
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1996

Applications of a Numbering Scheme for Polygonal Obstacles in Applications of a Numbering Scheme for Polygonal Obstacles in

the Plane the Plane

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

Danny Z. Chen

Report Number:
96-055

Atallah, Mikhail J. and Chen, Danny Z., "Applications of a Numbering Scheme for Polygonal Obstacles in
the Plane" (1996). Department of Computer Science Technical Reports. Paper 1309.
https://docs.lib.purdue.edu/cstech/1309

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

APPLICAnONS OF A NUMBERING SCHEME
FOR POLYGONAL OBSTACLES IN THE PLANE

Mikhail J. Atallah
Danny Z. Chen

CSD·TR 96-055
September 1996

Applications of a Numbering Scheme for
Polygonal Obstacles in the Plane*

Mikhail J. Atallahl

Abstract

Danny Z. Chen!

We present efficient algorithms for the problems of matching red and blue disjoint ge­
ometric obstacles in the plane and connecting the matched obstacle pairs with mutually
noninlersecl.ing paths that have useful geometric properties. We first consider matching n
red and n blue disjoint isothctic rectangles and connecting tile n matched rectangle pairs
with noninlersecting monotone rectilinear paths; each such path consists of O(n) segments
and is not allowed to touch any rectangle other than the matched pair that it is linking.
Based on a numbering scheme for certain geometric objects and on several useful geometric
observations, we develop an O(n log n) time, O(n) space algorithm that produces a desired
matching for isothetic rectangles. Ir an explicit printing of all the n paths is required, then
our algorithm takes O(n logn+>.) time and O(n) space, where ,\ is the total size of the desired
output. We then extend these matching algorithms to other classes of red/blue polygonal
obstacles. The numbering scheme also finds applications to other problems.

1 Introduction

The problem of computing paths that avoid obstacles is fundamental in computational geometry

and has many applications. It has been studied in both sequential and parallel settings and using

various metrics. The rectilinear version of the problem, which assumes that each of a path's

constituent segments is parallel to a coordinate axis, is motivated by applications in areas such

as VLSI wire layout, circuit design, plant and facility layout, urban transportation, and robot

motion. There are many efficient sequential algorithms that compute various shortest rectilinear

paths avoiding different classes of obstacles [11, 12, 13, 14, 15, 17, 18, 19, 21, 24, 25, 27,28,29,

38,39,40,41]' and some parallel algorithms as well [4, 5].

In this paper, we present efficient algorithms for the problems of matching red and blue

disjoint geometric obstacles in the plane and connecting the matched obstacle pairs with mu­

tually nonintersecting paths that have certain useful geometric properties. The first problem

we consider has the following input: n of the given 2n pairwise disjoint isothetic rectangles are

·This work was carried out in part at the Center for Applied Science and Engineering and Institute of Informa­
tion Science, Academia Sinica, Nankang, Taiwan, during its 1996 Summer Illstitute on Computational Geometry
and Applications.

tDepartment of Computer Sciences, Purdue University, West Lafayette, Indiana. 17907, USA.
mjaOcs.purdue.edu. This author gratefully acknowledges support from the National Science FoundaLioll un­
der Grant DCR_9202807, and the COAST Project at Purdue University and its sponsors, in particular Hewlett
Packard.

IDepartment of CompuLer Science and Engineer.ing, University of Notre Dame, Notre Dame, Indiana 46556,
USA. chenOcse.nd.edu. The research of this auUlOr was supported in part by the National Science Foundation
under Grant CCR-9623585.

,- --- -- - -- ----_.',
I ---, I

I ~ :
---, '--~--I-~-

-~:: iI, '"
II , ' blue
~':: :: :: :: :: :. :

Figure 1: Example of a matching of red and blue rectangles with monotone paths.

colored red (think of them as sources of something, e.g_, electric power in a VLSI circuit), and

the other n aIe colored blue (think of them as consumers of power). By isothetic objects, we

mean that each edge of such an object is parallel to a coordinate axis. We are interested in

matclting each red rectangle with one and only one blue rectangle, and vice versa. Specifically,

we would like to find such a matching and connect each matched pair of red/blue rectangles

with a planar rectilinear path in such a way that (i) each path is monotone with respect to a

coordinate axls, (ii) each path does not touch any rectangle other than the matched pair that it

is supposed to connect, (iii) no two such paths intersect each other, and (iv) each path consists

of O(n) segments. Figure 1 shows an example of such a matching.

Several geometric algorithms have been developed for solving various problems of finding

obstacle-avoiding pairwise disjoint paths that connect certain geometric objects [26, 32, 36], be­

cause of their relevance to VLSI layout applications (16, 26, 35] (e.g., VLSI single-layer routing).

Lee et al. [26] designed an O((k2!)n log n) time algorithm [or computing k shortest non-crossing

rectilinear paths in a plane region. Takahashi, Suzuki, and Nishizeki (36J studied the problem

of fi nding shortest non-crossing rectilinear paths in a plane region that is bounded by an outer

box and an inner box and that contains a set of disjoint isothetic rectangle obstacles, giving

an O(nlogn) time algorithm for computing k such paths whose endpoints are all on the two

bounding boxes (with k ~ n). Papadopoulou (32] very recently obtained an O(n +k) time

algorithm for computing k shortesl non-crossing paths in a simple polygon whose endpoints are

all on the polygon boundary. However, these problems are different from the one we study here

since they often assume that a specification on which object matches with which other object is

already given (hence, these problems require only to compute a set of non-crossing paths that

realize the specified matching).

We develop an O(nlogn) time, O(n) space algorithm that produces a desired matching for

red/blue isothetic rectangles. If an explicit printing of all the n paths for such a matching is

requ..ired, then our algorithm takes O(n log n +>.) lime and O(n) space, where>. is the total size

of the desired output.

We then extend these matching algorithms to a more general geometric setting which consists

of disjoint red/blue polygonal obstacles that are all monotone to a coordinate axis (say, the y­

axis). The matching paths we compute for this more general setting have similar structures to

those for isothetic rectangles, except that in this case their monotonicity has to be weaker: Each

such matching path can be partitioned into at most two subpatbs, each of which is monotone

to the y-axis. Our matching algorithms for v-monotone polygonal obstacles have the same

complexity bounds as those for isothetic rectangles.

We also prove that all the matching problems studied in this paper have an n(nlogn) lower

bound in the algebraic computation tree model [8J. Our matching algorithms are based on a

numbering scheme for certain geometric objects and on several useful geometric observations.

This numbering scheme also finds applications to other problems [7J.

Our algorithms can also be viewed as proofs that such matchings always exist, a fact that,

to Lhe best of our knowledge, was not previously established. We should point out that without

the requirement that all matching paths must satisfy a monotonicity constraint, the existence

of non intersecting paths for any red/blue polygonal obstacle matching is trivial to prove: For

every matched pair of geometric objects in turn, draw a direct rectilinear path P between them,

ignoring all previously drawn paths and obstaclesj at each place where path P intersects a

previously drawn path or an obstacle, "deform" P so that P goes around that previously drawn

path or the obstacle.

SecLion 2 gives some preliminary definitions, Section 3 presents one of the ingredients needed

by the matching algorithms for isothetic rectangles, Section 4 describes the data structures

that our matching algorithms will use, Section 5 gives the algorithm for computing a desired

matching for isothetic rectangles, Section 6 extends this algorithm to also producing the n actual

monotone paths that link the matched rectangle pairs, Section 7 generalizes these algorithms

to matching v-monotone polygonal obstacles, Section 8 proves n(nlogn) lower bounds for the

matching problems we consider, and Section 9 makes further remarks on several consequences

and possible extensions of this work.

