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Consider a given pattern H and a random text T generated by a Markovian source of
any order. We study the frequency of pattern occurrences in a random text when over­
lapping copies of the pattern are counted s~parately. We provide exact and asymptotic
formul<e for all moments (including the variance), and probability of r pattern occurrences
[or three different regions of T, namely: (i) r = 0(1), (ii) cenlrallimit regime, and (lll) large
deviations regime. OUf approach is uniform and seems to be novel: We first construct some
language expressions that characterize pattern occurrences which are later translated into
generating functions. Finally, we use analytical methods to extract asymptotic behaviors
of the pattern frequency. Applications of these results include molecular biology, source
coiling, synchronization, wireless communications, approximate pattern matching, games,
and stock market analysis. These findings are of particular interest to information theory
(e.g., second-order properties of the relative frequency), and molecular biology problems
(e.g., finding patterns with unexpected high or low frequencies, and gene recognition).
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1 Introduction

Repeated patterns and related phenomena in words (sequences, strings) are known to playa

central role in many facets of computer science, telecommunications, and molecular biology.

One of the most fundamental questions arising in such studies is the frequency of pattern

occurrences in another string known as text. Applications of these results include wireless

communications (ef. [1]), approximate pattern matching (ef. [21]), molecular biology (d.

[30]), games, code synchronization, (d. [16,17,18]), source coding (cr. [7], stock market

analysis, and so forth. In fact, this work and the one by Fudos et al. [12] was prompted

by questions posed by E. Ukkoncn, T. Imlelinski and P. Pevzner concerning approximate

pattern matching by q-grams (d. [21J), developing performance analysis models for database

systems in wireless communications (cr. [1J), and gene recognition in a DNA sequence

(ef. [30]), respectively. Actually, one of the earliest application appears to be to code

synChronization (d. [16]).

We study the problem in a probabilistic framework in which the text is generated ran­

domly either by a memoryless source (the so called Bernoulli modeQ or by a Markovian

source (the so called Markovian model). In the former, every symbol of a finite alphabet S

is created independently of the other symbols, and the probabilities of symbol generation

are not the same (if all probabilities of symbol generation are the same, the model is called

symmetric Bernoulli model). In the Markovian model, the next symbol depends on a finite

number previous symbols.

Pattern occurrences in a random string is a classical problem. Feller [IOJ already in

1968 suggested some solutions in his book. Several other authors also contributed to this

problem: e.g., see [3, 5, 20, 25J and references there. However, the most important recent

contributions belong to Guibas and Odlyzko, who in a series of papers (cf. [lG, 17, 18J)

laid the foundations of the analysis for the symmetric Bernoulli model. In particular, the

authors of [18J computed the moment generating function for the number of strings of

length n that do not contain anyone of a given set of patterns. Certainly, this suffices to

estimate the probability of at least one pattern occurrence in a random string generated by

the symmetric Bernoulli model. Furthermore, Gulbas and Odlyzko [18J in a passing remark

also presented some basic results for several pattern occurrences in a random text for the

symmetric Bernoulli model, and for the probability of no occurrence of a given pattern in

the asymmetric model. Recently, Fudos el ai. [12] computed the probability of exactly T

occurrences of a pattern in a random text in the asymmetric Bernoulli model, just direcLly

extending the results of Guibas and Odlyzko. The Markovian model was tackled by Li [25],
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Chrysaphinou and Papastavridis [5J who extended the Guibas and Odlyzko result of no

pattern occurrence to Markovian texts. Recently, Prum et al. [31J (see also [33]) obtained

the limiting distribution for the number of pattern occurrences in the Markovian model.

Some other contributions are [3, 14, 22, 23, 28, 30, 36J.

In this paper, we provide a complete characterization of the frequency of pattern occur­

rences in a random text generated according either to the Bernoulli model or the Marko­

vian model using a methodology that might be of interest to other problems on words.

Our method treats uniformly both models, and therefore we concentrate on discussing the

Markovian model. Let On denote the number of occurrences of a given pattern H in a

random text when overlapping copies of the pattern are counted separately. We compute

exactly the mean EOn and the variance Var On. Evaluation of the variance was quite chal­

lenging n the past as pointed out in [30J and [31). It turns out that the variance depends

on the internal structure of the pattern through the so called autocorrelation polynomial.

