
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1996

What is an Answer? An essay on the Theory of Functions What is an Answer? An essay on the Theory of Functions

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
96-035

Rice, John R., "What is an Answer? An essay on the Theory of Functions" (1996). Department of Computer
Science Technical Reports. Paper 1290.
https://docs.lib.purdue.edu/cstech/1290

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

WHAT IS AN ANSWER?
AN ESSAY ON THE THEORY OF FUNCTIONS

John R. Rice

Department of Computer Science
Purdue Univcrsity

West Lafayettc, IN 41907

CSD-TR 96-035
June 1996

WHAT IS AN ANSWER?
An Essay on the Theory of

Functions

John R. Rice
Department of Computer Sciences, Purdue University

West Lafayette IN 47907, U.S.A.

Abstract
Historically the fields of numerical and symbolic methods

for scientific applications have been widely separated, nearly
isolated from one another. Symbolic (and algebraic) computa­
tion has used symbolic methods to obtain symbolic answers to
problems. Numerical computation has used numerical methods
to obtain numerical answers. The natures of the methods and
answers obtained are seen by most to be completely distinct.
One goal of this paper is to raise doubts that any such distinc­
tion actually exlsts. The focus is on problems whose answers
are functions, e.g., temperature distributions or pressure fields,
from phenomena modeled by differential or integral equations.
A wide range of mathematical models exist for functions, both
from mathematics and computer science. All these theories are
candidates to be used to define answers, so we examine the na­
ture of functions that are useful to obtain from either symbolic
or numeric computation. We conclude that all these theories for
functions fail to model the real world properly.

1. Introduction

This paper considers computing answers to problems whose solutions
are functions. Typical example problems are ordinary or partial dif­
ferential equations, integral equations, etc. These problems arise from

1

mathematical models of a wide variety of physical phenomena. These
models have equations whose functional solutions could, in principle, be
computed to infinite (unbounded) precision. Over the centuries a vast
array of approximate methods have been devised for these problems,
e.g., infinite series, asymptotic expansions, finite differences, solving
simpler related problems, finite elements, and analog machines. To
simplify the notation, we assume all these problems involve two inde­
pendent variables, x and y, but nothing depends on this assumption in
an important way.

The recent increases in computing power have greatly expanded
the possibilities of using these solution methods and it is natural to
compare them in some general way. In order to make a comparison,
we need a definition of an answer that does not depend in any way
on the method being used to solve a problem. This is the first issue
addressed in this paper. Keep in mind that methods were developed
for about two centuries with very, very few problems actually being
solved. Thus it should not be a surprise that many of these methods
produce mirages instead of answers, i.e., there is no feasible way to
obtain useful answers from many of them. The advent of computers
has allowed many such problems to be solved and recently it is practical
to solve them automatically and in wholesale.

In developing a definition of an answer we are led naturally to con­
sider more carefully what a method is and then what a computable
function is. The goal of problem solving is to obtain an answer (which
is a function) that can be computed. There exists a rich theory offunc­
tions in mathematics and other theories in computer science. These
theories are inadequate for the understanding of finding answers to
our class of problems. The problem arises because we need to under­
stand both the cost and accuracy of answers obtained. Problems with
"simple" answers should be cheap to solve with high accuracy while
problems with "complicated" answers might not be. The sticky point
turns out to be the meaning of "simple" and "complicated" and the in­
compatibility of the "theoretical" definitions of complexity with "real
world" observations. Recall that the test of validity of a theory is how
well it represents the real world and we claim that existing theories are
inadequate in meeting this test.

The paper is organized as follows. In Section 2 the kinds of an­
swers are surveyed and discussed followed by a definition of a method.
We conclude that numerical and symbolic methods are really the same.