2 Preliminaries

A geometric object in the plane is rectilinear if each of its constituent segments is parallel to

either the x-axis or the y-axis. Without loss of generality (WLOG), we assume that no two

boundary edges of the input obstacles are collinear. We use R = {Rl, R2 , •• _, R 2n } to denote

the set of 2n input isothetic rectangles.

A path consists of a contiguous sequence of line segments in the plane. The number of line

segments in a path P is called the size of P, denoted by IPI, and the length of P is the sum of

the distances of its edges in a certain metric. A path is said to be monotone with respect to the

x-a,xis (resp., y-axis) if and only if its intersection with every vertical (resp., horizontal) line is

either empty or a contiguous portion of that line. A path is said to be monotone if and only

if it is monotone to the x-axis or to the y-axis. A rectilinear path is convex if it is monotone

to both the x-axis and the y-axis. In general, a convex (rectilinear) path has the shape of a

staircase, and in fact we shall henceforth use the word "staircase" as a shorthand for "convex

path". Staircases can be either increasing or decreasing, depending on whether they go up or

down as we move along them from left to right. A staircase is unbounded if it starts and ends

with a semi-infinite segment, Le., a segment that extends to infinity on one end. A staircase is

said to be clear if it does not intersect the interior of any input obstacle.

A polygon G is said to be monotone to the x-axis (resp., y-axis) if and only if its intersection

with any vertical (resp., horizontal) line L is either empty or a contiguous segment of L; the

boundary of such a monotone polygon G can be partitioned into two paths each of which is

monotone to the x-axis (resp., y-axis). In fact, the notion of monotonicity of a polygon or a

path is in general with respect to an arbitrary line [34]. Note that it is possible to find out in

linear time whether there is a line (in an arbitrary direction) to which all polygons in a polygon

set arc monotone, by using Preparata and Supowit's monotonicity test algorithm [34].

A point p in the plane is defined by its x-coordinate x(p) and y-coordinatc y(p). A point p

is strictly below (resp., to the left of) a point q if and only if x(p) = x(q) and y(p) < y(q) (resp.,

y(p) = y(q) and x(p) < x(q)); we can equivalently say that q is strictly above (resp., to the right

of) p. A rectangle r is below (resp., to the left of) an unbounded staircase S if no point of r is

strictly above (resp., to the right of) a point of S; we can equivalently say that S is above (resp.,

to the right of) r.

Unless otherwise specified, all geometric objects in the rest of this paper (e.g., paths, rays,

lines, polygons, obstacles, etc) are assumed to be rectilinear in the plane.

3 Partitioning Isothetic Rectangles with a Staircase

Given a set R = {RI , Rz, ... , R2n } of 2n pairwise disjoint isothetic rectangles III the plane

and an integer k with 1 ~ k < 2n, we present an algorithm for partitioning the set R into two

subsets of respective sizes k and 2n - k, such that the two resulting subsets are separated by an

increasing staircase. This algorithm runs in O(n log n) time, or in O(min{k, 2n - k}) time if R

is given in a suitably preprocessed form. The algorithm can also be implemented optimally in

parallel (see Section 9). A key idea of this partition algorithm is a useful numbering scheme for

certain geometric objects, which also finds applications to other problems [7].

R,

Figure 2: illustrating the tree T of the rectangles in R.

Not only is the result of this section needed as a key ingredient in the algorithms for matching

isothetic rectangles given later, but it also implies simpler algorithms for a number of unrelated

divide-and-conquer sequential and parallel algorithms for various rectilinear shortest path prob­

lems among rectangles, in which such a staircase is needed for bipartitioning the problem before

recursively solving the two subproblems defined by the staircase [4, 5, 11, 29].

We begin by describing the O(n log n) time preprocessing. The first step of the preprocessing

algorithm consists of computing a horizontal trapezoidal decomposition of R [33], in O(nlogn)

time. Recall that this gives, among other things, the following Parent information (actuaJly,

it gives more than what follows, but we only need what follows): For each rectangle Hi of R,

Parente i) is the first rectangle R j encountered by shooting a leftwards-moving horizontal ray

from the bottom-left corner of Ri (see Figure 2). If no such rectangle exists for Ri' then the

ray goes to infinity, a fact that we denote by saying that Parent(i) is empty. Note that the

rectangles in R and their Parent information together define a forest of the rectangles. The

trapezoidal decomposition algorithm [33] also produces a sorted list of each subset of rectangles

having the same Parent (including the "empty" parent). Every rectangle Rj maintains an

adjacency list of all the rectangles whose Parent is Rj, sorted by the decreasing y-coordinates

of their leftwards-moving horizontal rays. For example, the sorted adjacency list of R" in Figure

2 i, {R"R6 }.

The second step of the preprocessing algorithm is now given. To simplify the presentation,

we assume that we have added to the given collection R of input rectangles an extra "dummy"

rectangle Ro to the left of all the other rectangles in R, such that the horizontal projection of Ro

on the y-axis properly contains the horizontal projections of all the other rectangles (see Figure

2). TlLis amounts to replacing every empty Parent(i) by Ro, effectively making Ro the root of

a tree each of whose nodes corresponds to exactly one rectangle in R. We use T to denote this

tree. Figure 2 shows an example of such a tree T. The preprocessing algorithm then computes

the preorder numbers of Tin D(n) time [1], and re-Iabels the rectangles of R (which are the

nodes of T) so that rectangle R; now denotes the one whose preorder number in T is i. The

Q(p)

Figure 3: An example of the paths Q(p) and Q(q).

preorder numbers of T start from o. Hence the dummy rectangle, the root, retains the name

RD. This completes the description of the preprocessing.

This preprocessing algorithm clearly takes altogether O(nlogn) time and O(n) space. In

the rest of this section, we assume that the rectangles have been re-Iabeled as explained above.

For any set R' of disjoint rectangles, we henceforth use CH(R') to denote the rectilinear

convex hull of R' in the plane (see [30] for a study of rectilinear convex hulls of planar rectilinear

geometric objects). For every point p in the plane that is to the right of the root rectangle Ro

and is not in the interior of any obstacle, we define a path Q(p) from p to Ro, as follows:

Q(p) starts at p and follows the leftwards-moving horizontal ray T(p) from Pi if the

ray T(p) first hits a rectangle Ri ¥- Ro, then Q(p) goes downwards along the boundary

of Ri to its bottom-right vertex and then leftwards to its bottom-left vertex, from

which Q(p) continues as it did at p, until it reaches Ro.

Note that for every such point p, the path Q(p) is uniquely defined, and in fact 1s always

an increasing obstacle-avoiding staircase. Also, note that every vertical segment of Q(p) is

completely on the right edge of a rectangle and the lower vertex of such a vertical segment is at

the bottom-right vertex of that rectangle. Figure 3 gives an example of such paths.

The following lemmas are useful to proving the theorem on staircase separators_

Lemma 1 Let p and q be two points in the plane such that they both are to the right of Ro, and

x(p).$ x(q). lfp is below (resp., above) some point ofQ(q), then no point ofQ(p) is strictly

above (resp., below) any point ofQ(q) (Figure 3).

Proof. The proof 1s straightforward and will be given in the full version of the paper. 0

Lemma 2 Let p and q be two points in the plane such that they both are to the right of Ro and

that x(p) ::; x(q). Let u (resp., v) be the bottom-left vertex of a rectangle Ra (resp., Rb), such

that u ("sp., v) ;s on Q(p) ("sp., Q(q)) but not on Q(q) ("sp., Q(p)). If p ;s strictly below

(resp., above) some point of Q(q), then the preomer number of Ra in the tree T of rectangles is

larger (resp., smaller) than that of RbI i.e., a> b (resp., a < b).

,,
---,,
,----.