Actually, Prum ct al. [31J suggested two quite sophisticated methods to estimate the vari­

ance, and this should be compared with our computations (cf. Theorem 2.2, and Section

3).

We also estimate asymptotically the probability of exact r occurrences of the pattern

[or three different ranges ofr (cf. Theorem 2.2). Namely, (i) r = O(l}, (ii) r::: EOn +xJ1i"

for X ::: O(1} (I.e., central limit regime), and (iii) r ::: (1 + o}EOn (i.e., large deviations

regime). For our results to hold we assume that nP(H} -+ 00 (see [14J for other regimes

of nP(H)}. However, for a given pattern H it is natural to assume that the length of the

pattern is constant with respect to n (and for simplicity of the presentation we adopt this

assumption).

Our results should be of particular interest to information theory (e.g., relative fre­

quency, code synchronization, source coding, etc.) and molecular biology. Two problems of

molecular biology can benefit from these results. Namely: finding patterns with unexpected

(high or low) frequencies (the so called contrast words) [13J, and recognizing genes by sta­

tistical properties [9J. Statistical methods have been successfully used from the early 80's to

extract information from sequences of DNA. In particular, identifying deviant short motifs,

the frequency of wh..ich is either too high or too low, might point out unknown biological

information (d. [9J and others for the analysis of functions of contrast words in DNA texts).

From this perspective, our results give estimates for the statistical significance of deviations

of word occurrences from the expected values and allow a biologist to build a dictionary of

contrast words in genetic texts.

Another biological problem for which our results might be useful is the gene recog-
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nition. Most gene recognition techniques rely on the observation that statistics of pat­

terns/motifs/codon usage in coding and non-coding regions are different. Gur findings

allow to estimate the statistical significance of such differences, and one can construct the

confidence interval for pattern occurrences.

One can also use these results to recognize statistical properties of various other infor­

mation sources such as images, text, etc. In information theory, relative frequency defined

as 6.n = On/(n - m +1), where m is the length of the pattern, is often used to estimate

the information source. It is well known [7, 27] that 6.n converges almost surely to the

probability P(H) of the pattern H, but less is known about second-order properties such

as limiting distribution, large deviations, and rate of convergence. Rate of convergence to

the source entropy - which is related to the rate of convergence of the relative frequency

[27] - have recently appeared in the formulation of some results on data compression (cf.

[26, 34, 35, 38]). Marton and Shields [27J proved that ~n converges exponentially fast to

P(H) for sources satisfying the so called blow-up property (e.g., Markov sources, hidden

Markov, etc). Our results characterize precisely such a convergence in the central limit

regime and the large deviations regime. Finally, results ofthis paper should shed some light

on second-order properties of the powerful method of typical types [7J.

This paper is organized as follows. In the next section we present our main results and

their consequences. The proofs are delayed until the last section. Our derivation in Section

3.1 use a language approach, thus is also valid for Markovian models since no probabilistic

assumption is made. In Section 3.2 we translate language relationships into associated

generating functions, and finally we use analytical tools in Section 3.3 to derive asymptotic

results.

2 Main Results

Let us consider two strings, a pattern string H = h1h2 ... hm and a text string T = tlt2 ... t n

of respective lengths equal to m and n over an alphabet S of size V. We shall write

S = {I, 2, ... , V} to simplify the presentation. Throughout, we assume that the pattern

string is fixed and given, while the text string is random. More precisely, the text string '1'

is:

(B) either a realization of an independently, identically distributed sequence of random

variables (i.i.d.), such that a symbol s E S occurs with probability P(s) (i.e., Bernoulli

model)
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(M) or the text is a realization of a stationary Markov sequence of order [(, that is, proba­

bility of the next symbol occurrence depends on ]{ previous symbols. In most deriva­

tions we deal only with the first order Markov chain, and then we define the transition

matrix P :::; {pi,j }i,jES where pi,] = Pr{tk+l ::; iltk = i}. By 1r = (11"1' ... ' 1I"V) we

denote the stationary distribution satisfying 1rP :::; 1r. For stationary Markov chains

Pr{tk = i} = 1I"i for all k;:::: O.

