Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1996

Applications of a Numbering Scheme for Polygonal Obstacles in
the Plane

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

Danny Z. Chen

Report Number:
96-055

Atallah, Mikhail J. and Chen, Danny Z., "Applications of a Numbering Scheme for Polygonal Obstacles in
the Plane" (1996). Department of Computer Science Technical Reports. Paper 1309.
https://docs.lib.purdue.edu/cstech/1309

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

APPLICATIONS OF A NUMBERING SCHEME
FOR POLYGONAL OBSTACLES IN THE PLANE

Mikhail J. Atallah
Danny Z. Chen

CSD-TR 96-055
September 1996

Applications of a Numbering Scheme for
Polygonal Obstacles in the Plane*

Mikhail J. Atallaht Danny Z. Chen?

Abstract

We present efficient algorithms for the problems of matching red and blue disjoint ge-
ometric obstacles in the plane and connccting the malched obstacle pairs with mutually
nonintersecting paths that have useful geormnetric properties. We first consider matching n
red and n blue disjoint isothctic rectangles and connecting the » matched rectangle pairs
with nonintersecting monotone rectilinear paths; each such path consists of O(n) segments
and is not allowed Lo touch any rectangle other than the matched pair that it is linking.
Based on a numbering scheme for certain geometric objects and on several useful geometric
observations, we develop an O(nlogn) time, O(n) space algorithm that produces a desired
matching for isothetic rectangles. If an explicit printing of all the n paths is required, then
our algorithm takes O(n log n+) time and O(n) space, where A is the total size of the desired
output. We then extend these matching algorithms to other classes of red/blue polygonal
obstacles. The numbering scheme also finds applications to other problems.

1 Introduction

The problem of computing paths that avoid obstacles is fundamental in computational geometry
and has many applications. It has been studied in both sequential and parallel settings and using
various metrics. The rectilinear version of the problem, which assumes that each of a path’s
conslituent segments is parallel to a coordinate axis, is motivated by applications in arcas such
as VLSI wire layout, circuil design, plant and facility layout, urban transportation, and robot
motion. There are many efficient sequential algorithms that compute various shortest rectilinear
paths avoiding different classes of obstacles [11, 12, 13, 14, 15, 17, 18, 19, 21, 24, 25, 27, 28, 29,
38, 39, 40, 41], and some parallel algorithms as well [4, 5].

In this paper, we present efficient algorithms for the problems of matching red and blue
disjoint geometric obstacles in the plane and connecting the matched obstacle pairs with mu-
tually nonintersecting paths that have certain useful geometric properties. The first problem

we consider has the following input: n of the given 2z pairwise disjoint isothetic rectangles are

"This work was carried out in part at the Center for Applied Science and Engineering and Institute of Informa-
tion Science, Academia Sinica, Nankang, Taiwan, during its 1996 Summer Institute on Computational Geometry
and Applications.

'Department of Computer Sciences, Purdue University, Wesl Lafayette, Indiana 47907, TUSA.
mja€cs.purdue.edu. This author gratefully acknowledges support from the National Science Foundalion un-
der Grant DCR-9202807, and the COAST Project at Purdue University and ils sponsors, in particular Hewlett
Packard.

!Department of Compuler Science and Engineening, University of Notre Dame, Notre Dame, Indiana 46556,
USA. chen€cse.nd.edu. The research of this author was supported in part by the National Science Foundation
under Grant CCR-9623585.

\I
[T

Figure 1: Example of a matching of red and blue rectangles with monotone paths.

colored red (think of them as sources of something, e.g., electric power in a VLSI circuit), and
the other n are colored blue (think of them as consumers of power). By isothetic objects, we
mean that each edge of such an object is parallel to a coordinate axis. We are interested in
matching each red rectangle with ore and only one blue rectangle, and vice versa. Specifically,
we would like to find such a matching and connect each matched pair of red/blue rectangles
with a planar rectilincar path in such a way that (i) each path is monotone with respect to a
coordinate axis, (it) each path does not touch any rectangle other than the matched pair that it
is supposed Lo connect, (iil) no two such paths intersect each other, and (iv) each path consists
of O(n) segments. Figure 1 shows an example of such a matching.

Several geometric algorithms have been developed for solving various problems of finding
obstacle-avoiding pairwise disjoint paths that connect certain geometric objects [26, 32, 36], be-
cause of their relevance to VLSI layout applications [16, 26, 35] (e.g., VLSI single-layer routing).
Lee et al. [26] designed an O((k*!)nlog =) time algorithm for computing % shortest non-crossing
rectilinear paths in a plane region. Takahashi, Suzuki, and Nishizeki [36] studied the problem
of finding shortest non-crossing rectilinear paths in a plane region that is bounded by an outer
box and an inner box and that contains a set of disjoint isothetic rectangle obstacles, giving
an O(nlogn) time algorithm for computing % such paths whose endpoints are all on the two
bounding boxes (with £ < n). Papadopoulou [32] very recently obtained an O(n + k) time
algorithm for computing & shortest non-crossing paths in a simple polygon whose endpoints are
all on the polygon boundary. However, these problems are different from the one we study here
since they oflten assume that a specification on which object matches with which other object is
already given (hence, these problems require only to compute a sct of non-crossing paths that
realize the specified matching).

We develop an O(rlogn) time, O(n) space algorithm that produces a desired matching for
red/blue isothetic rectangles. If an explicit printing of all the n paths for such a matching is
required, then our algorithm takes O(nlogn + A) lime and O(n) space, where X is the total size
of the desired output.

We then extend these matching algorithms to a more general geometric setting which consists

of disjoint red/blue polygonal obstacles that are all monotone to a coordinate axis (say, the y-
axis). The matching paths we compute for this more general setting have similar structures to
those for isothetic rectangles, except that in this case their monotonicity has to be weaker: Each
such matching path can be partitioned into al most two subpaths, each of which is monotone
te the y-axis. Qur matching algorithms for y-monotone polygonal obstacles have the same
complexity bounds as those for isothetic rectangles.

We also prove that all the matching problems studied in this paper have an Q(nlogn) lower
bound in the algebraic computation tree model [8]. Our matching algorithms are based on a
numbering scheme for certain geometric objects and on several useful geometric observations.
This numbering scheme also [inds applications to other problems [7].

Our algorithms can also be viewed as proofs that such matchings always exist, a fact that,
to the best of our knowledge, was nol previously established. We should point out that without
the requirement that all matching paths must satisfy a monotonicity constraint, the existence
of nonintersecting paths for any red/blue polygonal obstacle matching is irivial to prove: For
every matched pair of geometric objects in turn, draw a direct rectilinear path P between them,
ignoring all previously drawn paths and obstacles; at each place where path P intersects a
previously drawn path or an obstacle, “deform” P so that P goes around that previously drawn
path or the obstacle.

Seclion 2 gives some preliminary definitions, Section 3 presents one of the ingredients needed
by the matching algorithms for isothetic rectangles, Section 4 describes the data structures
that our matching algorithms will use, Section 5 gives the algorithm for computing a desired
mactching for isothetic rectangles, Section 6 extends this algorithm to also producing the n actual
monotone paths that link the matched rectangle pairs, Section 7 generalizes these algorithms
to matching y-monotone polygonal obstacles, Section 8 proves Q(nlogn) lower bounds for the
matching problems we consider, and Section 9 makes further remarks on several consequences

and possible extensions of this work.

2 Preliminaries

A geometric object in the plane is rectilinear if each of its constituent segments is parallel to
either the z-axis or the y-axis. Without loss of generality (WLOG), we assume that no two
boundary edges of the input obstacles are collinear. We use 8 = {R;, Ry, ..., R2,} to denote
the set of 2n input isothetic rectangles.