2

Section 3 presents several possible definitions of an answer and discusses
complexity issues. Four views of a function are discussed in Section 4:
mathematical, computer science theory, programming languages, and
real world. In Section 5 definitions of a function are considered which
more closely model the real world. The goals of each definition are
discussed. Throughout this material we present examples of the diffi­
culties with existing and potential definitions of answers and functions.
Section 6 contains brief remarks on the underlying difficulty that these
theories face and note its similarity to the difficulties that have led us
not to have a satisfactory theory for finite precision arithmetic.

2. What is an Answer?

An answer to the problem considered here is something that can be
evaluated at an arbitrary point. For example, in two variables, it could
be f(x, y) or, if the problem has parameters, it could be temp(x, y,eps,
thickness, type). These look like ordinary mathematical functions, we
next consider various types.

2.1. Symbolic Answers

The simplest of all answers are exact, e.g., f(x,y) = 2x + 4y. Here
we ignore the problems of finite precision arithmetic (round-off), we
assume the computations are real numbers exactly. In the final sec­
tion we briefly discuss the relationship with finite precisions arithmetic.
Thus the exact answers are arithmetic expressions in terms of the in­
dependent variables, known constants, and known parameters. The
computation only involves +, -, /, x, and logical comparisons; these
are the only computational operations that a computer (or a human)
can do.

An answer such as f(x,y) = 31l'x + 4(y + i) is not exact since
both 11" and i (Euler's constant) are not known exactly. We can call
them almost exact since the difficulty is obtaining exact values of such
constants, a difficulty more closely related to finite precision arithmetic
than function theory.

The simplest symbolic answers are expressions involving standard
functions, e.g., f(x,y) = 3sin(4x) x log(x/y). We call these finite
symbolic functions. The symbols "sin" and "log" are the names of

3

[unctions that are assumed to be easily computable. However, they
cannot, in general, be computed exactly even on a machine with real
arithmetic. In fact, these symbols are the names of computations which
represent problems which, everyone agrees, that are "solved". Thus, in
a computer programming language, the execution of a statement which
includes sin(x) involves calling a library routine to evaluate it. The sin
and log functions are easily computable but this is not true of special
mathematical functions in general. Over the centuries scientists have
named dozens of functions, many of which are quite hard to compute.

Example 1. The Gamma Function. Even the common Gamma
function

rex) = 100

t'-'o-' dt

is quite tricky to evaluate for a general value of x. In [2] there are
many representations of f(x), namely, three integral expressions, one
limit, one infinite product, two asymptotic expansions, one contin­
ued fractioll, and three approximations. There are similar represen­
tations for related functions (e.g., the Digamma function and the In­
complete Gamma function) and many formulas relating various values
(e.g., rex + I) = xr(x)). Along with 10 large pages of symbolic formu­
las there are 30 pages of tables. Only the asymptotic expansions (e.g.,
Sterling's formula) can be used as a basis for effectively computing f(x)
in general and even this is a delicate (but computationally cheap) com~

putation. The other representations are not useful for computing f(x) .

•
Finally there are the infinite symbolic cxprcssions such as in Exam­

ple 1 or the following

00

I+Lxi/i!
;=1

00

J,(x,y) = L
i = 1
j = 1

(i + j)x i sin(jy +x/i)
(. ·)1'J .

4

00

f,(x,y) = I:
i = 1
j = 1

(1 + ';x + jY)(-I)i-i
(ij + 'lrix + 3jy') log(i + x + 2(j + y))

The first infinite series is the basis for making exp(x) = eX, a standard
mathematicalfunction, easily computable. The function I1 (x, y) is also
easily computable but h(x,y), which appears similar, cannot be com­
puted cheaply at all. Using the arithmetic of actual computers, this
formula for f2(X , y) is useless.

2.2. Numerical Answers.

Many people think of a numerical answer as a table of values, much like
those referred to in Example 1 for the Gamma function. However I a
table of values is not a function and thus not an answer. But, a table of
values plus an interpolation formula can be evaluated at any point and
is thus a possible answer. The fact that many accept tables as answers
might be because many believe that good interpolation formulas are
easily obtained. This is not actually so (consider relatively sparse,
irregularly spaced data in three dimensions) but obtaining interpolation
formulas also is not an issue here.