---,
CH(R(!,i»: :

._J ,
, R·, ,----, J

" "RJl
, q,.__ --'

Ca)

---,
CH(R(I,i)): :

• _ J ,

: ,- - --,,, ,, --

:--jf:~j R --_:
- ~ ~----'
p=~

q
Cb)

Figure 11: Illustrating the pLOof of the staircase separator theorem.

Proof. This follows from Lemma 1 and from the definition of the t.ree T. An example illustrating

the lemma is given in Figure 3.

We are now ready to give the staircase separator theorem.

o

Theorem 1 (Staircase Separator Theorem) Given a preprocessed set R of2n disjoint iso­

thetic rectangles, the subsets {RI , R 2, ... , Rk} and {RkH' Rk+2, ... , R 2n }, for any integer

k with 1 S; k < 2n, fonn a parlition of the set R that has the desirEd property, thal is, there

exists a rectangle-avoiding inc,·easing staircase oj size D(n) that separates these two subsets.

Furthermore, such a staircase separator can be computed in D(min{k,2n - k}) time.

Proof. Let R(a, b) denote the subset {Ra, RaH , """' Rb} of R. For the existence of such a

staircase separator, we first. show that for any i < j, the following holds: (1) CH(R(I,i)) docs

not intersect Ri, and (2) CH(R(j,2n)) does not intersect. Ri. We give the proof only for (1),

thal for (2) being similar. We prove (1) by contradiction: Suppose to the contrary that for some

j> i, Hi intersects CH(R(l,i)). Then one of the following two cases must occur:

• CH(R(l,i» contains some point p on the bottom edge of Rj (CH(R(I,i)) possibly con­

tains Ri completely). Note that there can be no rectangles Rs and RI, s S; i < t, such

that the lcftwards-moving horizontal ray from the bottom-left vertex of R s first hits RI

(otherwise, t.his would make RI the parent of Rs , contradicting the fact that RI has a larger

preorder number than R s in the t.ree T). Since the point p of Rj is inside CH(R(l,i)),

there must be a rectangle R s , s :S. i < j, such that the bottom edge of R s contains a point

q that satisfies both x(p) S; x(q) and y(p) > y(q) (see Fjgure 4(a)). But then the path

Q(p) (resp., Q(q)) contains the bottom-left vertex of Rj (resp., Rs) and by Lemma 2, the

preorder number of Rj in T is smaller than that of Ra , a contradiction.

• CH(R(l,i)) contains some point of Rj but the bottom edge of Rj is completely outside

CH(R(l,i)). Then Rj must intersect the lower hull of CH(R(I,i)) (see Figure 4(b».

Again there can be no rectangles R s and RI, S ~ i < t, such that the leftwards-moving

horizontal ray from the bottom-left vertex of R s first hits RI. But then, there must be

a point q on the bottom edge of a rectangle Ha, .'> S i < j, such that x(p) S x(q) and

yep) > y(q) for some point p on the bottom edge of Hi (Figure 4(b)). Again by Lemma 2,

this implies that the preorder number of Ri in T is smaller than that of R a , a contradiction.

We can now let such a desired staircase separator S for the subsets R(I, k) and R(k +1, 2n)

consist of (say) the portion of the boundary of CH (R(1, k)) from its rightmost edge clockwise to

its lowest edge, augmented by two semi-infinite segments, one extended leftwards horizontally

from its lowest edge and the other extended upwards vertically from its rightmost edge. By

using the same arguments as above, we can show that for every j with j > k, S is above or to

the left of Ri. Hence S so constructed is an obstacle-avoiding increasing staircase and consists

of O(k) segments.

WLOG, assume k :::: min{k, 2n-k}. We now show how to compute such a staircase separator

Sin O(k) time. In fact, we will compute CH(R(I,k)), which is a little more than the above

staircase S, in O(k) time. Note that the boundary of CH(R(I, k)) can be obtained from four

staircase paths, each of which corresponds to an ordered sequence of certain suitably defined

elements of maximal domination [33] for the 4k rectangle vertices of R(I, k). WLOG, we only

snmv the procedure for computing one such sequence of maximal elements.

Our procedure is based on a simple divide-and-conquer strategy. First, partition the set

R(I,k) into two subsets R(I,kJ2) and R(k/2,k) (WLOG, assume k is an even integer greater

than 1). Then, recursively compute the sequence of maximal elements for each such subset,

represented by a balanced search tree, such as a 2-3 tree [1]. Finally, compute the sequence of

maximal elements for the vertices of R(l, k) from the two sequences for the two subsets. By the

above discussion, these two sequences are respectively contiguous portions of the boundaries of

two disjoint convex hulls. Hence by performlng 0(1) standard 2-3 tree operations, the sequence

of maximal elements for R(I, k) can be obtained, also maintained by a 2-3 tree. The recurrence

relation for the time complexity of tills divide-and-conquer procedure is

T(k) = 2T(k/2) + O(log k), 1m k > I

T(1) = 0(1)

Hence it follows that T(k) :::: O(k). After the above divide-and-conquer procedure terminates,

it is easy to obtain the sequence of maximal elements for R(I, k) from its 2-3 tree in O(k) time.

The space used for computing CH(R(I, k)) is clearly O{k).

This completes the proof of the staircase separator theorem. 0

B,
B, B.

[I B,

B,. I B

B,~
~

B, i -

, ,
B, i i Ii i i

Figure 5: illustrating the definition of the tree T'.

4 Data Structures

In this section, we describe the data structures that the algorithm in the next section will use.

Since that algorithm from time to time will delete some rectangles from the collection R = {Rl,

R2 , .. _, R 2n }, we use L+ to denote the current list of rectangles sorted by their preoeder numbers

in T. The list L+ is initially {Rl, R 2, .. ", R 2n }, but may change as the algorithm proceeds.

However, the following invariants must hold:

1. The list L+ must contain as many fed as blue rectangles.

2. C H(JJ+) does not intersect any of the rectangles in R - L+o This invariant insures

that we call solve the problem on L+ withollt having to worry about interfering with the

solution of R - L+, so long as our solution paths for L+ (resp., R - L+) do not wander

outside (resp., inside) of CH(L+). Note that if the algorithm decides to match the pair of

rectangles R', R" and delete R', R" from L+, then this invariant requires that the resulting

new list L+ - {R', R"} should also satisfy the invariant, i,e., that CH(L+ - {R' , R"}) must

intersect neither R' nor R".

We define another list L_ which contains exactly the same set of rectangles as L+ but is

ordered differently (as explained next). L_ initially contains aU the input rectangles, but they

are sorted according to their preorder numbers in a tree T' rather than T, where T' is defined

just like T except for the following differences:

• Instead of the "leHwards-shooting horizontal ray emanating from the bottom-left corner

of each rectangle" that we used in the definition of T, in T' we use "downwards-shooting

vertical ray emanating from the bottom-right corner of each rectangle" (see Figure 5).

• Instead of sorting adjacency lists by the decreasing y-coordinates of the horizontal shooting

rays, in T' the adjacency lists are sorted by the increasing x-coordinates of the vertical

shooting rays.

~ NW of CH(S+)

~LI"""'"''''-1----- .lIE =SI - R.
~ R7...

SE of CHep+) :

Figure G: An example for Lemma 3, with P+ = {Rt. . .. , R s} and S+ = {Rs, R 7 , R s}.

• The "dummy" rectangle corresponding to the root of T' is below all the input rectangles

(whereas for T it was to their left).

Figure 5 illustrates the tree T' in which the rectangles are named Bi'S (for boxes) instead of

Ri'S.

The L_ list is not explicitly maintained by our algorithm. But, the order in which the

elements of L+ would appear in this hypothetical list L_ is conceptually important, and will

be exploited by our algorithm; we henceforth use the shorthand "T' preoeder" to refer to thls

order.