A path consists of a contigrous sequence of line segments in the plane. The number of line

segments in a path P is called the size of P, denoted by |P|, and the length of P is the sum of

the distances of its edges in a certain metric. A path is said to be monolone with respect to the
z-axis (resp., y-axis) if and only if its intersection with every vertical (resp., horizontal) line is
either empty or a contiguous portion of that line. A path is said to be monotone if and only
if it is monotone to the z-axis or to the y-axis. A rectilinear path is convez if it is monotone
to both the z-axis and the y-axis. In general, a convex (rectilinear) path has the shape of a
staircase, and in fact we shall henceforth use the word “staircase” as a shorthand for “convex
path”. Staircases can be either increasing or decreasing, depending on whether they go up or
down as we move along them from left to right. A staircase js unbounded if it starts and ends
with a semi-infinite segment, i.e., a segment that cxtends to infinity on one end. A staircase is
said to be clear if it does not intersect the interior of any input obstacle.

A polygon G is said to be monoione to the z-axis (resp., y-axis) if and onrly if its intersection
with any vertical (resp., horizontal) line I is either emply or a contiguous segment of L: the
boundary of such a2 monotone polygon G can be partitioned into two paths each of which is
monotone to the z-axis {resp., y-axis). In fact, the notion of monotonicity of a polygon or a
path is in general with respect to an arbitrary line [34]. Note that it is possible to find out in
linear time whether there is 2 line (in an arbitrary direction) to which all polygons in a polygon
set are monotone, by using Preparata and Supowit’s monotonicity test algorithm [34].

A point p in the plane is defined by its z-coordinate z(p) and y-coordinate y(p). A point p
s strictly below (resp., to the left of) a point ¢ if and only if z(p) = z(g) and y(p} < y(g) (resp.,
y(p} = y(g) and z(p) < z(q)); we can equivalenily say that ¢ is strictly above (resp., to the right
of) p. A rectangle 7 is below (resp., to the left of) an unbounded staircase S if no point of r is
strictly above (resp., to the right of) a point of §; we can equivalently say that S is above (resp.,
to the right of) 7.

Unless otherwise specified, all geometric objects in the rest of this paper (e.g., paths, rays,

lines, polygons, obstacles, etc) are assumed to be rectilinear in the plane.

3 Partitioning Isothetic Rectangles with a Staircase

Given a set B = {Ry, Ry, ..., Ry} of 2n pairwise disjoint isothetic rectangles in the plane
and an integer & with 1 < k < 2n, we present an algorithm for partitioning the set R into two
subsets of respective sizes k and 2n - k, such that the two resulting subsets are separated by an
increasing staircase. This algorithm runs in O(nlogn) time, or in O(min{k,2n — k}) time il R
Is given in a suitably preprocessed form. The algorithm can also be implemented optimally in
parallel (see Section 9). A key idea of this partition algorithm is a useful numbering scheme for

certain geometric objects, which also finds applications to other problems [7)].

...
Rz Bl
B .‘
Ry g Ry
... NI r Ry
P Re
|| Ry
Ry

Figure 2: Illustrating the tree T of the rectangles in A.

Not only is the result of this section needed as a key ingredient in the algorithms for matching
isothetic rectangles given later, but it also implies simpler algorithms for 2 number of unrelated
divide-and-conquer sequential and parallel algorithms for various rectilinear shortest path prob-
lems among rectangles, in which such a staircase is needed for bipartitioning the problem before
recursively solving the two subproblems defined by the staircase [4, 5, 11, 29].

We begin by describing the O(#n log) time preprocessing. The first step of the preprocessing
algorithm consists of computing a horizontal trapezoidal decomposition of R [33], in O(nlogn)
time. Recall that this gives, among other things, the following Pareni information (actually,
it gives more than what follows, but we only need what follows): For each rectangle R; of R,
Parent(i) is the first rectangle R; encountered by shooting a leftwards-moving horizontal ray
from the dotiom-left corner of R; (see Figure 2). If no such rectangle exists for R;, then the
ray goes to infinity, a fact that we denote by saying that Pareni(i) is empty. Note that the
rectangles in R and their Parent information together define a forest of the rectangles. The
trapezoidal decomposition algorithm [33] also produces a sorted list of cach subset of rectangles
having the same Parent (including the “emply” parent). Every rectangle R; maintains an
adjacency list of all the rectangles whose Parent is R;, sorted by the decreasing y-coordinates
of their leftwards-moving horizontal rays. I'or example, the sorted adjacency list of R, in Figure
2 is {Rs, Rs}.

The second step of the preprocessing algorithm is now given. To simplify the presentation,
we assume thal we have added to the given collection R of input rectangles an extra. “dummy”
rectangle Ry to the left of all the other rectangles in R, such that the horizontal projection of By
on the y-axis properly conlains the horizontal projections of all the other rectangles (sce Figure
2). This amounts to replacing every empty Parent(i) by R, eflectively making Rg the root of
a tree cach of whose nodes corresponds to exactly one rectangle in 2. We use T to denote this
tree. Iligure 2 shows an example of such a tree 7. The preprocessing algorithm then computes
the preorder numbers of 7' in O(n) time [1], and re-labels the rectangles of R (which are the

nodes of T') so that rectangle R; now denoles the one whose preorder number in 7 is 7. The

Ry
Figure 3: An example of the paths @(p) and @(q).

preorder numbers of T start from 0. Hence the dummy rectangle, the root, retains the name
Hyp. This completes the description of the preprocessing.
This preprocessing algorithm clearly takes altogether O{nlogn) time and O(n) space. In
the rest of this section, we assume thal the rectangles have been re-labeled as explained above.
For any sel R’ of disjoint rectangles, we henceforth use C H(R') to denote the reclilinear
convex hull of £ in the plane (see [30] for a study of rectilinear convex hulls of planar rectilinear
geometric objects). For every point p in the plane that is to the right of the root rectangle Ry

and is not in the interior of any obstacle, we define a path @(p) from p to Rp, as follows:

Q(p) starts at p and follows the leftwards-moving horizontal ray r(p) from p; if the
ray r(p) first hits a rectangle R; # Ry, then € (p) goes downwards along the boundary
of Ii; to ils bottom-right vertex and then lefiwards to its bottom-left vertex, from

which Q(p) continues as it did at p, until it reaches Rjg.

Note that for every such point p, the path Q(p) is uniquely defined, and in fact is always
an increasing obstacle-avoiding staircase. Also, note that every vertical segment of Q(p) is
completely on the right edge of a rectangle and the lower vertex of such a vertical segment is at
the bottom-right vertex of that rectangle. Figure 3 gives an example of such paths.

The following lemmas are useful to proving the theorem on staircase separators.

Lemma 1 Let p and g be two points in the plane such that they both are to the right of Ry, and
z(p) < z(q). If p is below (resp., above) some point of Q(q), then no point of Q(p) is strictly
above (resp., below} any point of Q(q) (Figure 3).

Proof. The prool is straightforward and will be given in the full version of the paper. o

Lemma 2 Let p and ¢ be two points in the plane such that they both are lo the right of Ry and
that z(p) < z(q). Let u (resp., v) be the bollom-left vertex of a reclangle R, (resp., Ry), such
that w (resp., v) is on Q(p) (resp., Q(q)) but not on Q(gq) (resp., Q(p)). If p is sirictly below
(resp., above) some point of Q(q), then the preorder number of R, in the tree T of rectangles is
larger (resp., smaller} than that of Ry, i.e., a > b (resp., a < b).