It appears that a numerical answer depends on E, the accuracy of
the answer, explicitly while symbolic answers do not. This appear~

ancc is due to the usual notations used and, in fact, both kinds of
answers involve E in the same way_ To illustrate this, let PDE denote
the data (domain, operator, boundary conditions) of a second order
elliptic partial differential equation. Then the numerical answer could
be expl"essed as

I(x, y) = Intel'p (x,y, 5-point-star (PDE), e)

where Inte1'p is a standard interpolation algorithm and 5-point-star is a
standard finite difference algorithm. A corresponding symbolic answer
IS

k(t)

I(x,y) = I: [coel (PDE)x'yi]
i = 1
j=1

5

where caeJ is a standard algorithm for Taylor Series coefficients. Both
of these answers have an explicit dependence on E and both have a
"hidden" two dimensional array of numerical values that is implied
once (. is set.

2.3. What IS a Method?

Above we gave a name to a numerical method to make a numerical
answer look like a symbolic answer. This might appear to be "cheat­
ing", but it is, in fact, a standard procedure in mathematics. The
names "sin", "log", and "exi' stand for methods (e.g., infinite series
with truncation) to compute these functions. We have stated already
that an answer is something that can be evaluated, let us say "some­
thing" here means at least an algorithm in the sense of a computer
program. Accepting the imprecision of defining an algorithm, we can
mal~e a definition as follows.

DEFINITION 1. A method 101' solving a problem is an algorithm
that computes an alg010ithm Jor an answer to the problem.

Of course, we are considering a class of problems without exact
answers, so we can make this definition more precise as follows:

DEFINITION lA. Consider a problem with defining data D and an
accuracy specification E. Then a method is an algorithm which takes
(D,E) as input and computes an algorithm 1 = f(x,y) = f(x,y,D,f)
so that (a) 1 can be evaluated 101' any (x, y) in the problem domain, and
(b) the difference between f(x,y) and the exact solution aftke problem
is at most E.

The algorithm used to obtain J(x,y) can be of any type; symbolic
or numerical. But what is the difference between symbolic and numer­
ical methods? In programming language circles one tends to think as
algorithms expressed in Lisp as being symbolic and those expressed in
Fortran as being numerical. Yet it is a basic result in computer science
that everything that can be computed in Lisp can also be computed in
Fortran and vice versa. Examining typical methods, one might say that
numerical methods tend to approximate the continuum "early" while
symbolic methods tend to do it "late".

We conclude that the distinction between symbolic and numerical
answers is only apparent and not real. It is more a matter of the
culture of the methodology. One can hope with symbolic solutions

6

that some useful information can be obtained without evaluating any
functions at all. This does happen in especially simple cases, but as one
considers more complex problems these occurances becomes very rare.
One finds that looking at 10 pages of polynomials is just as informative
(or uninformative) as looking at 10 pages of numbers. That is, the
first step in numerical methods is usually to discretize the continuum
while [or symbolic methods the discretization (numerical evaluation of
expressions) is often delayed as long as possible.

3. Possible Definitions of an Answer

The first definition of an answer is taken directly from the initial, in­
formal statement of Section 2.

DEFINITION 2. An answer is an algorithm f(x,y) that can be
evaluated]01' every (x, y) in the p1'Obiem domain.

Recall that by algorithm we mean f(x,y) can be computed by a pro­
gram.

In theory this is a viable definition but in practice it is unacceptable.
The solution of these problems is a surface and an answer must be able
to produce the whole thing, as least approximately. That is, one must
be able to plot the solution. An answer from Definition 2 can take
unbounded time to evaluate as (x,y) varies. Thus there must be some
uniformity in the time to compute specific values. This holistic nature
of answerS leads to the second definition.

DEFINITION 3. Let 6 ~ co, be the evaluation accuracy. An answer
is an algorithm f(x,y) that can be evaluated with accumcy 8 and with
a fixed cost]01' every (x, y) in the problem domain.