Because L+ (hence L_) satisfies Invariant 2 above, the proofs of the following lemmas are

very similar to the proof of Theorem 1 and are therefore omitted. (Note how the proof falls

apart without Invariant 2, specifically at the place where we deduce that RI must he the parent

of R s - this need not hold if Invariant 2 is violated, and indeed we cannot even claim that RI

is an ancestor of R s .)

Lemma 3 Let P+ be a prefix of the list L+, and S+ be the remaining suffix of L+, i.e., S+

= L+ - P+. Then the increasing staircase defined by the South-East portion of CH(P+) is

(geometrically) above all of the rectangles in S+. Equivalently, the increasing staircase defined

by the North- West portion of CH(S+) is below all of the rectangles in P+.

Figure 6 illustrates Lemma 3.

Lemma 4 Let P_ be a prefix of the list L_, and S_ be the remaining sulJix of L_, i.e., S_

= L_ - P_. Then the decreasing staircase defined by the North-East portion of CH(P_) is

(geometrically) below all of the rectangles in S_. Equivalently, the decreasing staircase defined

by the South- West portion of C H(S_) is above all of the rectangles in P_.

Figure 7 illustrates Lemma 4.

When the algorithm to be described in the next section is solving a problem corresponding

to the rectangles in L+, it is not given just the list L+ but rather a tree structure S(L+) built

Figure 7: An example for Lemma 4, with P_ = {Bl , •.• , Bs} and S_ = {Bfi,B7 ,Bs}.

"on top" of L+. Specifically, S(L+) is a 2-3 tree structure [1] whose leaves contain the rectangles

in L+, in the same order as in L+; these leaves are doubly linked together. Each internal node

v of S(L+) contains a label equal to the smallest T' preorder number (Le., according to the L_

ordering) of the rectangles stored in the subtree of S(L+) rooted at v. In addition, there are

cross-links between every internal node v of S(L+) and the leaf in the subtree of S(L+) rooted at

v corresponding to the label of v. We will perform only deletion and split operations on 8(L+),

both of which can be done in logarithmic time using standard techniques [1]. The deletions will

take place after we have matched a pair of rectangles - we then delete them from S(L+) and

recurse on the resulting 8(L+). The split operations will take place when we process L+ by

solving recursively two pieces of L+: A prefix £' of L+, and the remaining suffix L" = L+ - L'

(of course L' and L" must satisfy the required invariants mentioned earlier). Splitting 8(L+)

allows us to create 8(L') and 8(£") in logarithmic time.

5 The Matching Algorithm for Rectangles

The goal of tIus procedure is to compute a desired matching for the rectangles in R, without

worrying about describing the actual paths that join the matched pairs of red/blue rectangles

(the next section explains how this procedure can be modified to also produce the actual paths

connecting the matched pairs).

The procedure is recursive, and takes as input the 2-3 tree data structure S(L+) described

in the previous section.

Procedure MATCH(L+)

Input: S(L+), where L+ = (R~, R~, ... , R'rr,).

Output: A matclung of the red and blue rectangles in L+.

1. If m = 2, then the two rectangles in L+ surely have different colors (by Invariant 1): Match

them and return. If m > 2, then proceed to the next step.

Comment: The path that will join the pair just matched will be along the boundary of

2. Find the first leaf (for R~) and the last leaf (for R~) of S(L+), in O(logm) time. If R~

and R~ have different colors, then proceed to the next step. Otherwise R~ and R~ have

the same color (say, it is red). For each integer s, 1 :$ s :$ m, let [(s) be the number

of red clements minus the number of blue elements in the set {R~, R~, ... , R~}; observe

LhaL IJ(s + 1) - J(s)1 = 1 and that in tlus ease J(1) = 1 whereas J(m - 1) = -1. This

implies, by a simple "continuity" argument, that there is some integer e, 1 < e< m -1, for

which f(i.) ::: O. (A somewhat similar continuity argument was used in [3] in the context

of matching points.) Next, we shall search for such an £ in time O(minie, m - £}) rather

than in time O(m), as follows. We linearly search for it along the leaf sequence of 5(L+),

by two interleaved searches: One starting from the beginning of L+, from R~ up, and the

other starting from the end of L+, from R~_l down, where we alternate between the two

searches until one of them first hits a desired value ewhich we know must exist. Hence,

we find an £ value for which f(£) ::: 0 in O(min{e, m - i.}) time, rather than in O(m) time.

This defines two subproblems L' and L"; L'::: {R~, Ri,···, Ra and L//::: {Rt+l' R~+2'

... , R~}. In O(logm) time, we split S(L+) into 5(L') and S(L"). Then we recursively

call MATCH(L') and MATCH(L").

Analysis: This step has a cumulative total cost of O(nlogn) time rather than 0(n2) even

though the two subproblems so generated and solved recursively can be very "unbalanced",

e.g., IL'I could be 0(1). The analysis is as follows: We spend only O(logm+min{£, m-i.})

time in generating the two subproblems; we can "charge" the log m term of tills cost to the

recursive call itself (i.e., to the node of that recursive call in the recursion tree), and the

min{£, m - £} term to the rectangles of the smaller subproblem (0(1) time per rectangle).

A rectangle that is so "charged" ends up in a subproblem of no more than half the size of

its previous subproblem, and hence cannot be charged more than log n times, for a total

(over all the 2n rectangles of R) of O(n log n). The total number of nodes in the recursion

tree is O(n), and hence the overall cost of the charges to the nodes of that recursion tree

(Iogm per node) is O(nlogn).

3. R~ and R~ have different colors_ Obtain, from the label at the root of S(L+), the smallest

rectangle of L+ according to the L_ ordering. Let R// be this rectangle. Rectangle R"

must have the same color as one of {RL R~}, so suppose WLOG that it has the same

color as R~. Then we (i) match R~ and R", (ii) delete R~ and R" from S(L+) in O(logm)

time, and (ill) recursively solve the problem on the resulting L+.

Comment: The path that wHI join the pair just matched wHI he along the boundary

of CH(L+ - {R~,R"}). The justification for the monotonicity of this path follows from

Lemmas 3 and 4, which ensure that the path [rom R'l to R" along the boundary of

C lI(L+ - {R~, R"}) consists of at most two subpaths: An increasing staircase followed

by a decreasing staircase. This step also has a cumulative total cost of O(nlogn) time,

because each of the n matched pairs is charged a cost of O(1ogn) time by the step.

As analyzed above, algorithm MATCH computes n matched pairs of red/blue rectangles

of R in O(nlogn) time and O(n) space.

6 Reporting the Actual Paths

This section shows how to output the actual monotone paths between all the n matched red/blue

rectangle pairs in O(n log n +..\) time, where ..\ is the total number of segments that make up

these n paths.

Recall the comments we made after a rectangle pair was matched by the algorithm of the

prev'lolls section (specifically, following Steps 1 and 3). These comments described the desired

path between the pair just matched in terms of a rectilinear convex hull C H(v) of a subproblem

associated with a particular place (i.e., a node) v in the recursion tree of algorithm MATCH at

which this subproblem occurred. We postponed the actual computation of these CH(v) convex

hulls, because once we have the overall structure of the recursion tree, we can traverse it and

compute these CH(v) hulls bottom up, with insertion operations only (since the subproblem of

a child node in the recursion tree is that of its parent node minus some rectangles). Thus, this

enables us to use the fact that maintaining rectilinear convex hulls, in the face of insertions only,

is possible in logarithmic time per insertion [31J.