CHR(L) | CHR(LD)

LRy

re == o L

= s S
(@))

Figure 4: Illustrating the proof of the staircase separator theorem.

Proof. This follows from Lemma 1 and {from the definition of the tree T'. An example illustrating
the lemma is given in Figure 3. O

We are now ready to give the staircase separator theorem.

Theorem 1 (Staircase Separator Theorem) Given @ preprocessed set R of 2n disjoint iso-
thetic rectangles, the subsets {Ry, Ra, ..., Rr} and {Ryy1, Ry, ..., Ran}, for any integer
k with 1 < k < 2n, form a partition of the set R that has the desired properly, thal is, there
erists a reclangle-avoiding increasing staircase of size O(n) that separaics these two subsels.

Furthermore, such a staircase separator ean be computed in O(min{k,2n — k}) time.

Proof. Let R(a,b) denote the subset {R., Rst1, ---, R} of R. Tor the existence of such a
staircase scparator, we [irst show that for any i < j, the [ollowing holds: (1) CH(R(1,%)) docs
not intersect R;, and (2) CH(R(j,2n)) does not intersect R;. We give the proof only for (1),
thal for (2) being similar. We prove (1) by contradiction: Suppose to the contrary that for some

Jj > i, R; intersects CH(R(1,1)). Then one of the following two cases must occur:

o CH(R(1,i)) contains some point p on the bottom edge of B; (CH(R(1,%)) possibly con-
tains f; completely). Note that there can be no rectangles R; and Ry, s < i < {, such
that the leftwards-moving horizontal ray from the bottom-left vertex of R, first hits R;
(otherwise, this would make R; the parent of R,, contradicting the fact that R; has a larger
preorder number than R, in the tree T'). Since the point p of R; is inside CH(R(1,1)),
there must be a rectangle R,, s < i < 7, such that the bottom edge of R, contains a point
g that satisfies both z(p) < z(g} and y(p) > y(q) (see Figure 4(a)). But then the path
Q(p) (resp., Q(g)) contains the bottom-left vertex of R; (resp., R) and by Lemma 2, the

preorder number of R; in T is smaller than that of R,, a contradiction.

o CH(R(1,%)) contains some point of I2; but the bottom edge of R; is completely outside
CH(R(1,7)). Then R; must intersect the lower hull of CH(R(1,%)) (see Figure 4(b)).

Again there can be no rectangles R; and R, s £ ¢ < {, such that the leftwards-moving

horizontal ray from the bottom-left veriex of R, first hits R;. But then, there must be
2 poinl g on the bottom edge of a rectangle R,, s < i < j, such that z(p) < z(q) and
y(p) > y(g) for some point p on the bottom edge of R; (Figure 4(b)). Again by Lemma 2,

this implies that the preorder number of It; in T is smaller than that of R,, a contradiction.

We can now let such a desired staircase separator § [or the subsets R(1,%) and R(k + 1,2n)
consist of (say) the portion ol the boundary of CH(R(1, k))from its rightmost edge clockwise to
its lowest edge, augmented by two semi-infinitec segments, one extended leftwards horizontally
from its lowest edge and the other extended upwards vertically from its rightmost edge. By
using the same arguments as above, we can show that for every j with j > k, 5§ is above or to
the left of R;. Hence § so constructed is an obstacle-avoiding increasing staircase and consists
of O(k) segments.

WLOG, assume £ = min{k, 2n—%}. We now show how to compule such a staircase separator
S in O(k) time. In lacl, we will compute CH(R(1,k)), which is a little more than the above
staircase 5, in O(k) time. Note that the boundary of CH(R(1,%)) can be obtained from four
staircase paths, each of which corresponds to an ordered sequence of certain suitably defined
elements of maximal domination [33] for the 4% rectangle vertices of R(1,%&). WLOG, we only
show the procedure for computing one such sequence of maximal elements.

Our procedure is based on a simple divide-and-conquer strategy. First, partilion the set
R(1,k) into two subsets R(1,%/2) and R(k/2,k) (WLOG, assume & is an even integer greater
than 1). Then, recursively compute the sequence of maximal elements for each such subset,
represented by a balanced search tree, such as a 2-3 tree [1]. Finally, compute the sequence of
maximal elements for the vertices of R(1,%) from the two sequences for the two subsets. By the
above discussion, these two sequences are respectively contiguous portions of the boundaries of
two disjoint convex hulls. Hence by performing O(1) standard 2-3 tree operations, the sequence
ol maximal elements {or 7Z(1, &) can be obtained, also maintained by a 2-3 tree. The recurrence
relation for the time complexity of this divide-and-conquer procedure is

T(k) = 2T(k/2) + O(log k), for i > 1

T(1) = 0(1)

Hence it follows that T(k) = O(k). After the above divide-and-conquer procedure terminates,
it is easy to obtain the sequence of maximal elements for R(1, k} from its 2-3 tree in O(k) time.
The space used for computing CH(R(1, k)) is clearly O(k).

This completes the proof of the staircase separator theorem. O

[]

Figure 5: Hlustrating the definition of the tree 7.

4 Data Structures

In this section, we describe the data structures that the algorithm in the next section will use.
Since that algorithm from time to time will delete some rectangles from the collection R = {R;,
Ra, ..., Han}, we use Ly Lo denote the current list of rectangles sorted by their preorder numbers
in T. The list L, is initially {Rq, R2, ..., R3n}, but may change as the algorithm proceeds.

Ilowever, the following invarianls must hold:
1. The list L, must contain as many red as blue rectangles.

2. CH(L4) does not intersect any of the rectangles in # — L,. This invariant insures
that we can solve the problem on £, without having to worry about interfering with the
solution of £ — L, so long as our solution paths for L, (resp., R — L;) do not wander
outside (resp., inside) of CH(L,). Note that if the algorithm decides to match the pair of
rectangles R’, B” and delete R', R” from L, then this invariant requires that the resulting
new list L, —{ &', R"} should also satisfy the invariant, i.e., that CH (L, — {R', R"}) must

intersect neither R’ nor R”.

We define another list L_ which contains cxactly the same set of rectangles as L, but is
ordered differently (as explained next). L_ initially contains all the input rectangles, but they
are sorted according to their preorder numbers in a tree T’ rather than T, where 77 is defined

just like T except for the following differences:

s Instead of the “leftwards-shooting horizontal ray emanating from the bottom-left corner
of each rectangle” that we used in the definition of T, in T we use “downwards-shooting

vertical ray emanating from the bottom-right corner of each rectangle” (see Figure 5).

¢ Instead of sorting adjacency lists by the decreasing y-coordinates of the horizontal shooting
rays, in T’ the adjacency lists are sorted by the increasing z-coordinates of the vertical

shooting rays.

NW of CH(S,)

R3
I

'ﬁ‘m

SE of CH(P,) :

Figure 6: An example for Lemma 3, with Py = {Ry, ..., Rs} and S; = {Rs, R7, Iis).

o The “dummy” rectangle corresponding to the root of T” is below all the input rectangles

(whereas for T it was to their left).

Figure 5 illustrates the tree 7” in which the rectangles are named B;’s (for boxes) instead of
R’s.

The L_ list is not explicitly maintained by our algorithm. But, the order in which the
elements of Ly would appear in this hypothetical list L. is conceptually important, and will
be exploited by our algorithm; we henceforth use the shorthand “7 preorder” to refer to this
order.

Because L; (hence L_) satisfies Invariant 2 above, the proofs of the following lemmas are
very similar to the proof of Theorem 1 and are therefore omitted. (Note how the proof falls
apart without Invariant 2, specifically at the place where we deduce that ; must be the parent
of ; — this need not hold if Invarjant 2 is violated, and indeed we cannot even claim that R;

is an ancestor of 1;.)