Our goal is to estimate the frequency of multiple pattern occurrences in the text as­

suming either Bernoulli or Markovian model. To present our main findings we adopt some

notation (d. also [3, 16, 17, 20]). Below, we write p(Rf) = Pr{TI:: = H{} for the proba­

bility of the substring HI = hi ... hj occurrence in the random text TIt: between symbols

i +k and j +k for any k.

We find it convenient and useful to express our findings in terms of languages. A

language £, is a collection of words satisfying some properties. We associate with a language

£, a generating function defined as below:

Definition 1 For any language £, we define its generating function L(z) as

L(z) = L: P(w)zlwl
wEe

(1)

where P(w) is the stationary probability of the word w, lwl is the length of w, and we adopt

a usual convention that P( €) = 1.

We define its H-conditional generating function as

LH(Z) = L: P(wlw_rn =h,·· ·W_I = hm)zlwl
wEe

where W_i stands for a symbol preceding the first character of w at distance i.

(2)

It turns out that several properties of pattern occurrences depend on the so called

autocorrelation polynomial that we define next for the above two probabilistic models.

Definition 2 (i) (BER.NOULLI MODEL) Given a string H we define the autocorrelation

polynomial A(z), as follows:

A(z) = L: P(Hr:'+,}zm-., (3)
k~HH

where H H is the set of positions of H for which a prefix of H is equal to a suffix of H, e.g.,

k E H H means that the last k symbols of H are equal to the first k symbols of H .
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(ii) (MARKOVIAN MODEL) The autocorrelation polynomial in the MU1'kov model becomes

AH(z) = I: P(Hr'+lIIlf)zm-k.
k,HH

(4)

We can now proceed to formulate our main results. In the sequel, we denote by GnUI)

(or simply by On) a random variable representing the number of occurrences of H in a

random lext T of size n. We introduce the generating function of the language T;. of words

that contain exactly r occurrences ofR: T(r)(z) == L:n~oPr{On(H) == r}zn for Izl::; 1. We

also define a bivariate generating function as follows:

= = =
T(z,,,) = I:TI')(z)u' = I: I: Pr{On(H) = r}znu' (5)

r=:l r=ln=:O

Our main results for the Markovian model are summarized in the following two theorems.

The first theorem presents exact formulas for the generating functions T(r)( z) and T(z, u),

and can be used to compute exactly all parameters related to the pattern occurrence On(H).

In the second theorem, we provide asymptotic formulas for Pr{On(H) = r} for three regimes

of r, namely: (i) r = 0(1), (ii) r = EOn + x";Var On when x = 0(1) (i.e., local central

limit), (ill) T = (1 +b) EOn for some b (i.e., large deviations). All proofs are presented in

the next section. The method of derivation is interesting of its own right. The proof of

Theorem 2.1 is presented in Section 3.2 while the proof of Theorem 2.2 can be found in

Section 3.3.

Theorem 2.1 ~et H be a given pattern of size m, and T be a ranllom text of length n

genemted according to a stationary Markov chain (oj any ol'der) over a V -ary alphabet S.

The generating Junctions T(r)( z) and T( z, u) can be computed as follows:

R(z)M;;-'(Z)UH(Z) ,
u

R(z)l_ uMH(Z)UH(Z) ,

(6)

(7)

where, after defining

we del'i.ve,

(8)

MH(Z)

UH(Z)

R(z)

z-l
1 + -;;--,--;­

DH(z)
1 - MH(Z) 1

l-z DIl(z) ,
zm P(H)UH(Z) .

(9)

(10)

(11)

In '/>e abave, P(H) = P(w = Il) and PH(II) = P(w = Hlw:;" = H).
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The above theorem is a key to the next asymptotic results. These results are derived in

the next section using analytical tools.

Theorem 2.2 Let the hypotheses of Theorem 2.1 be fulfilled, and in addition nP(H) ----jo 00.

The following results hold.