This definition does not imply anything about the effect of problem
parameters on the cost. It is unrealistic to ask for the cost to be inde­
pendent of parameters in all cases, many physical phenomena exhibit
wide ranges in complexity as parameters change.

The principal motivation for defining answers preciselY is so that
one can compare methods on the basis of cost, both the computational
cost of the method itself and the computational cost of evaluating a
solution. H is plausible that evaluation can be quite efficient using
a "table plus interpolation" approach. Even the effects of making €

7

smaller are modest; the table might grow in size and/or the interpo­
lation formula grow in complexity but the growth normally should be
rather slow.

The table plus interpolation approach seems simple but what about
problems whose solutions are truly and essentially non-uniform in na­
ture. Real world problems have phenomena like turbulence, singulari­
ties, boundary layers, and chaos all of which make uniform evaluation
cost more difficult. The next definition takes such situations into ac­
count.

DEFINITION 4. Let 0 2: E be the evaluation accuracy. An answer
is an alg01'ithm f(x,y) that can be evaluated with accuracy 0 and with
cost commenS1t'1'ute with the complexity of f(x, y) for every (x, y) in the
problem domain.

This definition sounds good and ordinary scientists and engineers can
understand it. Yet it has the imprecise phrase "cost commensurate with
the complexity of f(x, y)". The difficulty is that there are intuitive and
theoretical notions here which do not match well.

4. What is a Function?

Four views of functions and how to measure their complexity are con­
sidered. The real world is represented by scientists who use functions
naturally and have an intuitive idea of what it means for a function
to be "simple and well behaved" or "complicated". They just examine
plots of the functions. It is these people who are the experimentalists;
their views determine the success of theoretical models of functions
and their complexity. We are, after all, discussing abstract models of
real thingsj these models should not produce nonsense and must be
compatible with real world observations.

4.1. Mathematical Models of Functions

Mathematics has a very elaborate structure and theory for functions.
This theory has evolved over centuries and moved away from its ex­
perimental roots to be very non-constructive. Thus this theory admits
such irrelevancies as: (a) non-constructible functions like g(x) = 0 on
the rationals and g(x) = 1 on the irrationals, (b) theorems that are true
except for sets of measure zero - and the set of all real world functions

8

is of measure zero. However, the essential shortfall of this theory is
the fact that it does not properly abstract the real world concept of a
simple, well behaved function.

Mathematics measures complexity of functions in two equivalent
ways: (1) using smoothness as measured by the number of continu­
ous derivatives a function has, (2) using polynomials as pl'ototypes and
measuring complexity by the speed (in terms of error as a function of
polynomial degree) of approximating functions by polynomials. That
these measures are equivalent follows from the classical results in Dun­
ham Jackson's 1911 thesis [4], see [6] or Chapter 5 of Vol. 1 of [11]
for complete presentations of this theory. With this approach, the sim­
plest or smoothness common class of functions besides polynomials are
the entire functions. Entire functions are infinitely differentiable every­
where and are approximated exponentially fast by polynomials. Yet it
is well known that given any 6 > 0 and any functional curve of thickness
6 drawn on the interval [0, 1], say, there is an entire function entirely
inside this curve. In other words, all real world functions are simple
and well behaved!

Example 2. The Function 1/{1 + x 2
)

Consider J(x) = 1/(1 + x') on the interval [-5,5J. It defines a very
smooth, simple curvej any reasonable measure of complexity of func­
tions must indicate that this is a simple function. It varies between 0
and 1 with only two inI-lection points. Its slope changes sign at x = 0,
has two intervals of monoticity, and varies between -0.5 and 0.5. Its
second derivative varies between -2 and 2. Let us measure how the
speed of convergence of approximating f by polynomials and how well
the polynomials resemble it. That this function is "troublesome" for
polynomials was discovered by Runge a century ago when he showed
that the polynomial interpolants to J on equi-spaced points do not
converge.