Lemma 3 Let Py be a prefiz of the list Ly, and $; be the remaining suffic of L, i.e., Sy
= Ly — Py. Then the increasing staircase defined by the South-East portion of CH(Py) is
{geometrically) above all of the rectangles in S,. Equivalently, the increasing staircase defined

by the Norih-West portion of CH(S,) is below all of the rectangles in P,.
Tigure 6 illustrates Lemma 3.

Lemma 4 Let P_ be a prefiz of the list L_, and S_ be the remaining suffiz of L_, i.e., S_
= L_ ~ P_. Then ihe decreasing siaircase defined by the North-Eust portion of CH(P_) is
(geometrically) below all of the rectangles in S_. Equivalently, the decreasing staircase defined

by the South- West portion of CH(S_.) is above all of the reciangles in P_.

Figure 7 illustrates Lemma 4.
When the algorithm to be described in the next section is solving a problem corresponding

to the rectangles in Ly, it is not given just the list L; but rather a tree structure (L,) built

NE of CH(P.) .

B4

Figure 7: An example for Lemma 4, with P_ = {By, ..., Bs} and 5_ = {Bs, B+, Bs}.

“on top” of Ly. Specifically, S(L4) is a 2-3 tree structure [1] whose leaves contain the rectangles
in L4, in the same order as in L, ; these leaves are doubly linked together. Each internal node
» of S(L4) contains a label equal Lo the smallest 77 preorder number (i.e., according to the L_
ordering) of the rectangles stored in the subtree of 5(L;) rooted at ». In addition, there are
cross-links between every internal node 2 of §(L..) and the leaf in the subtree of S(L4) rooted at
v corresponding o the label of ». We will perform only deletion and split operations on S(L,),
both of which can be done in logarithmic time using standard techniques [1]. The deletions will
take place after we have matched a pair of rectangles — we then delete them from S{Z4) and
recurse on the resulting S(L,). The split operations will take place when we process L, by
solving recursively two pieces of Ly: A prefix L’ of Ly, and the remaining suffix L' = L, — I/
(of course L' and L” must satisfy the required invariants mentioned eatlier). Splitting S(ZL,)

allows us to create §(L’) and S(L”) in logarithmic time.

5 The Matching Algorithm for Rectangles

The goal of this procedure is to compule a desired matching for the rectangles in R, without
worrying about describing the actual paths that join the matched pairs of red/blue rectangles
(the next section explains how this procedure can be modified to also produce the actual paths
connecting the matched pairs).

The procedure is recursive, and takes as input the 2-3 tree data structure (L) described
in the previous section.
Procedure MATCH(L,)
Inpui: S(Ly), where Ly = (R}, RS, ..., R)).
Output: A matching of the red and blue rectangles in L.

1. If m = 2, then the two rectangles in L. surely have different colors (by Invariant 1): Match
them and return. If m > 2, then proceed to the next siep.

Comment: The path that will join the pair just matched will be along the boundary of

CH(L4).

. Find the first leaf (for R]) and the last leaf (for R},) of §(Ly), in O(logm) time. If R}
and R;, have different colors, then proceed to the next step. Otherwise R} and R, have
the same color (say, it is red). For each integer s, 1 < 8 < m, let f(s) be the number
of red clements minus the number of blue elements in the set {R{, RS, ..., R.}; observe
that |f(s+ 1) — f(s)| = 1 and that in this case f(1) = 1 whereas f(m — 1) = —1. This
implies, by a simple “continuity” argument, that there is some integer £, 1 < £ < m—1, for
which f(£) = 0. (A somewhat similar continuity argument was used in [3] in the context
of matching points.) Next, we shall search for such an £ in time O(min{¢,m — £}) rather
than in time Q(m), as follows. We linearly search for it along the leaf sequence of §{L),
by two interleaved searches: One starting from the beginning of Ly, from K} up, and the
other starting from the end of Ly, from R! _, down, where we alternate between the two
searches until one of them first hils a desired value ¢ which we know must exist. Hence,
we find an £ value for which f(£) = 0in O(min{¢, m — £}) time, rather than in O(sn) time.
This defines two subproblems L' and L”: L' = {R}, R), ..., B} and L” = {R},,, R},,,
.oy 1.} In O(log m) time, we split 5(L4) into 5(L') and S(L"). Then we recursively
call MATCH(L') and MATCH(L").

Analysis: This step has a cumulative total cost of O(nlogn) time rather than O(n?) even
though the two subproblems so generated and solved recursively can be very “unbalanced”,
e.g., [L'| could be 0(1). The analysis is as follows: We spend only O(logm+ min{£, m—£})
time in generating the two subproblems; we can “charge” the log m term of this cost to the
recursive call itself (i.e., to the node of that recursive call in the recursion tree), and the
min{¢, m — £} term to the rectangles of the smaller subproblem (O(1) time per rectangle).
A rectangle that is so “charged” ends up in a subproblem of no more than half the size of
its previous subproblem, and hence cannot be charged more than logn times, for a total
(over all the 2n rectangles of) of O(nlogn). The total number of nodes in the recursion
tree is O(n), and hence the overall cost of the charges to the nodes of that recursion tree

(logm per node) is O(nlogn).

. R} and R}, have different colors. Obtain, from the label at the root of $(L,), the smallest
rectangle of L according to the L_ ordering. Let I” be this rectangle. Rectangle R"
must have the same color as one of {R}, R},}, so suppose WLOG that it has the same
color as Rj. Then we (i) match R and R, (ii) delete R} and R" from S(L,) in O(logm)

time, and (lii) recursively solve the problem on the resulting L. .

Comment: The path that will join the pair just matched will be along the boundary
of CH(Ly — {R{, R"}). The justification for the monotonicity of this path follows from
Lemmas 3 and 4, which ensure that the path [rom R{ to R” along the boundary of
CH{L, — {R},R"}) consists of at most two subpaths: An increasing staircase followed
by a decreasing staircase. This step also has a cumulative total cost of O(nlogn) time,

because each of the n matched pairs is charged a cost of O(log) time by the step.

As analyzed above, algorithm MATCH computes n matched pairs of red/blue rectangles
of R in O(nlogn} time and O(n) space.

6 Reporting the Actual Paths

This section shows how to output the aclual monotone paths between all the » matched red/blue
rectangle pairs in O(nlogn + A) time, where A is the total number of segments that make up
these n paths.

Recall the comments we made after a rectangle pair was matched by the algorithm of the
previous section (specifically, following Steps 1 and 3). These comments described the desired
path between the pair just matched in terms of a rectilinear convex hull C H (%) of a subproblem
associated with a particular place (i.e., 2 node) » in the recursion tree of algorithm MATCH at
which this subproblem occurred. We postponed the actual computation of these C H(v) convex
huils, because once we have the overall structure of the recursion tree, we can traverse it and
compute these C H(v) hulls bottom up, with inserlion operations only (since the subproblem of
a child node in the recursion iree is that of its parent node minus some rectangles). Thus, this
enables us to use the fact that maintaining rectilinear convex hulls, in the face of insertions only,
is possible in logarithmic time per insertion [31].