(i) MOMENTS. Thel'e exists R > 1 such that

where

EOn(H)

Var On(H)

P(H)(n-m+l) ,

nP(H)e, +P(I1)e, +O(R-n) ,

(12)

(13)

e, P(H)(2AH(I) - 1 - (2m -1)P(H) +2(PJI(H) - P(H))) ,

e, P(lI)«m -1)(3m -1)P(H) +(1- m)(2AH(I) - 1) - 2AH(1)

- 2(2m - l)(PH(H) - P(ll)) .

(ii) CASg T = 0(1). Let PH be the smallest root of DH(Z) = 0 outsi(le the unit circle Izl < 1,

andletp>PH. Then:

(14)

where

(15)

(16)

and the remaining coefficients can be computed according to the standard formula, namely

1 dr+l- j

aj = ( ')' lim d +' ,(T1c)(z)(z - PHr+')r+1-J . "'-PH ZT J

with j = 1,2, ... r.

(iii) CASE T = EOn + x"lV" On' Let x = 0(1). Then'

(17)

(iv) CASE r = (1 + o)EOn, Let a = 1+ 0 and 0 # O. Define p(t) to be the root of

(18)
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and W a to be the TOot of

p'(Wo) = a .

Then:

Pr{Oo(H) = r} = 1 e-((0-,0+1)1(0) (1 +°(~))
wayf2~cln n

whel'e J(a) = awa - p(Wa ).

(19)

(20)

As mentioned before, the above results have abundance of applications in information

theory and molecular biology. Hereafter, we are concerned with the relative frequency

defined a'i

L1o(H) = Oo(H)
n-m+1

Relative frequency appears in the definition of types and typical types (d. [71), and is often

lIsed to estimate information source statistics. As a corollary to Theorem 2.2, we obtain

the following second-order characterization of .6.n (H):

Corollary 2.1 Undel' hypotheses of Theorem 2.2, the following holds:

(i) (CENTRAL LIMIT REGlM8) For x = 0(1)

Pr{L1o(H) = P(JI) + x Jc,j(n - m + I)} ~ ~e-tx' (1 +°( ;,,)) (21)
2"cln vn

(il) (LARGE DIWIATlONS) For a = 1 + 6 with 6 > 0

Pr{lL1n(H) - P(H)I > 6P(H)} = 1 ,-(n-",+1)I(o) (1 +°(~)) (22)
wayf2TtCln n

where Wa and I(a) are defined in Them'em 2.2 (iii).

The above results should be compared with first-order properties of .6.n (H) discussed in

[7,27J.

3 Analysis

The key clement of our analysis is a derivation of the generating function T(z, u) presented

in Theorem 2.1. The first part of below derivation is quite general and works uniformly

for both the Bernoulli model and the Markovian model. It is based on constructing some

speclallanguages and finding relationships among them. Laler in Section 3.2 we translate

them into generating functions.

8
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3.1 Combinatorial Relationships on Certain Languages

A collection of words sharing a given property is commonly called a language. This section

is devoted to present some combinatorial relationships between certain languages that help

to derive some results in a uniform manner. In this section we do not make any probabilistic

assumptions.

We start with some definitions:

Definition 3 Given a pattern H:

(i) Let T be a language of words containing at least one occurrence of H, and for any

integer r, lel Tr be the language of words containing exactly r occurrences of H.

(ii) We define 'Rn and £H as languages containing only one occurrence of If at the right

and respectively left enlJ oJ a word belonging to these languages. We also define UH as

(23)

where the opcmtion . means concatenation of words. In other WOl"ds a word U E UH if

]I1l has exactly one occurrence of H at the left end of Hu.

(iii) Let MH be a language such that H M H has exactly two occurrences ofH at the left and

right end of a wordfmm MH, that is, Mn = {w: Hw has exactly two occurrences of H

one at the right end and the other at the left end}.

(iv) Finally we defined a sel AH associaterJ wilh the autocorrelation o/H, that is:

AH = {H%'+l: k E II II} ,

where HH is the aulocorrelation sequence introduced in Definition 2.

We now can describe the languages T and T;. in terms of other languages just introduced.