Hence, the idea is to run the matching algorithm of Section 5 and make sure that, after

that algorithm has executed, it leaves behind the skeleton of its recursion tree, which we call

Rec1'Tee, together with certain information describing how a path between a matched rectangle

pair is related to CH(v) (i.e., the description in the "comments" of algorithm MATCH). This

description information uses 0(1) space per matched pair. Tltis skeleton just gives the overall

structure of RecTree. It does not store directly the rectangles of the subproblem associated

with each node v of RecTree (that would be too expensive in terms of the space complexity),

but rather how the rectangles of v are related to those of v's children:

1. If v has only one child in RecTree, then its associated rectangles are those of its only

cltild plus two rectangles that are matched by algorithm MATCH at v: It is these two

rectangles that are explicitly stored at v in RecTree.

2. If v has two children in RccTrce, then its associated rectangles are the umon of the

rectangles of both its children.

In either case, we store 0(1) information at each node v, so that Rec7'ree uses altogether

O(n) space. The problem of computing the actual monotone path (if any) associated with

each node v in RecTree clearly reduces to computing CH(v) in turn and using it to print that

path. The computation of the CH(v)'s associated with all the nodes v of RecTree is done by a

simple traversal of RecTree during which the CH(v)'s are computed according to the postorder

numbers [1] of the nodes v in RecTrce. Of course, at a node v of RecTree that has two children

(say,1L and w), we do not create CH(v) by individually inserting the vertices of CH(u) into

CH(w), but rather we obtain CJI(v) by "merging" CH(u) and CH(w) in logarithmic Lime

[31]. After C H(v) is computed, the actual path between the matched rectangle pair of node v is

computed by walking along C H(v), in time proportional to the size of the path plus a logarithmic

additive term. We assume that if two such matching paths share some common portions on

certain convex hulls so computed, then the two paths are apart by at least a positive distance

that can be made arbitrarily small. The overall time of this algorithm is therefore O(nlogn)

plus the time needed to print all the output paths, Le., 0(..\).

7 Extensions to Monotone Polygonal Obstacles

In this section, we extend our techniques for matching red/blue isothetic rectangle obstacles

to matching red/blue polygonal obstacles in the plane that are all monotone with respect to

a coordinate axis (say, the y-axis). Let W be a set of r red and r blue disjoint polygonal

obstacles in the plane, with a total of n vertices. We assume that all the polygonal obstacles in

Ware monotone to the y-axis, and call them y-monotone poLygons. We show that it is possible

to match all the red and blue polygons in W, by connecting the r matched red/blue polygon

pairs with r mutually disjoint paths. The properties of the matching paths are similar to those

for isothetic rectangles, except for the monotonicity: In this case, a path can be used for the

matching if it can be partitioned into at most two subpaths, each of which is monotone to the

y-axis. Our algorithms for computing such a matching have the same complexity bounds as the

matching algorithms for isothetic rectangles in the previous sections.

One consequence of considering y-monotone polygonal obstacles (whose structures are less

nice than those of isothetic rectangles) is that we must use a weaker monotonicity constraint

on the matching paths. This is because even with a geometric setting consisting of disjoint

convex polygonal obstacles in the plane, there is in general no obstacle-avoiding path between

two arbitrary points that is monotone to the x-axis or to the y-axis. But in such a setting, a

~-~~----------,

Figure 8: A path with two y-monotone subpaths among rectilinear convex obstacles.

(a) (b)

Figure 9: There is no staircase separator for rectilinear and non-rectilinear convex obstacles.

path consisting of at most two y-monotone subpaths always exlsts between any two points (see

Figure 8 for an example). Another consequence of considering y-monotone polygonal obstacles

is that there is in general no staircase separator for partitioning such geometric object sets. In

the two examples of Figure 9, there exists no staircase (even with respect to any two orthogonal

lines) that partitions each convex obstacle set into two subsets, such that every subset contains

more than one obstacle. However, as we will show, there exlst y-monotone paths that partHian

y-monotone polygons. Note that a key difference between staircases and y-monotone paths is

that staircases are monotone to both the x-axis and y-axis, while y-monotone paths need not be

monotone to the x-axis.

Il turns out that the matching algorithms based on the geometric structures of y-monotone

polygonal obstacles are similar to and in fact simpler than the matching algorithms for isothetic

rectangles. Also, although we have chosen in this section to focus our discussion on rectilinear

geometric objects (obstacles, paths, etc), it is actually not difficult to modify our algorithms so

that they will work with non-rectilinear objects under the y-monotonicity constraint.

Let the obstacle set W = {Wo, WI, _. _, W2r }, where Wo is the extra "dummy" rectangle Ro

to the left of all the other obstacles in W (as introduced in Section 3). We first preprocess W

as in Section 3. From the left vertex of the lowest edge of every Wi, shoot a leftwards-moving

horizontal ray ri; let Parent(i) be Wi, where Wi is the first obstacle in W hit by the ray rio

Maintain for every Wi an adjacency list of all the obstacles in W whose Parent is Wi, sorted by

the decreasingy-coordinates of their leftwards-moving horizontal rays_ This gives a tree structure

whose nodes are the obstacles in W (as the tree T in Section 3) and which we again denote

~
_= y-monotone hull

t-!J(;:::: . --:::;

i
~ -~ --~ "'
: -- I--=' ':1
::; - - ~

Figure 10: An example of the y-monotone hull of a. set of obstacles.

by T. Lahel the nodes of T by their preorder numbers in T, and fe-label the obstacles in W

by their corresponding preorder numbers in T. This preprocessing can be done by a horizontal

trapezoidal decomposition of W [33] and a preorder traversal of T [1], in altogether D(n log n)

time and D(n) space. WLOG, let i he the label of Wi in the preprocessed form. In addition,

we also construct, as part of the preprocessing, the planar subdivision [33J that is defined by

the horizontal trapezoidal decomposition of W. The construction of trus planar subdivision also

takes O(n log n) time and D(n) space.

For any consecutive sllbset W' = {Wi. W i+1 , •.• , Wi} of W, where i > 0, we define the

v-monotone hull of W', denoted by ClIy(W'), to be the region with the smallest area that

contains all the obstacles in W' and that is v-monotone (sec Fjgure 10 for an example). Note

that the region CHyeW') so defined may be disconnected. If this is the case, we assume that

we link the connected components of CHy(W') together with some paths of zero width, so that

CHy(W') becomes connected and is still v-monotone.

Note that the boundary of every y-monotone polygon can be easily partitioned into two

y-monotone paths, which we call the lefl boundary and 1ight boundary of such a polygon. For

every point p in the plane that is to the right of the root obstacle Wo of T and is not in the

interior of any obstacle, we define the path Q(p) from p to Wo as in Section 3, with one small

exception: When Q(p) follows a leftwards-moving horizontal ray and hits an obstacle Wi f= Wo,

Q(p) goes to the left vertex of the lowest edge of Wi along a downwards v-monotone path on the

right boundary of Wi. Q(p) so defined is clearly a unique v-monotone path, although it need

not be x-monotone simultaneollsly.

The following observations are analogolls to those of Lemmas 1 and 2 and Theorem 1. The

differences in these observations and their proof arguments stem from the structural differences

between the convex hulls ofisothetic rectangles and the v-monotone hulls of v-monotone polygons

in our matching problems.

Lemma 5 For an obstacle Wi in W - {Wo}, let p and q be two points such that p is on the left

boundary of Wi and q is on the right boundary of Wi. Then no point of Q(p) is strictly below

any paint aJ Q(q).

Proof. A crucial fact to the proof is that both Q(p) and Q(q) are planar v-monotone paths.