Hence, the idea is to run the matching algorithm of Section 5 and make sure that, after
thal algorithm has executed, it leaves behind the skeleton of its recursion tree, which we call
HecT'ree, together with cerlain information describing how a path between a matched rectangle
pair is related to C'H(v) (i.e., the description in the “comments” of algorithm MATCH). This
description information uses O(1) space per matched pair. This skeleton just gives the overall
structure of RecTree. It does not store direcily the rectangles of the subproblem associated
with each node » of RecT'ree (that would be too expensive in terms of the space complexity),

but rather how the rectangles of » are related to those of #’s children:

1. If v has only one child in RecT'ree, then its associated rectangles are those of its only
child plus two rectangles that are matclhed by algorithm MATCH at v»: It is these two

rectangles that are explicitly stored at » in RecTree.

2. If v has two children in RecTree, then its associated rectangles are the union of the

rectangles of both its children.

In either case, we store O(1) information at each node v, so that Recl'ree uses altogether
O(n) space. The problem of computing the actual monotone path (if any) associated with
each node v in RecTree clearly reduces to computing C H(%) in turn and using it to print that
path. The computation of the C H(v)’s associated with all the nodes v of RecTree is donre by a
simple traversal of RecT'ree during which the C H(v)’s are computed according to the postorder
numbers [1] of the nodes v in RecTree. Of course, at a node v of RecTree thal has two children
(say, = and w), we do nol creale C'H(v) by individually inserting the vertices of C'H(z) into
CH(w), but rather we obtain CJI(v) by “merging” CH(u) and CH(w) in logarithmic time
(31]. After C H(v)is computed, the actual path between the matched reclangle pair of node v is
compuled by walking along C H{v), in time proportional to the size of the path plus a logarithmic
additive term. We assume that if two such matching paths share some common portions on
certain convex hulls so computed, then the two paths are apart by atl least a positive distance
thal can be made arbitrarily small. The overall time of ihis algorithm is therefore O(nlogn)

plus the time needed to print all the output paths, i.e., O(A).

7 Extensions to Monotone Polygonal Obstacles

In this section, we extend our techniques for matching red/blue isothetic rectangle obstacles
to matching red/blue polygonal obstacles in the plane that are all monotone with respect to
a coordinate axis (say, the y-axis). Let W be a set of r red and r bluc disjoint polygonal
obstacles in the plane, with a total of » verlices. We assume that all the polygonal obstacles in
W arc monotone to the y-axis, and call them y-monotone polygons. We show that it is possible
to match all the red and blue polygons in W, by connecting the » matched red/blue polygon
pairs with » mutually disjoint paths. The properties of the matching paths are similar to those
for isothetic rectangles, except for the monotonicity: In this case, a path can be used for the
matching if it can be partitioned into at most twe subpaths, each of which is monotone to the
y-axis. Our algorithms for computing such a matching have the same complexity bounds as the
matching algorithms for isothetic rectangles in the previous sections.

One consequence of considering y-monotone polygonal obstacles (whose structures are less
nice than those of isothetlic rectangles) is that we must use a weaker monotonicity constraint
on the matching paths. This is because even with a geometric setting consisting of disjoint
convez polygonal obstacles in the plane, there is in general no obstacle-avoiding path between

two arbitrary points that is monotone to the z-axis or to the y-axis. But in such a setting, a

Figure 8: A path with two y-monotone subpaths among rectilinear convex obstacles.

0y

(@) (b)

Figure 9: There is no staircasc separator [or rectilinear and non-rectilinear convex obstacles.

palh consisting of at most {wo y-monotone subpaths always exists belween any two points (see
I'igure 8 for an example). Another consequence of considering y-monotone polygonal obstacles
is that there is in general no staircase separator for partitioning such geometric object sets. In
the two examples of Figure 9, there exists no staircase (even with respect to any two orthogonal
lines) that partitions each convez obstacle set into two subsets, such that every subsel contains
more than one obstacle. However, as we will show, there exist y-monotore paths that partition
y-monotone polygons. Note that a key difference between staircases and y-monotone paths is
that staircases are monotone to both the z-axis and y-axis, while y-monotone paths need not be
monotone to the z-axis.

IL turns out that the matching algorithms based on the geometric structures of y-monotone
polygonal obstacles are similar to and in fact simpler than the matching algorithms for isothetic
reclangles. Also, although we have chosen in this section to focus our discussion on rectilinear
geometric objects (obslacles, paths, etc), it is actually not difficult to modily our algorithms so
that they will work with non-rectilinear objects under the y-monotonicity constraint.

Let the obstacle set W = {Wy, W, ..., Wa.}, where Wy is the extra “dummy” rectangle Ry
to the left of all the other obstacles in W (as introduced in Section 3). We first preprocess W
as in Section 3. From the left vertex of the lowest edge of every W;, shoot a leftwards-moving
horizontal ray r;; let Parent(?) be W;, where W; is the first obstacle in W hit by the ray ;.
Maintain for every W; an adjacency list of all the obstacles in W whose Parent is W;, sorted by
the decreasing y-coordinates of their leltwards-moving horizontal rays. This gives a tree structure

whose nodes are the obstacles in W (as the tree T' in Section 3) and which we again denote

{==] y-monotone hull

—=g

1Hitli

Iigure 10: An example of the y-monotone hull of a set of obstacles.

by T'. Label the nodes of 7' by their preorder numbers in 7', and re-label the obstacles in W
by their corresponding preorder numbers in 7. This preprocessing can be done by a horizontal
trapezoidal decomposition of W [33] and a preorder traversal of T [1], in altogether O(nlogn)
time and O(n) space. WLOG, let 7 be the label of W; in the preprocessed form. In addition,
we also construct, as part of the preprocessing, the planar subdivision {33] that is defined by
the horizontal trapezoidal decomposition of W. The construction of this planar subdivision also
takes O(nlogn) time and O(n) space.

For any comsecutive subset W' = {W;, Wi, ..., W;} of W, where i > 0, we define the
y-monotone hull of W', denoted by CH,(W’), to be the region with the smallest area that
contains all the obstacles in W’ and that is y-monotone (sec Figure 10 for an example). Note
that the region CH,(W’) so defined may be disconnected. If this is the case, we assume that
we link the connected components of C H,(W’) together with some paths of zero width, so that
C Hy(W') becomes connected and is still y-monotone.

Note that the boundary of every y-monotone polygon can be easily partitioned into two
y-monotone paths, which we call the left boundary and right boundary of such a polygon. For
every point p in the plane that is to the right of the root obstacle Wy of T and is not in the
interior of any obstacle, we define the path Q(p) from p to Wy as in Section 3, with one small
exception: When §)(p) follows a leltwards-moving horizontal ray and hits an obstacle W; 3 Wy,
@(p) goes to the left vertex of the lowest edge of W; along a downwards y-monotone path on the
right boundary of W;. Q(p) so defined is clearly a unique y-monotone path, although it need
not be z-monotone simultaneously.

The lollowing observations are analogous to those of Lemmas 1 and 2 and Theorem 1. The
differences in these observations and their proof arguments stem from the structural differences
between the convex hulls of isothetic rectangles and the y-monotone hulls of y-monotone polygons

in our matching problems.

Lemma 5 For an obstacle W; in W — {Wq}, let p and g be two points such that p is on the left
boundary of W; and q is on the right boundary of W;. Then no point of Q(p) is strictly below

any pownl of Q(q).

Proof. A crucial fact to the proof is that both Q(p) and Q(¢) are planar y-monotone paths.