This will further lead to a simple formula for the generating function of On(H). We prove

below the following:

Theorem 3.1 The language T satisfies the fundamenlal equation:

(24)

Notably, the language 7;. can be represented for any r ~ 0 as follows:

(25)
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Proof: We first prove (25) and obtain our decomposition of T,. as follows: The first oc­

currence of H in a word belonging to T,. determines a prefix p that is in nH. Then, one

concatenates a non-empty word w that creates the second occurrence of H. Hence, w is in

MH. This process is repeated r - 1 times. Finally, one adds after the last H occurrence

a suffix w that does not create a new occurrence of H. Equivalently, Hu is in LH, wh·leh

means that u is in UH, and w is a proper subword of Hu. Finally, a word belongs to T if

for some 1.0:::: r < 00 it belongs to 7;.. The set union U~l M H-
t yields precisely M H.•

We now prove the following result that summarizes relationships between the languages

introduced in Definition 3.

Theorem 3.2 The sets MH, Un and nH satisfy:

UM~I
k;::t

UH'S

H·MH

MIl +UIl - {,) ,

s .nIl - (nIl - H) ,

(26)

(27)

(28)

where W is the set of all words, S is the alphabet set, E is the empty word and EB and e are

disJoint union and subtraction of languages. In particular, a combination of (27) and (28)

glUes

(29)

Additionally, we have:

(30)

Proof: All the above relations arc proved in a similar fashion. We first deal with (26). Let

k be the number of H occurrences in W . 1-1. By definition, k ~ 1 and the last occurrence

is on the right: this implies that W· H ~ Uk;::t M~. Furthermore, a word w in Uk;::t M~

is nol in W· II iff its size Iwl is smaller than IIIf. Then, the second H occurrence in Hw

overlaps with II, which means that w is in An.

Let us lurn now to (27). When one adds a character 8 right after a word 1L from Un,

two cases may occur. Either Hus still does not contain a second occurrence of H, which

means that us is a non-empty word of UH . Or a new H appears, clearly at the right end.

Then, us is in MH. Furthermore, the whole set MH + (UH - E) is attained, Le., a strict

prefix of MH cannot contain a new H occurrence. Hence, it is in UH, and a strict prefix of

a Un-word is in UH.

We now prove (28). Let x = 8W be a word in H· MH where s is a symbol from S. As x

contains exactly two occurrences of H located at its left and right ends, w is in nn and x is

10



in S· RH - R H. Reciprocally, if a word swH from S· RH is not in RH, then swB contains

a second H occurrence starting in sw. As wH is in RH, the only possible position is on the

len end, and then x is in H . M H. We now rewrite:

which yields H· MH - H == (S - f) -RH.

Deriving (30) is only a little more intricate. Let t be some word in 10. We consider

the factorization t = WIW2 such that W2 is the largest suffix that also is a (m - k)-prefix

of IT, with k E HH and m = IHI. In other words, W2 is the largest sufftx satisfying Lhe

equation W2 . H = H· a, where a is in AH. IT wIH were noL in RH, a second occurrence

of H would occur in wIII starting in WI' As wIHa = WI W2H, this contradicts the maximal

property of Wz. Therefore, To·H ~ RIl ·AR. Finally, we consider a word WIH a in RH ·An·

We may rewrite it as H· a = Wz' ll. It suffices now to show that WIW2 E To. Indeed,

since IW21 < IHI, any occurrence of H would go across WI and wIH would contain two

occurrences of H, which is contradicts the definition fa R H . This proves RH . Au ~ 10 . H,

and completes the proof of Theorem 3.2.•

3.2 Associated Generating Functions

In the previous section we did not make any probabilistic assumptions. Thus, Theorem

3.2 is true for any model, including Bernoulli and Markovian ones. In this section, we

translaLe the language relationships into generating functions. Therefore, we need back our

probabilistic assumptions. Most of our derivations deal with the Markovian modeL

To Lransfer our language relations into generating functions, we need a few rules associ­

ated wiLh two operations on languages. Namely: the disjoint union ffi and concatenation·

become the sum operation + and the multiplication operation on generating functions. We

start with the following simply properLy holding in both probabilistic models:

(PI) Let £1 and £2 be two arbitrary languages with generating functions (cf. (1)) L 1 (z)

and L 2(z), respectively. Then, the union language £ = £1 EfJ £2 is transferred into the

generating [unction L(z) such that

L(z) = L,(z) + L,(2) .