The proof argument is similar to that of Lemma 1. 0

Lemma 6 Le.t p and q be two points in the plane such that p is on the left boundary of an

obstacle Wi and q is on the right boundary of Wi, with i > O. Let 11. (resp., v) be the [eft vertex

of the lowest edge of an obstacle W" (resp., Wb), such that 11. (resp., v) is on Q(p) (resp., Q(q»)

but not on Q(q) (resp., Q(p»). Then the pre.orde.r number of W a in the tree T of obstacles is

smaller than that of Wb, i.e., a < b.

Proof. TILis follows from Lemma 5 and from the definition of the tree T. o

Theorem 2 Given a preprocessed set W of 2, disjoint y-monotone polygonal obstacles with n

vertices in total, the subsets {WI, w2, .. " Wk} and {Wk+t, Wk+2, ... , W2r }, for any integer k

with 1 :0::::: k < 2r, form a partition of the set W that has the desired property, that is, there exists

an obstacle-avoiding v-monotone path oj size O(n) that separates these two subsets. Furthermore,

such a y-monotone path can be computed in O(n) time.

Proof. Let W(a, b) denote the subset {Wa, Wa+1, ... , Wb} of W. For the existence of such a

v-monotone path, we first show that for any i < j, the following holds: (1) CHy (W(I, i)) does

not intersect Wi, and (2) CHy(W(j,2r)) docs not intersect Wi. We give the proof only for (1),

lhaL for (2) being similar.

We prove (1) by contradiction: Suppose to the contrary that for some j > i, Wj intersects

CIly(W(I,i)). Then for a point w E CHy(W(l,i)) n Wi, there must be a point z of a W",

s::; i < j, such that y(w) ::: y(z) and x(w) < x(z), (i.e., z is strictly to the right of w). (If such

a point z did not exist, then w would have not belonged to CHy(W(I,i)) by the definition of

v-monotone hulls, a contradiction.) WLOG, let z E W" be the leftmost such point. Then z must

be on the left boundary of Ws and the leftwards-moving horizontal ray from the left vertex of

the lowest edge of W" cannot first hit Wi (otherwise, we would have a contrad.1ction). Let z' be

a point on the right boundary of W" such that y(z) > y(z'). Then by Lemma 6, the preorder

number of Wi in T is smaller than that of W s , a contradiction.

We can compute a desired v-monotone path by letting the path first go along the right

boundary of CHy(W(l,k)) as much as possible, then along the left boundary of CHy(W(k +
1,2r)) (if necessary), and finally extend vertically upwards and downwards to infinity. The y­

monotone path so obtained clearly has a size of O(n). Given the planar subdivision based on

the horizontal trapezoidal decomposition of the obstacle set W (this subdivision is part of tohe

preprocessing result), it is possible to obtain such a v-monotone path in O(n) time. This is done

by examining the O(n) cells of the planar subdivision to identify those cells that separate the

two subsets W(l,k) and W(k +1,2r), i.e., the cells whose left (resp" right) boundaries are on

the right (resp., left) boundaries of the polygons in W(I,k) (resp., W(k + 1, 2r)). 0

Note that in a fashion similar to Theorem 2, we can also partition the preprocessed set W

into two subsets based on the total sizes of the polygons in the resulting subsets. That is, for

an integer j with 1 S j < n, we can partition the preprocessed obstacle set W into two subsets

W(l, k) and W(k+l, 2r) with a v-monotone path, such that the total number of polygon vertices

of W(l, k) is no bigger than j but the total number of polygon vertices of W(l, k +1) is strictly

larger than j. This partitioning can also be done in O(n) time.

Theorem 2 enables us to obtain efficient algorithms for computing a desired matching for y­

monotone polygons, as did Theorem 1 for isothetic rectangles. In fact, the matching algorithms

for v-monotone polygons are similar to and actually simpler than the ones for isothetic rectangles.

Like the matching algorithms for isothetic rectangles, the algorithms here also maintain the

list L+. However, unlike the algorithms for isothetic rectangles, L+ here is always a consecutive

sublist of the orlginallist W(1,2r) and is maintained only as a doubly linked list. Further, the

algorithms here do not need to use the tree T' and hence the list L_, and do not use the 2-3 tree

S(L+). We only sketch below the computation of these algorithms, since they are very similar

to those of Sections 5 and 6.

To specify the matching pairs of the red/blue polygons in a list L+ = (W{, W~, ... , W~)

(without computing the actual paths), the algorithm simply does the following:

If Wi and W~ are of different colors, then match Wi and W~ (by letting the Wi-to­

W~ path go along first the left boundary of C H y(L+) and then the right boundary of

CHy(L+)), and recursively solve the problem on L+ - {W{, W~} if L+ - {Wi, W~}

is non-empty; otherwise, partition L+ into two consecutive sublists (as in Step 2 of

algorithm MATCH) and recursively solve the two subproblems.

A matching path so speciHed consists of at most two v-monotone subpaths because it follows

first the left boundary and then the right boundary of a v-monotone hull. As analyzed in Section

5 for algoritlnll MATCH, the matching algorithm here takes O(rlog r) time after the ordered

list W(1,21') is made available by the O(nlogn) time preprocessing.

The algorithm for computing the r actual paths of a matching here is similar to the one

for isothetic rectangles in Section 6: It maintains the recursion tree RecTree of the above

matching algorithm, and computes the y-monotone hull CHy(v) for the subproblem on every

node v of RecTree. Each of the left and right boundaries of CHy(v) can be maintained by a

2-3 tree. The geometric structures of the y-monotone hulls of the input polygons in RecTree

can be exploited by our computation in the following way: When we need to "merge" two y­

monotone hulls ClIy(u) and ClIy(w) to obtain CIly('/)) (with u and W being the left and right

children of v, respectively), we replace the corresponding portions of the (say) left boundary

of ClIy(w) by the left boundary of each connected component of CHy(u) (if CHlI(u) indeed

consists of more than one connected component). This can be done by using D(l) split and

concatenation operations of 2-3 trees for each component of CHiu), in logarithmic time. Since

we can charge the time for "merging" each such connected component to a horizontal line

segment of the horizontal trapezoidal decomposition and since there are D(n) such line segments

in the trapezoidal decomposition, the total time for our algorithm to output all the r actual paths

between the matched red/blue polygon pairs is D(nlogn + >.), where>' is the total number of

segments that make up these r paths. The space bounds of the matching algorithms in this

section are D(n).

8 Lower Bounds for the Matching Problems

In this section, we prove ll(nlogn) (ower bounds in the algebraic computation tree model [8J

for the matching problems studied in this paper.

First, we show that the problem of matching 2n disjoint red/blue isothetic rectangles wit.h

nonintcrsecting monotone rectilinear paths in the plane requires ll(nlog n) time in the worst. case.

Actually, we will show an ll(n log n) lower bound for the following (simpler) problem P: Giving

n red and n blue disjoint isothetic rectangles in the plane, find a monotone rectilinear obstac1e­

avoiding path from a specified red rectangle (say, R1) to some (unspecified) blue rectangle Vi.

The reason for considering problem P is that this problem can be easily reduced to our matching

problem since any solution to the matching problem definitely contains such a monotone path

between the red rectangle R} and some blue rectangle 1~'. The key to our proof is a reduction

from the problem of sorting D(n) pairwise distinct positive integers (in an arbitrary range) to

problem P. Note that based on Yao's ll(n log n) lower bound result for the element uniqueness

problem on n arbitrary integers [42], Chen, Das, and Smid [10] showed that sorting D(n) pairwise

distinct positive integers in the worst case requires n(nlog n) time in the algebraic computation

tree model.