The proof argument is similar to that of Lemma 1. O

Lemma 6 Let p and g be two poinls in the plane such that p is on the left boundary of an
obstacle W; and q is on the right boundary of W;, with i > 0. Lel u (resp., v) be the left vertez
of the lowest edge of an obstacle W, (resp., W;), such that u {resp., v) is on Q(p) (resp., Q(q))
but not on QQ{q) (resp., Q(p)). Then the preorder number of W, in the tree T of obstacles is

smaller than that of Wy, i.e., a < b.
Proof. This lollows from Lemma & and from the definition of the iree 7. a

Theorem 2 Given a preprocessed set W of 2r disjoinl y-monotone polygonal abstacles with n
verlices in total, the subsets {Wh, Wa, ..., Wi} and {Wiy1, Wiyge, ..., Wa,}, for any integer k
with 1 < k < 2r, form a partition of the set W that has the desired property, that is, there exists
an obstacle-avoiding y-monotone path of size O(n) that separates these two subsets. Furthermore,

such a y-monotone path can be computed in O(n) lime.

Proof. Let W(a,b) denote the subset {W,, Wy11, ..., Wi} of W. Tor the existence of such a
y-monotone path, we first show that for any i < j, the lollowing holds: (1) CH,(W(1,%)) does
not intersect W;, and (2) C H,(W(j,2r)) does not intersect W;. We give the proof only for (1),
that for (2) being similar.

We prove (1) by contradiction: Suppose to the contrary that for some j > i, W, intersects
CHy(W(1,¢)). Then for a point w € CH,(W(1,7)) N W;, there must be a point z of a W,,
s <1 < §, such that y(w) = y(2) and z(w) < z(z), (i.e., z is strictly to the right of w). (If such
a point z did not exist, then w would have not belonged to CH,(W(1,7)) by the definition of
y-monotone hulls, a contradiction.) WLOG, let z € W, be the leftmost such point. Then z must
be on the left boundary of W; and the leftwards-moving horizontal ray from the left vertex of
the lowest edge of W, cannot first hit W; (otherwise, we would have a contradiction). Let 2’ be
a point on the right boundary of W, such that y(z) > y(z'). Then by Lemma 6, the preorder
number of W; in T is smaller than that of W, a contradiction.

We can compute a desired y-monotone path by letting the path first go along the right
boundary of C'H,(W(1,k)) as much as possible, then along the left boundary of CH,(W(k +
1,2r}) (if necessary), and finally extend vertically upwards and downwards to infinity. The -
monotone path so obtained clearly has a size of O(n). Given the planar subdivision based on

the horizontal trapezoidal decomposition of the obstacle set W (this subdivision is part of the

preprocessing result), it is possible to obtain such a y-monotone path in O(n) time. This is done
by examining the O(n) cells of the planar subdivision to identily those cells that separate the
two subsets W(1,%) and W(k + 1,2r), i.e., the cells whose left (resp., right) boundaries are on
the right (resp., left) boundaries of the polygons in W(1, %) (resp., W(k + 1,27)). a

Note that in a fashion similar to Theorem 2, we can also partition the preprocessed set W
into two subsets based on the total sizes of the polygons in the resulting subsets. That is, for
an integer j with 1 < j < n, we can partition the preprocessed obstacle set W into two subsets
W(1,k)and W(k+1,27) with a y-monotone path, such that the total number of polygon vertices
of W(1, k) is no bigger than j but the total number of polygon vertices of W{1,k + 1) is strictly
larger than j. This partitioning can also be done in O(n) time.

Theorem 2 enables us to obtain efficient algorithms for computing a desired matching for y-
monolone polygons, as did Theorem 1 for isothetic rectangles. In fact, the matching algorithms
for y-monotone polygons are similar to and actually simpler than the ones for isothetic rectangles.

Like the matching algorithms for isothelic rectangles, the algorithms here also maintain the
list L,. However, unlike the algorithms for isothetic rectangles, L, here is always a consecutive
sublist of the original list W(1,2r) and is maintained only as a doubly linked list. Further, the
algorithms here do not need to use the tree T and hence the list L_, and do not use the 2-3 tree
S(L4+). We only sketch below the computation of these algorithms, since they are very similar
{o those of Sections 5 and 6.

To specify the matching pairs of the red/blue polygons in a list Ly = (W], Wi, ..., W.)
(without computing the actual paths), the algorithm simply does the lollowing:

If W{ and W, are of different colors, then match W{ and W, (by letting the W]-to-
W}, path go along first the left boundary of CH,(/L.) and then the right boundary of
CHy(L4)), and recursively solve the problem on Ly — {W],W.}if Ly — {W{], W’}
is non-emply; otherwise, partition Ly into two consecutive sublists (as in Step 2 of

algorithm MATCH) and recursively solve the two subproblems.

A matching path so specified consists of at most two y-monotone subpaths because it follows
first the left boundary and then the right boundary of a y-monotone hull. As analyzed in Section
5 lor algorithm MATCH, the matching algorithm here takes O(rlogr) time after the ordered
list W(1,27) is made available by the O(nlogn) time preprocessing.

The algorithm for computing the r actual paths of a matching here is similar to the one
for isothetic rectangles in Section 6: It maintains the recursion tree RecTree of the above
matching algorithm, and computes the y-monotone hull CHy(v) for the subproblem on every

node v of RecTree. Each of the left and right boundaries of C'H,(v) can be maintained by a

2-3 tree. The geometric structures of the y-monotone hulls of the input polygons in RecT'ree
can be exploited by our computation in the following way: When we need to “merge” two y-
monotone hulls C'H,(z) and CHy(w) to obtain CI,(v) (with v and w being the left and right
children of , respectively), we replace the corresponding portions of the (say) left boundary
of CH,(w) by the left boundary of each connected component of CH,(u) (if CH,(x) indeed
consists of more than one connected component). This can be done by using O(1) split and
concatenation operations of 2-3 trees for each component of C H,(u), in logarithmic time. Since
we can charge the time for “merging” each such connected component to a horizontal line
segment of the horizontal irapezoidal decomposition and since there are O(n) such line segments
in the trapezoidal decomposition, the total time for our algorithm to output all the r actual paths
belween the matched red/blue polygon pairs is O(nlogn + A), where A is the total number of
segments that make up these r paths. The space bounds of the matching algorithms in this

section are O(n).

8 Lower Bounds for the Matching Problems

In this section, we prove {(nlogn) lower bounds in the algebraic computation tree model (8]
for the matching problems studied in this paper.

First, we show that the problem of matching 2n disjoint red/blue isothetic rectangles with
nonintersecting monotone rectilinear paths in the plane requires Q(nlog =) time in the worst case.
Actually, we will show an Q(n logn) lower bound for the following (simpler) problem P: Giving
n red and = blue disjoint isothetic rectangles in the plane, find a monotone rectilinear obstacle-
avoiding path from a specified red rectangle (say, R;) to some (unspecified) blue rectangle V;.
The reason for considering problem P is that this problem can be easily reduced to our matching
problem since any solution to the matching problem definitely contains such a monotone path
between the red rectangle R, and some blue rectangle ¥;. The key to our proof is a reduction
from the problem of sorting O(n) pairwise distinct positive integers (in an arbitrary range) to
problem P. Note that based on Yao's (nlogn) lower bound result for the element uniqueness
problem on n arbitrary integers {42}, Chen, Das, and Smid [10] showed that sorting O(n) pairwise
distinct positive integers in the worst case requires 3(nlogn) time in the algebraic computation
tree model.

The reduction goes as follows. Consider a set X of n pairwise distinct positive integers I,
Iy, ..., In. Let I, (resp., I;) be the smallest (resp., largest) integer in the set K& (it is easy to
find I, and Iy in O(n) time). WLOG, assume that I, > 2. For every integer I; € K, map I; to

a set U; of four red isothetic rectangles B, Ri, Ri, and R‘; in the plane, as follows (see Figure

ONE—
—
Ri
m- wew B E ses [
YA Yi Vit Vi
__ H
T :

Figure 11: Ilustrating the reduction of the lower bound proofs.