To Lranslate the concatenation operation, one needs to consider the Bernoulli and the

Markovian models separately. We start with the Bernoulli model:

11



(P2) Let us now consider a new language [, that is, constructed [rom the concatenation

of two other languages, say £1 and £2, that is 12 = 121 • 122 • In the Bernoulli model, the

generating function L(z} of £ becomes

L(z) = L,(z)L,(z)

since P(1JJv} = P(w)P(v} for w E 121 and v E 122 - In particular, the generating function

L(z} of £. = S· £1 is L(z} = zL1(z}, where S is the alphabet set.

In the Markovian model P(wv} #- P(w}P(v), thus property (P2) is not any longer

true. We have to replace it by a more sophisticated one. We have to condition £2 on

symbols preceding a word from £2 (Le., belonging to £1). In genera!, for a IC order Markov

chain, one must distinguish V K ending states for £1 and VI( initial states for for £2' For

simplicity of presentation, we only consider first-order Markov chains (i.e., J( = I), and we

write few} for the last symbol of a word w. We need the following definitions:

Definition 4 Given a language £, we define:

L!(z) = I: P(w,£(w) = jlw, = i)zlw1
wEe

Additionally:

L;(z) = I:L!(z).
jeS

The following is a simple consequence of our previous definitions:

(31)

Corollary 3.1 Let £ be a language that does not contain the empty string. Its two gener­

ating functions defined respectively in (1) and (2) satisfy:

L(z) = I: K,L,(z) (32)
kES

V

LH(Z) = I: P<IH)"L,(z) (33)
kES

where, we recall, Ll/(z} represents a language whose words are preceded by H.

Now, we can present the corresponding property (P2) for the Markovian model.

(P2') Let £ = W . V. Then, according to definition (31) we have

L«z) = I: pj;Wl(zlV/(z) .
i,jES

12
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To prove this, let 10 E Wand v E V. Observe that

P(wv) = L P(wv, trw) = iJ
jeS

L P(w, trw) = iJP(vlt(w) = iJ
jES

L L P(w, trw) = iJPiiP(VJVI = i) .
jeS ieS

After conditioning on the first symbol of Wand the last symbol of V, we prove (34).

Now, we are ready to translate OUT basic relations from Theorems 3.1 and 3.2 into asso­

ciated generating functions. Before proceeding w1th it, let us observe that one actually must

deal only w1th two kinds of words. Namely, (1) we have words w for which no assumption

is made on the preceding words (e.g., these are the words in 'RH with generating function

R(z)); (ll) the only assumption we ever made on the preceding word is that it admits II

as a suffix (e.g., words in Ull and MH whose generating functions are UH(Z) and MH(Z),

respectively). We also recall that P(H) = P(1o = H) and PH(H) = P(1o = Hlw:i = H).

Lemma 3.1 The generating functions associated with languages MH,Un and'RH satisfy;

1

1- MH(z)

UH(Z)

R(z)

P(H)z"
'--;-1---'-z-+ AH(z) + (P(H) - PIl(H»z" ,

MH(Z) - 1

z-1
P(H)z" . UH(Z) ,

(35)

(36)

(37)

provided the underlying Markov chain is slationaJ'Y.

Proof: We first prove (36). Interestingly, it needs no stationarity assumption. Let us

consider the language relationship (27) from Theorem 3.2 which we re-write as UH ·(5 -t:) =

M H - c. Observe that the left side of this equation, after conditioning on a left occurrence

of H, yields:

L Ui,(z)(L Pi';Z - 1) = L uiI(z). (z - 1) = UH(Z)' (z - 1) .
iES jeS ies

Of course, MIl - E translates into MH(z) -1, and (36) is proved.

We now turn our attention to (37). By (28), we observe that S . 'RH - 'RH can be

translate as follows (no assumption is made on H occurrlng on the left):

L ~iz· LPi"Ri(Z) - L rr,R,(z)
jeS iES iES

13
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But, due to the stationarity of the underlying Markov chain

L'TriPi,; = 1fi ,,
which yields (z - 1) L,- 1fjRi(Z), and since 'RH does not contain an empty string, we finally

obtain (z - 1)R(z). Furthermore, H . MH translates into p(H)zm. (MH(Z) - 1). But, by

(36), this becomes p(H)zm. UH(Z)(Z - 1), and after a simplification, we prove ( 37).