The reduction goes as follows. Consider a set J(of n pairwise distinct positive integers I 1 ,

12 , ••• , In. Let Ia (resp., Ib) be the smallest (resp., largest) integer in the set J((it is easy to

find Ia and Ib in D(n) time). WLOG, assume that Ia > 2. For every integer Ij E J(, map Ij to

a set. Uj of four red isothetic rectangles Rf, Rt, Rt, and R~ in the plane, as follows (see Figure

I------~'--,-----:H, ,, ,

1-1~-"-u~Jt·· ~ ~ ... ~m
, ~~..~..~...~..~...~..~...~..~...~..~...~.",,_,u

......... "..................... b•= H"

Figure 11: TIlustrating the reduction of the lower bound proofs.

11): The shorter edges of all the four red rectangles in Uj have the same length of 0.5 units;

the right (resp., left) edge of R? (resp., R{) has the point (1j,O) (resp., (-Ij,O)) as its mlddle

point and has a length of 2Ij, while the top (resp., bottom) edge of Rt (resp., R~) has the point

(0, Ii) (resp., (0, -Ii)) as its middle point and has a length of 2Ij - 1 - 2£, for a very small

fixed E > O. Let R1 be a red isothetic unit box whose center is at the origin of the coordinate

system. We then have 4n + 1 red rectangles. We next create 4n + 1 isothetic blue rectangles

1r,'s in the following way: These blue rectangles arc all isothetic unit boxes whose centers are all

on the x-axis; every two consecutive blue boxes are one unit distance apart, and the leftmost

blue box is at least one unit distance to the right of Ub (see Figure 11). It is clear that the

O(n) red/blue isothetic rectangles so obtained are pairwise disjoint (since the input integers are

pairwise distinct), and that the construction of this rectangle set takes O(n) time.

Now, it is an easy matter to observe that (1) an Rrto-Vi path in this setting can be monotone

only to the x-axis (but not to the y-axis), and (2) any such monotone HI-to-Vi path must get

around every red rectangle set Uj in the sorted order of the corresponding Ii values of the Ui's

(Figure 11). Let H be a monotone rectilinear Rrto-V; path computed by any algorithm for

problem P, with IHI = O(n). We assume that when the path II is getting around a particular

rectangle set Ui, it picks up the index j and associates j with the horizontal edge of H that

contains the x-coordinate of the rightmost edge of Ui. Then given such a path H, we can output

the sorted sequence of the input integers in J(by tracing H and picking up the indices of the

integers Ii from their associated horizontal edges of H along the path order of H. Such a tracing

of H can he easily done in O(n) time. This completes the lower bound proof for problem P.

Our lower bound proof for the matching problem on y-monotone polygons uses the same

reduction construction as for that on isothetic rectangles, except that we now compute a path

which consists of at most two y-monotone subpaths instead of one monotone path. That is, we

use any algorithm for computing such an Rl-to-V; path among y-monotone polygons to build

a geometric sorting device for integer input; the reduction is the same as the one illustrated in

Figure 11 and takes O(n) time. This reduction works because any Rrto-Vi obstacle-avoiding

rectilinear path IF that consists of at most two v-monotone subpatbs in the setting of Figure

II must get around every red rectangle set Uj in the sorted order of the corresponding Ii

values of the Uj's. Therefore, such a path H' can be used to report the sorted sequence of the

input integers in O(n) time, implying an !1(nlogn) lower bound for the matching problem on

v-monotone polygons.

9 Further Remarks

As mentioned carlier, Theorem 1 implies an efficient parallel bound for equipartitioning a set

of disjoint isothetic rectangles. This fact is potentially useful in the parallel algorithmics of

other, not necessarily red/blue, rectangle problems (as is clear from [4, 5], where tremendous

simplifications follow from the next theorem). Therefore, this useful side-effect of Theorem 1 is

summarized below.

Theorem 3 Let R be a set oj 2m disjoint isothetic rectangles (not gwen m any particular

order). Then an m-processm' CREW PRAM can compute, in O(logm) time, an increasing

staircase S that does not intersect the interim' of any rectangle in R and partitions R into two

equal parts, with lSI = O(m).

Proof. This follows from Theorem 1 and the fact that a trapezoidal decomposition [6] as well

as the preorder numbers in a tree [37) can all be computed in parallel within these bounds. 0

In fact, the preprocessed form of R required by Theorem 1 can be obtained as a by-product

of Theorem 3, in O(logm) time using m CREW PRAM processors. Once this form is available,

we can do a little more than Theorem 3: We can partition the set R = {R1 , R2, .. _, R2m }

into two subsets {Rl, R2, ... , Rd and {Rk+t> Rk+2' _._, R 2m }, for any integer k with 1 ~

k < 2m, in O(log t) time using t/logt processors in the CREW PRAM or even the EREW

PRAM model [22J, where t :::: min {k, 2m - k}. This is done by using, instead of the two-way

divide-and-conquer algorithm given in the proof of Theorem 1, a many-way divide-and-conquer

approach as in [9, 20J. The details of this parallel algorithm are very similar to (and in fact even

simpler than) those of (9, 20j, and hence are omitted.

The following partition result may also be useful to designing parallel algorithms for certain

geometric problems.

Theorem 4 Let W be a set of 2r disjoint v-monotone polygons (not given in any particular

order) with a total ofm vertices. Then an m-processor CREW PRAM can compute, in O(logm)

time, a y-monotone path P that does not intersect the interior of any polygon in Wand partitions

W into two subsets ofr polygons each, with IPI :::: O(m).

Proof. This follows from Theorem 2 and the fact that a trapezoidal decomposition and the

planar subdivision based on it [6] as well as the preordcr numbers in a tree [37] can all be

computed in parallel within these bounds. o

Again, we can also preprocess W in Q(logm) time using m CREW PRAM processors. After

that, such a y-monotone path P, as defined in Theorem 4, can be obtained in O(Jogm) time

using m/ log m CREW PRAM processors. This is done by first examining the cells of the planar

subdivision (to identify those cells that separate the two subsets of the polygons in W) and then

using parallel list ranking [22J to find the path P. Note that it is also possible to modify Theorem

4 to partition W into two subsets based on the total sizes of the polygons in the resulting subsets.

We conclude with an implementation note about our algorithms. If we are to program the

matching algorithms for isothetic rectangles, we would mollify them by creating (in Step 2) 5(L')

and 3(L/I) only as a last resort, by inserting before Step 2 a Step l' in which we check whether

Ri and Rj, are of different colors - if so we match them, delete them, etc, and if not we check

whether R~_l and R~ are of different colors - if so we match them, delete them, etc, and if not

we go to Step 2. Thus, we go to Step 2 only if we are unable to match the pair {R~, Rj,} and the

pair {R~_l>R~}. Performing such a Step l' before Step 2 gives preference to short paths over

long ones, since an Ri-to-R~, path is likely to be longer than an R~ -to-Rj, (or R~_l-to-R~)path.

For y-monotone polygons, an efficient heuristic that may produce short paths for a matching we

desire is to use a modification of the so called red/blue matching approach [2, 23] for matching

red/blue elements in an ordered list (in our situation, the ordered list is W(1,2r)). Of course,

this assumes that short paths are practically better than long ones.

The above discussion suggests the obvious open problems of finding matchings that satisfy

some additional length criteria, such as:

• Minimum sum of lengths of all n paths, or

• Minimum maximum length of all n paths, or

• Versions of the above two where "length" means number of links rather than the usual L 1

length (hence this version of the sum-of-Iengths problem amounts to minimizing what we

earlier called ,X).

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison.Wesley, Reading, Mass., 1974.

[2] M. G. Andrews, M. J. Atallah, D. Z. Chen, and D. T. Lee, "Parallel algorithms for ma.ximum
matching in interval graphs," Proc. 9th IEEE International Parallel Processing Symp., 1995,
pp.84-92.

[3] M. J. Atallah, "A matching problem in the plane," J. of Computer and Systems Scie.nces, 31
(1985), pp. 63-70.