11): The shorter edges of all the four red rectangles in U/; have the same length of 0.5 units;
the right (resp., left) edge of RI (resp., R{) has the point ({;,0) (resp., (—I;,0)) as its middle
point and has a length of 21;, while the top (resp., bollom) edge of RZ (resp., Rﬁ) has the point
(0, ;) (resp., (0,—1I;)) as its middle point and has a length of 2I; — 1 — 2¢, for a very small
fixed € > 0. Let R; be a red isothetic unit box whosc center is at the origin of the coordinate
system. We then have 4n + 1 red rectangles. We next create 4n + 1 isothetic blue rectangles
¥¢’s in the {ollowing way: These blue rectangles arc all isothetic unit boxes whose centers are all
on the z-axis; every two consecutive blue boxes are one unit distance apart, and the leftmost
blue box is at lcast one unil distance to the right of Uy (see Figure 11). It is clear that the
O(n) red/blue isothetic rectangles so obtained are pairwise disjoint (since the input integers are
pairwise distinct), and that the construction of this rectangle set takes O(n) time.

Now, it is an easy matter to observe that (1) an R¢-to-V; path in this setting can be monotone
only Lo the z-axis (but not to the y-axis), and (2) any such monotone H;-to-V; path must get
around every red rectangle set U; in the sorted order of the corresponding I; values of the U;’s
(Figure 11). Let H be a monotone rectilinear R;-to-V; path computed by any algorithm for
problem P, with |H| = O(n). We assume that when the path I is getting around a particular
rectangle set Uj, it picks up the index j and associates j with the horizontal edge of H that
contains the z-coordinate of the rightmost edge of U;. Then given such a path H, we can output
the sorted sequence of the input integers in K by tracing H and picking up the indices of the
Integers I; from their associated horizontal edges of H along the path order of H. Such a tracing
of H can be easily done in O(n) time. This completes the lower bound proof for problem P.

QOur lower bound proof for the matching problem on y-monotone polygons uses the same
reduction construction as for that on isothelic rectangles, except that we now compute a path
which consists of at most {wo y-monotone subpaths instead of one monotone path. That is, we
use any algorithm for computing such an R;-to-V; path among y-monotone polygons to build
a geometric sorting device for integer input; the reduction is the same as the one illustrated in

Figure 11 and takes O(n) time. This reduction works because any B;-to-V; obstacle-avoiding

rectilinear path JI’ that consists of at most two y-monotone subpaths in the setting of Figure
IT must get around every red rectangle set U; in the sorted order of the corresponding I;
values of the U;’s. Therefore, such a path H’ can be used to report the sorted sequence of the
input integers in O(n) time, implying an Q(nlogn) lower bound for the matching problem on

y-monotone polygons.

9 Further Remarks

As mentioned carlier, Theorem 1 implies an efficient parallel bound for equipartitioning a set
of disjoint isothetic rectangles. This fact is potentially useful in the parallel algorithmics of
other, not necessarily red/blue, rectangle problems (as is clear from [4, 5], where tremendous
simplifications follow from the next theorem). Therefore, this uselul side-effect of Theorem 1 is

summarized below.

Theorem 3 Let R be a sel of 2m disjoint isothetic rectangles (not given in any particular
order). Then an m-processor CREW PRAM can compute, in O(logm) time, an increasing
staircase 5 that does not inlersect the interior of any rectangle in R and partitions R inlo fwo

equal parts, with |S| = O(m).

Proof. This [ollows from Theorem 1 and the fact that a trapezoidal decomposition [6] as well
as the preorder numbers in a tree [37) can all be computed in parallel within these bounds. O

In fact, the preprocessed form of R required by Theorem 1 can be obtained as a by-product
of Theorem 3, in O(logm) time using m CREW PRAM processors. Once this form is available,
we can do a little more than Theorem 3: We can partition the set B = {R;, R, ..., Rom)
into two subsets {R;, Ry, ..., Ry} and {Rry1, Resa, ---, Rom}, for any integer & with 1 <
k < 2m, in O(logt) time using t/log? processors in the CREW PRAM or ever the EREW
PRAM model [22], where ¢t = min{k,2m — k}. This is done by using, instead of the two-way
divide-and-conquer algorithm given in the proof of Theorem 1, a many-way divide-and-conquer
approach as in [9, 20). The details of this parallel algorithm are very similar to (and in fact even
simpler than) those of [9, 20], and hence are omitted.

The following partition result may also be useful to designing parallel algorithms for certain

geometric problems.

Theorem 4 Let W be a set of 2r disjoint y-monotone polygons (not given in any particular
order} with a total of m vertices. Then an m-processor CREW PRAM can compute, in O(logm)
time, a y-monolone path P that does nol intersect the interior of any polygon in W and partitions

W into two subsels of r polygons each, with |P| = O(m).

Proof. This follows from Theorem 2 and the fact that a trapezoidal decomposition and the
planar subdivision based on it [6] as well as the preorder numbers in a tree [37] can all be
computed in parallel within these hounds. a

Again, we can also preprocess W in O(log m) time using m CREW PRAM processors. After
that, such a y-monotone path P, as defined in Theorem 4, can be obtained in O{logm) time
using m/log m CREW PRAM processors. This is done by first examining the cells of the planar
subdivision (to identify those cells that separate the two subsets of the polygons in W) and then
using parallel list ranking [22] to find the path P. Note that it is also possible to modify Theorem
4 to partition W into two subsels based on the total sizes of the polygons in the resulting subsets.

We conclude with an implementation note about our algorithms. If we are to program the
matching algorithms for isothetic rectangles, we would modify them by creating (in Step 2) S(L’)
and S(L") only as a last resort, by inserting hefore Step 2 a Step 1’ in which we check whether
R} and RY are of different colors — if so we match them, delete them, etc, and if not we check
whether R}, _; and R;, are of diflerent colors — if so we match them, delete them, etc, and if not
we go to Step 2. Thus, we go to Step 2 only if we are unable to match the pair {R], R}} and the
pair {R], 1, R;,}. Performing such a Step 1’ before Step 2 gives preference to short paths over
long ones, since an R}-to- R, path is likely to be longer than an R{-to-R} (or R!,_;-to-R’,) path.
For y-monotone polygons, an efficient leuristic that may produce short paths for a matching we
desire is to use a modification of the so called red/blue matching approach [2, 23] for matching
red/blue elements in an ordered list (in our situation, the ordered list is W(1,2r)). Of course,
this assumes that short paths are practically better than long ones.

The above discussion suggests the obvious open problems of finding matchings that satisfy

some additional length criteria, such as:
¢ Minimum sum of lengths of all » paths, or
¢ Minimum maximum length of all » paths, or

s Versions of the above two where “length” means number of links rather than the usuval I,
length (hence this version of the sum-of-lengths problem amounts to minimizing what we

earlier called A).

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Compuier Algorithms,
Addison-Wesley, Reading, Mass., 1974.

[2] M. G. Andrews, M. J. Atallal, D. Z. Chen, and D. T. Lee, “Parallel algorithms for maximum
matching in interval graphs,” Proc. 9th IEEE International Parallel Processing Symp., 1995,
pp- 84-92.

(3] M. J. Atallah, “A matching problem in the plane,” J. of Compuier and Systems Sciences, 31
(1985), pp. 63-70.

(4] M. J. Atallah and D. Z. Chen, “Parallel rectilinear shortest paths with rectangular obstacles,”
Computational Geometry: Theory and Applications, 1 (1991), pp. 79-113.