It is well known that the interpolants of f at the Chebyshev points
Xi = -10 cos(~(2i+I)/(2N+2)), i = 0, I, 2, ... , N provide polynomials
of degree N which converge to f at the fastest possible rate. The
following table provides some data about these polynomials. Note that,
for N = 20, the errors for r and I" are 61% and 636%, respectively, of
the maximum values for f. For the values of f near the ends the errors
are 1000% and 56,500%, respectively.

9

I

Degree N
4 6 10 16 20

Polynomials shape
- Changes in sign of slope 4 6 10 10 10
- Number of inflection points 2 4 8 14 16

Errors at ends of interval
- f value 0.165 0.102 0.044 0.013 0.006
- l' value 0.687 0.922 0.949 0.545 0.308
- I" value 0.99 2.76 7.71 12.76 12.71

We see that while the difference between I and polynomials is not
huge, it is not as small as we would expect for a really simple function.
Much more disturbing is that the nature and shape of the polynomials
do not at all resemble those of 1/(1 + x 2

) ••

Many mathematicians would claim this is an unfair conclusion, that
one must do more than use this classification of functions and use norms
of derivatives as wel1. They would say, for example, that a simple and
well behaved function is one that has a "fourth" derivative bounded
by, for example, 3.5. There are two comments to make this alternative.
First, the natural classification system of rough to smooth is not being
used. Second, no one has an intuitive idea of what it means to have
a fourth derivative bounded by 3.5. Further, the choice of "fourth" is
quite arbitrary.

Example 3. Approximating Physical Data

A test of the modeling capability of polynomials is reported in [7} us­
ing real world (physical) functions. Over 60 one dimensional functions
were selected from various sources for scientific data (e.g., Handbook for
Physics and Chemistry). All of these functions were simple and well
behaved in the intuitive sense. These were approximated by various
mathematical forms including polynomials. Over 50% of these func­
tions could not be approximated satisfactorily by polynomials. Not
satisfactory is defined to mean one of the following: (a) The polyno­
mial approximated the data with satisfactory accuracy but had high
frequency, low amplitude oscillations not present in the data. (b) Sat"
isfactory accuracy was not obtained with polynomials of degree less
than 100 or so. In other words, the mathematical measure (low poly­
nomial degree required) for simplicity did not correspond to the real

10

world, intuitive measure for simplicity. This experience has been con­
firmed many times over the years by this author but not reported in
the literature.

Example 4. The Power of Adaptive Numerical
Methods

It is now well known that adaptive numerical methods are extremely
effective (efficient) for a variety of problems (e.g., quadrature, approxi­
mation, solving differential equations). See [1], [8] for example results.
Yet there are theorems in the mathematics literature which seem to
prove that this is not true. These theorems go as follows: Let 8 be the
set of all functions f with Ilf(4)11 ::; 4 (we use the 4s for concreteness).
Then, with probability 1.0, an adaptive method applied to integrate f
is no better than a known non-adaptive method. We use integration
of J for this example but the result and method of proof apply more
generally. To understand how such a theorem could be true mathemat­
ically and yet wrong in the real world, we divide 8 into two parts. Let
5, be the J in 5 whose fourth derivatives are everywhere discontinuous
and 52 the remainder of 5. We know that 82 is of measure zero in S so
the theorem is true if it is true for J in 81 . It is not too hard to prove
the result for 51 as adaptive methods do not work well for functions
with bad behavior everywhe1·e. It is their nature to identify locations of
bad behavior of f and to do something special (and good) there. Now
we can understand this apparent contradiction, the real world functions
are all in the set of measure zero where this theorem's result does not
apply.•

These three examples show that the mathematics theory of func­
tions does not correctly abstract the intuitive notion of a simple and
well behaved function.