[1] M. J. Atallah and D. Z. Chen, "Parallel rectilinear shortest paths with rectangular obstacles,"
Computational Geometry: Theory and Applications, 1 (1991), pp. 79-113.

[5] M. J. Atallah and D. Z. Chen, "On parallel rectilinear obstacle-avoiding paths," Computational
Geometry: Theory and Applications, 3 (1993), pp. 307-313.

(6] M. J. Atallah, R. Cole, and M. T. Goodrich, "Cascading divide-and-conquer: A technique for
designing parallel algoritllms," SIAM J. Computing, 18 (1989), pp. 499-532.

[7] M. J. Atallah, S. E. Hambrusch, and L. E. TeWinkc1, "Parallel topological sorting offeaturcs in a
binary image," Algorithmica, 6 (1991), pp. 762-769.

[8J M. Ben-Or, "Lower hounds for algebraic computation trees," Proc. 15th Annual ACM Symp. on
Theory of Computing, 1983, pp. 80-86.

[9] D. Z. Chen, "Efficicnt geometric algorithms on the EREW PRAM," IEEE Trans. on Parallel and
Distributed Systems, 6 (1) (1995), pp. 41-47.

[10] D. Z. Chen, G. Das, and M. Smid, "Lower bounds for computing geometric spanners and approx­
imate shortest paths," Proc. 8th Canadian Conf. on Computational Geometry, 1996, pp. 155-160.

[11] D. Z. Chen and K. S. Klenk, "Rcctilinear short path qucries among rectangular obstacles," Infor­
mation Proces.~ing Leliers, 57 (6) (1996), pp. 313-3UI.

[12] D. Z. Chen, K. S. Klenk, and H.-Y. T. Tu, "Shortest path queries among weighted obstacles in the
rectilinear plane," Proc. 11th Annual ACM Symp. Computational Geometry, 1995, pp. 370-379.

(13] J. Choi and C.-K. Yap, "Rectilinear geodesics in 3-space," Proc. 11th Annual ACM Symp. Com­
putational Geometry, 1995, pp. 380-389.

[14J K. L. Clarkson, S. Kapoor, and P. M. Vaidya, "Rectilinear shortest paths through polygonal
obstacles in 0(n(logn)3) time," Proc. 3rd Annual ACM Symp. Computational GeometrJJ, 1987,
pp.251-257.

[15] K. L. Clarkson, S. Kapoor, and P. M. Vaidya, "Rectilinear shortest paths through polygonal
obstacles in O(n log3{2 n) time," manuscript.

[16] W. Dai, T. Asano, and E. S. J(uh, "Routing region definition and ordering scheme for building­
block layout," IEEE Trans. on Computer-Aided Design, CAD-4 (3) (1985), pp. 189-197.

[17] M. de Berg, M. van Kreveld, and B. J. Nilsson, "Shortest path queries in rectangular worlds of
higher dimension," Proc. 7th Annual Symp. Computational Geometry, 1991, pp. 51-59.

[18] P. J. de Rezende, D. T. Lee, and Y. F. Wu, "Rectilinear shortest paths in the presence of rectangles
barriers," Discrete £'3 Computational Geometry, -1 (1989), pp. 41-53.

[19] H. ElGindy and P. Mitra, "Orthogonal shortest route queries among axes parallel rectangular
ob:;tacles," International J. oj Computational Geometry and Applications, 4 (1) (1994), pp. 3-24.

[20] M. T. Goodrich, "Finding the convex hull of a sorted point set in parallel," Information Processing
Letters,26 (1987/88), pp. 173-179.

[21] M. Iwai, H. Suzuki, and T. Nishizeki, "Shortest path algorithm in the plane with rectilinear
polygonal obstacles" (in Japancse), Proc. of SIGAL Workshop, July 1994.

[22] J. JaJa, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992.

(23] S. K. J(im, "Optimal parallel algorithms on sorted intervals," Proc. 27th Annual Aller/on
Conf. Communication, Control, and Computing, 1989, pp. 766-775.

[24] R. C. Larson and V. O. Li, "Finding minimum rectilinear distance paths in the presence of barri­
ers," Networks, 11 (1981), pp. 285-304.

[25] D. T. Lee, T. II. Chen, and C. D. Yang, "Shortest rectilinear paths among weighted obstacles,"
International J. of Computational Geometry and Applications, 1 (2) (1991), pp. 109-124.

[26] D. T. Lee, C. F. Shen, C. D. Yang, and C. K. Wong, "Non-crossing paths problems," manuscript,
Dept. of EECS, Northwestern University, 1991.

[27] J. S. B. Mitchell, "An optimal algorithm for shortest rectilinear path among obstacles," First
Canadian Con! on Computational Ge.ometry, 1989.

[28] J. S. B. Mitchell, "L1 shortest paths among polygonal obstacles in the plane," Algorithmica, 8
(1992), pp. 55-88.

[29] P. Mitra and B. Bhattacharya, "Efficient approximation shortest-path queries among isothetic
rectangular obstacles," Proc. 3rd Workshop on Algorilhms and Data Stroclurcs, 1993, pp. 518­
529.

[30] T. M. Nicholl, D. T. Lee, Y. Z. Liao, and C. K. Wong, "On the X-Y convex hull of a set of X-Y
polygons," BIT, 23 (4) (1983), pp. 456-471.

[31] M. II. Overmars and J. van Leeuwen, "Maintenance of configurations in the plane," J. of Computcr
and Systems Sciences, 23 (1981), pp. 166-204.

[32] E. Papadopoulou, "k-Pai.rs non-crossing shortest paths in a simple polygon," Lo appear in the 7th
Annual International Symp. on Algorithms and Computation, 1996, Osaka, Japan.

[33J F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag,
New York, 1985.

[34] .F. P. Preparata and K. J. Supowit, ''Testing a simple polygon for monotonicity," Information
Processing Letters, 12 (1981), pp. 161-164.

[35] J. Takahashi, H. Suzuki, and T. Nishizeki, "Algorithms for finding non-crossing paths with min­
imum total length in plane graphs," Proc. 3rd Annual International Symp. 011 Algorithms and
Computalion, 1992, pp. 100-4.09.

[36] J. Takahashi, H. Suzuki, and T. Nishizeki, "Finding shortest non-crossing rectilinear paths in plane
regions," Proc. 4th Annual Tnternational Symp. on Algorithms and Computation, H193, pp. 98-107.

[37J R. E. Tarjan and U. Vishkin, "Finding biconnected components and computing tree functions in
logarithmic parallel time," SIAM J. Computing, 14 (1985), pp. 862-874.

[38] P. Widmayer, Y. F. Wu, and C. K. Wong, "On some distance problems in fixed orientations,"
SIAM J. Computing, 16 (4) (1987), pp. 728-746.

[39] Y. F. Wu, P. Widmayer, M. D. F. Schlag, and C. K. Wong, "Rectilinear shortest paths and
minimum spanning trees in the presence of rectilinear obstacles," IEEE Trans. on Computers,
C-36 (1987), pp. 321-331.

[40] C. D. Yang, T. H. Chen, and D. T. Lee, "Shortest rectilinear paths among weighted rectangles,"
Journal of Illformation Processing, 13 (4) (1990), pp. 156-462.

[11] C. D. Yang, D. T. Lee, and C. K. Wong, "Rectilinear path problems among rectilinear obstacles
revisited," SIAM J. Computing, 24 (3) (1995), pp. 457-472.

[12] A. C.-C. Yae, "Lower bounds for algebraic computation trees with integer inputs," SIAM J.
Computing, 20 (1991), pp. 655-668.

	Applications of a Numbering Scheme for Polygonal Obstacles in the Plane
	Report Number:
	

	tmp.1307986960.pdf.eGBii