(5] M. J. Atallah and D. Z. Chen, “On parallel rectilinear obstacle-avoiding paths,” Computational
Geomelry: Theory and Applications, 3 (1993), pp. 307-313.

(6] M. J. Atallah, R. Cole, and M. T. Goodrich, “Cascading divide-and-conquer: A techrique for
designing parallel algorithms,” SIAM J. Computing, 18 (1989), pp. 199-532.

[7] M. J. Atallah, S. E. Hambrusch, and L. E. TeWinkel, “Parallel topological sorting of features in a
binary image,” Algorithmica, 6 (1991), pp. 762-769.

[8] M. Ben-Or, “Lower bounds for algebraic computation trees,” Proc. 15th Annual ACM Symp. on
Theory of Compuling, 1983, pp. 80-86.

[9] D. Z. Chen, “Efficicnt geometric algorithms on the EREW PRAM,” IEEE Trans. on Parallel and
Distributed Systems, 6 (1) (1995), pp. 41-47.

[10] D. Z. Chen, G. Das, and M. Smid, “Lower bounds lor computing geometric spanners and approx-
imate shortest paths,” Proc. 8th Canadian Conf. on Compulational Geometry, 1996, pp. 155-160.

[11] D. Z. Chen and K. 8. Klenk, “Rectilinear shorl path queries among rectangular obstacles,” fnfor-
mation Processing Lellers, 5T (8) (1996), pp. 313-319.

[12] D. Z. Chen, K. S. Klenk, and H.-Y. T. Tu, “Shortest path queries among weighted obstacles in the
rectilinear plane,” Proc. {fth Annual ACM Symp. Compuiational Geomeiry, 1995, pp. 370-379.

(13] J. Choi and C.-K. Yap, “Rectilinear geodesics in 3-space,” Proc. 11tk Annual ACM Symp. Com-
pulational Geomelry, 1995, pp. 380-389.

[14) K. L. Clarkson, S. Kapoor, and P. M. Vaidya, “Rectilinear shortest paths through polygonal
obstacles in O(n(logn)?) time,” Proc. $rd Annual ACM Symp. Computational Geometry, 1987,
pp. 251-257.

[15] K. L. Clarkson, S. Kapoor, and P. M. Vaidya, "Rectilinear shortest paths through polygonal
obstacles in O(n Ioga"2 n) time,” manuscript.

[16] W. Dai, T. Asano, and E. S. Kuh, “Routing region definition and ordering schieme for building-
block layout,” IEEE Trans. on Compuler-Aided Design, CAD-4 (3) (1985), pp. 189-197.

[17] M. de Berg, M. van Kreveld, and B.). Nilsson, “Shortest path queries in rectangular worlds of
higher dimension,” Proc. 7th Annual Symp. Compuiational Geometry, 1991, pp. 51-59.

(18] P.J. de Rezende, D. T. Lee, and Y. F. Wu, “Rectilinear shortest paths in the presence of rectangles
barriers,” Discrele & Computational Geometry, 4 (1989), pp. 41-53.

(19] H. ElGindy and P. Mitra, “Orthogonal shortest route queries among axes parallel rectangular
obstacles,” Internalional J. of Computational Geometry and Applicalions, 4 (1) (1994), pp. 3-24.

(20] M. T. Goodrich, “Finding the convex hull of a sorted point set in parallel,” Information Processing
Letters, 26 (1987/88), pp. 173-179.

[21) M. Twai, H. Suzuki, and T. Nishizeki, “Shortest path algorithm in the plane with rectilinear
polygonal obstacles” (in Japanese), Proc. of SIGAL Workshop, July 1994.

[22] J. JaJa, An Introduciion to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992,

(23] S. K. Kim, “Optimal parallel algorithms on sorted intervals” Proc. 27th Annual Allerton
Conf. Communication, Control, and Compuling, 1989, pp. 766-775.

[24] R. C. Larson and V. O. Li, “Finding minimum rectilinear distance paths in the presence of barri-
ers,” Nelworks, 11 (1981), pp. 285-304.

[25] D. T. Lee, T. II. Chen, and C. D. Yang, “Shortest rectilinear paths among weighted obstacles,”
Iniernational J. of Computational Geometry and Applications, 1 (2) (1991), pp. 109-124.

(26] D. T. Lee, C. F. Shen, C. D. Yang, and C. K. Wong, “Non-crossing paths problems,” manuscript,
Dept. of EECS, Northwestern University, 1991,

[27] J. S. B. Mitchell, “An optimal algorithm for shortest rectilinear path among obstacles,” First
Canadian Conf on Compulational Geometry, 1989.

(28] J. S. B. Mitchell, “L) shortest paths among polygonal obstacles in the plane,” Algorithmica, 8
(1992), pp- 55-88.

[29] P. Mitra and B. Bhattacharya, “Efficient approximation shortest-path queries among isothetic
rectangular obstacles,” Proc. 3rd Workshop on Algorithms and Data Siructures, 1993, pp. 518-
529,

[30] T. M. Nicholl, D. T. Lee, Y. Z. Liao, and C. K. Wong, “On the X-Y convex hull of a set of X-Y
polygons,” BIT, 23 (4) (1983), pp. 456-171.

[31] M. II. Overmars and J. van Lecuwen, “Maintenance of configurations in the plane,” J. of Computer
and Systems Sciences, 23 (1981), pp. 166-204.

(32] E. Papadopoulou, “k-Pairs non-crossing shortest paths in a simple polygon," to appear in the 7k
Annual Internalional Symp. on Algorithms and Computation, 1996, Osaka, Japan.

[33] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduclion, Springer-Verlag,
New York, 1985.

[34] F. P. Preparata and K. J. Supowit, “Testing a simple polygon for monotonicity,” Infoermation
Processing Letlers, 12 (1981), pp. 161-164.

[35] J. Takahashi, H. Suzuki, and T. Nishizeki, “Algorithms for finding non-crossing paths with min-
imum total length in plane graphs,” Proc. rd Annuel International Symp. on Algorithms and
Compulalion, 1992, pp. 100-409.

[36] J. Takahashi, H. Suzuki, and T. Nishizeki, “Finding shortest non-crossing rectilinear paths in plane
regions,” Proc. 4th Annual International Symp. on Algorithms and Compuiation, 1993, pp. 98-107.

[37] R. E. Tarjan and U. Vishkin, “Finding biconnected components and computing tree functions in
logarithmic parallel time,” SIAM J. Computing, 14 (1985), pp. 862-874.

[38] P. Widmayer, Y. F. Wu, and C. K. Wong, “On some distance problems in fixed orientations,”
STAM J. Computing, 16 (4) (1987), pp. T28-746.

(39] Y. F. Wu, P. Widmayer, M. D. F. Schlag, and C. K. Wong, “Rectilinear shortest paths and
minimum spanning trees in the presence of rectilincar obstacles,” IEEE Trans. on Compulers,
C-36 (1987), pp. 321-331.

[40] C. D. Yang, T. H. Chen, and D. T. Lee, "Shortest rectilinear paths among weighted rectangles,”
Journal of Information Processing, 13 (4) (1990), pp. 156-462.

(41] C. D. Yang, D. T. Lee, and C. K. Wong, “Rectilinear path problems among rectilinear obstacles
revisited,” SIAM J. Compuiing, 24 (3) (1995), pp. 457-472.

[42] A. C-C. Yao, “Lower bounds for algebraic computation trecs with integer inputs,” SIAM J.
Computing, 20 (1991), pp. 655-668.

	Applications of a Numbering Scheme for Polygonal Obstacles in the Plane
	Report Number:
	

	tmp.1307986960.pdf.eGBii