Finally, we deal with (35), and prove it using (26) of Theorem 3.2. The left-hand side

of (26) involves the language MH, hence we must condition on the left occurrence of II. In

particular, Ur?:1 M'H + E of (26) translates into 1 .JH(z)' Now we deal with W . H of the

right-hand side of (26). Conditioning on the left occurrence of II, we have

L L zn+m P(wlllw_l = f(H)) = L L znp(wh,lw_, = £(ll))P(HIH, = h,)zm
n?:llwl=n n?:11wl=n

Due to the stationarity, left conditioning disappears, and for n 2'. 1 we obtain:

L P(wh,lw_, = f(H)) = L P(WIW_l = £(H))rrh, = WI" ,

Iwl=n Iw!=n

where, we recall, £(H) is the last character of II. Hence, the language (W - {E}) . H

wntributes l~=P(JJ)zm, while the languages {H}ffiAH - {f} introduces PH(H)zm+ AH(z)­

Eo This completes the proof of the theorem.•

Finally, the next result completes the proof of Theorem 2.1.

Lemma 3.2 The generating Junction T( z, u) oj the language T of wonls containing at least

one occurrence of H becomes

(38)

(39)

where RH(Z), Mn(z) and UH(z) are expressed as in Lemma 3.1.

Proof. The proof is a direct consequence of (34) and Theorems 3.2 and 3.1. •

Remark. The generating functions Ti( z) of Td in the Markov case were previously derived

by Chrysaphinou and Papastavridis in [5J. We avoid here such a tedious computation since

they are unnecessary to derive our results. A simply derivation of To(z) follows from (30)

and Lemma 3.1.

14



3.3 Moments and Limiting Distribution

In this final, subsection we derive the first two moments of On as well as asymptotics for

Pr{On = T} for different ranges of T, that is, we prove Theorem 2.2. Actually, we should

mention that using general results on Markov chains and renewal theory one immediately

guesses that the limiting distribution must be normal for T = EOn +O(J1i"). However, here

the challenge is to estimate precisely the variance. Our approach offers an easy, uniform, and

precise derivation all of moments, including the variance, as well as local limit distributions

(including the convergence rate) for the central and large deviations regimes.

A. MOMENTS

First of all, from Theorem 2.1 we conclude that

T'(z, l)

T"(z, l)

zmp(H)
(1 z)"
2znP(H)MH(Z)DH(Z)

(1- z)3

Now, we observe that both expressions admit as a numerator a function that is entire beyond

the unit circle. This allows for a very simple computation of the expectation and variance,

based on the following basic formula:

[ nl( )-P r(n +p)
z l-z = r(p)f(n+l)

To obtain EOn we proceed as follows:

EOn = [znJT'(z, 1) = p(H)[zn-m](l_ z)' = (n - m + I)P(H)

Denoting

we get

EOn(On -1) = [znJT"(z,l) = ¢(I)(n+ 2)2(n + 1) + ¢'(I)(n + 1) + ~¢"(1)

(40)

(41 )

Observing that MH(Z)DH(Z) = DH(z)+(l-z), we use MAPLE to obtain a precise formula

on the variance (d. (13) of Theorem 2.2).

B. CASE r = 0(1)

Now, we prove part (H) of Theorem 2.2, that is, we estimate Pr{On:::; r} for T = 0(1).

We first re-write the formula on T(rl(z) as follows:

TI')(z) = zmp(ll)(DH(Z)+z-I)'-l
Djt1 (z)

15



To establish an asymptotic expression for Pr{On == r} one needs to extract the coefficient

at zn of T(r)(z). By Hadamard's theorem (d. [32]) we conclude that the asymptotics of

the coefficients of T(r) (z) depend on the singularities of T(r)(z). In our case, the generating

function Is a rational function, thus we can only expect poles (which cause the denominator

DH(Z) to vanish). The next lemma establishes the existence of at least one such a pole.

Lemma 3.3 The equation DH(Z) == 0 has at least one solution; the solution of smallest

modulus, PH, is real positive and satisfies PH > 1. All the other solutions P satisfy P > PH

iff H is not periodic.

