 2. A three-sided patch is obtained from the tensor-product patch
by restricting the evaluation to (u, v) E [0,1]2, U + V <= 1. The vector of
its Bernstein-Bezier coefficients B 3i+i := b'i is computed from the planar-cut
polyhedron
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as B = MBG where
1

MB := 288 [Ml> M2 ],

n; is the number of G's averaging to [arm Vi, Cj:= cos(21r/nd and

156-6eJ- 6el
156-12el

96
o

156-6eJ- 6cI
156 -12 CJ

96
o

120
4cJ - 4Cj + 120
2~+10q+60

12cl-36

""-6cJ + laCj + 12
-12cJ + 24cl - 84

18-3cJ+3Cj

6+ 6cl
o
o

36- 6~ +6CI
lIq -cJ+16

4CI +4
o

"<IcJ +4CI +40
-7CI +3cJ +18

_lSq +6

"24
-6cJ -18cl -12

-39Cj -15cJ -36

6+3cJ+3Cj
6+6Cj

o
o

12+6eJ+ 6cl
<:.:l+lICI+12

4Cj +4
o
24

24+4q -4cJ
-3cJ + 14 -7cj

-ISCI +6

""60- 18cI+6cJ
l5cJ - 39c] + 48

l8-3q+3cJ
30 - 6Cl

48
o

36-6c] +6cJ
cJ-lIc]+56

84 - 4cj
48

"-<lcl-<IcJ+l04
7CI+H6-3cJ

126 + 18c]

"120
laCI + 6cJ + 180

l5cJ + 39cI + 180

24 18-3q +3cJ 6+ 3cJ + 3cj 18-3cJ+3c] 24
18 30-6cl 6+6Cj 6+ 6cI 0
96 18 0 0 0
288 0 0 0 0
24 0 0 0 24
48 4-c]-cJ -CJ + Cl CJ _4+cl 0
96 12 + <I CI -4 - 4Cl -4 - 4c] 0

M 2 :=
288 -48 0 0 0

0 0 0 0 0
18 0 0 0 -16
56 3el +2+cJ -2+cJ-3c] 2-cJ -3q -8

240 -66 - 6c] 6+6Cj 6 + 6Cl 0
0 0 0 0 0
0 0 0 0 0

24 0 0 0 24
192 -72-15q -3cJ -3<:.:l+12+15Cj 15c] +3cJ 48

3 Properties of the surface

The surface consisting of the trimmed patches inherits the properties of sur­
face splines made up from 3- and 4-sided patches (c.f. [3]). These include
tangent plane continuitYI the convex hull property, locality, and affine invari­
ance. An example illustrating the two stages of the algorithm is given in
Figure 3.
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Figure 3: Input polyhedron, planar-cut polyhedron and smooth NURBS
surface.
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