Proof: The roots of DH are the poles of 1 p,.}H(Z). As it is the generating function of a

language, it has no pole in Iz[ ~ 1 and all the coefficients are real and positive. Hence,

the root of smallest modulus, PH, is real and positive. Moreover, there is only one root of

modulus PH Iff DH is not a function of zd for some d ~ 1, e.g., if H is not periodic.•

In view of the above, we can expand the generating function T(r)(z) around z == PH in

the following Laurent's series (d. [32,37]):

(42)

where f(r)(z) is analytical in Izl ~ PH. The term f(T)(Z) contributes only to the lower terms

in the asymptotic expansion of T(r)(z). Actually, it Is easy to see that for P > PH we have

fCr)(z) == O(p-n) (cf. [37]). The constants Uj can be computed according to (16) wlth the

leading constant U_T_l havlng the explicit formula (15).

We need an asymptotic expansion for the first terms in (41). This is rather a standard

computation (d. [37]), but for the completeness we provide a short proof. The following

chain of indentities is easy to justify for any P > 0:

After some algebra, we prove part (ll) of Theorem 2.2.

C. CASE T = EOn + xO(Vii) FOR X = 0(1)

16



We now establish part (iii) of Theorem 2.2, that is, we compute Pr{On = r} for r =

EOn + x";Var 0" when x = 0(1) (the so called central limit regime). Let Iln = EOn(R)

and 0; = Var On(ff). To establish normality of (On(H) -Iln)jon, it suffices, according to

Levy's theorem, to prove the following

lim e-tl·,,/q"Tn(el/q,,) = et2 / 2
n_oo

(43)

for some complex t around zero. The computations are standard and go as below. The

equation

(44)

implicitly defines in some neighbourhood of t = 0 a unique C<XJ function pet), satisfying

p(O) = O. Then, an elementary application of the residue theorem leads for some R > 1 to

(45)

and one has, uniformly in t, pet) = tp'(O) +p"(O)t2 j2 + 0(t3 ). From the cllmlliant formula,

it appears that EOn(R) = [t] 10gTn(t) '" np'(O) as well as Var On '" np"(O), where W]T(t)

denotes the the coefficient of T(t) at tt.

After some algebra, this leads (cf. [2]) to

cxp (; + 0(nt3/,,3))
,"!2 (1 + O(I/vn))

which completes the proof of the result.

Actually, we can proceed as in Greene and Knuth [15] or Hwang [19] to obtain much

more relined local limit result. For example, direct application of results from [15] (cf. Chp.

4.3.3) leads to the following for x = o(n1/ 6 )

(46)

whC!re K3 a constant (i.e., the third cllrnulant).

D. CASE r = (1 +o)EOn - LARGE DEVIATIONS

Finally, we consider a large deviations result. From (45) we conclude that

li log Tn(c') ()
m =p t .

n~<XJ n

17



Thus, directly from Gartner-Ellis theorem [4, 8] we prove that

lim logP,{O" > na} = -[(aj ,
n-"'Xl n

where, after defining W a a.'i a solution of P'(t) :::: a, we obtain

[(a) = ""'0 - p(wo) .

But, due to our precise asymptotics for '/'n(et ) we can do much better, as already sug­

gested in [4, 15, 19]. We only sketch the approach. As in the central limit regime, we could

use Cauchy's formula to compute the probability Pr{On :::: r} for r :::: EOn +xO( .jii). But,

formula (46) is only good for x:::: 0(1). To expand its validity, we follow Greene and Knuth

[15], and apply the so called "shift of mean", that is, we shirL the mean of the generating

function Tn(u) to a new value, say m:::: an, so we can again apply the central limit formula

(46) around the new mean. To accomplish this, we introduce a new parameter a: such that

The point to observe is that the new generating function T(a.'u)/T(a:) has a new mean at

aT'(a)/T(a). Selection of a is easy. For example, for T(u) given by (45) we compute a

according to
ap'(a) m

p(a) n

for m = an. The details of the computation can be found in [19], and for our specific

case are reported in part (iv) of Theorem 2.2. This also completes the proof of the whole

Theorem 2.2.
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