4.2. Theoretical Computer Science Model of
Functions

Theoretical computer science has the concept of a computable function
and one could hope that this would serve as a good model for the
functions of interest here. However, these functions do not compute
with real numbers; rather the computation of f(x) takes in the digits
of x and produces (one at a time) the digits in the expansion of f. This

11

model is not useful for real world computation and has some unexpected
aspects. For example, every computable function is continuous! So
every computable function is infinitely differentiable. This is due to
the fact that a question like "Is x > 1/7" is undecidable and hence not
contained in any program for a computable function. This model also
excludes the function f(x) = 1 if x > 0, f(x) = 0 if x :S O. Clearly this
model is not useful here.

4.3. Programming Languages Models of
Functions

Most high level programming languages appear to have functions in
them and one could hope that these would serve as good models for
the [unctions of interest here. However, functions are not very com­
patible with the discrete view of computation popular in theoretical
programming languages. Indeed, high level programming languages
severely restrict the nature of functionsj they are not ordinary vari­
ables to be manipulated in a natural mathematical way. Interestingly,
part of the problem is that computer languages tend to expand the
nature of functions so as to allow side effects. That is, a computer pro­
gram evaluating sin(3.62) could cause printing, files to be created or
destroyed, or the computation to be stopped altogether. Such behavior
is not part of the traditional view of functions and not needed for our
purposes. However, it is not so easy to prevent a computer program
for a function from having side effects.

The problems considered here cause another difficulty for program­
ming languages. Computing their answers is not compatible with the
idea that the results of a computer program are either correct or in­
correct. In our context, answers only have different levels of accuracy,
levels that often cannot even be measured easily or even reliably.

More seriously, these models of functions provide no measures of
simplicity or behavior related to answers of the problems at hand.

5. Possible Definitions/Structures for
(Real World) Functions

The view that counts is that of the problem solvers, the scientists and
engineers who use functions. There is little interest or awareness among

12

them of measure theory, Turing machines, or Ada. There is interest and
awareness among them about real world functions with properties like
"smooth", "well behaved", "singular", uboundary layers" I uunstable",
etc., even though these terms have imprecise meanings. A straightfor­
ward approach to functions would be to say these are what computers
compute. More precisely we would have:

DEFINITION 5. A function f is a piecewise mtional expression us­
ing (finite) total N of constants (polynomial coefficients and breakpoint
locations). The complexity of f is N.

Alternatively, one could require that the rational expressions be of fixed
degree and form. Accepting this definition in general would discard
about 25,000 person centuries of research in mathematics. Many good
ideas and results from mathematics would be lost and it is not clear
that the overall situation would be improved.

5.1. Attributes of a Useful Definition for
Functions

Actually, the need is not so much for new definitions of functions but
rather for a new structure (classification system, measure of complexity)
for functions that better models the real world. Thus the first attribute
desired for a new definition/structure for functions is:

ATTRIBUTE 1. The definition/structure must model the properties
of realwodd expressions such as simplicity ve1'SUS complexity in shape
and cost of evaluation at a point.

I\lthough a new definition/structure must be computationally ori"
entcd, it should not be intimately involved with any particular model
of discrete arithmetic. The underlying model of ari thmetic is thus the
four arithmetic operations: +, -, x, -;-, and logical comparison: =,
>, <, applied to real numbers (these need not be precisely the same
real numbers as used now in mathematics). The goal is to separate the
issues of function theory from those of models for the computational
number system. Thus the second attribute is

ATTRIBUTE 2. The definition/structure is based on arithmetic
and comparisons of real numbers.

One source of the current unsatisfactory structure in the mathemat­
ical theory of functions is the process of completing and closing the set

13

of functions. These processes greatly simplify the theory and allow for
elegant menLal models. They also bring in functions which exist only
as mental modelsj they cannot be computed nor do they have analogs
in the real world. A few such functions could be tolerated but, in fact,
these artificial functions can dominate in the theory. The set of real
world functions is of measure zero in the current mathematical the­
ory and thus there is the danger of proving theorems which look like
they apply to all functions when they actually apply to no real world
functions. Vve have

ATTRIBUTE 3. The definition/structure need not be closed or com­
plete in the usual mathematical sense.

Two of the principal goals of theoretical computing are to:

• prove that algorithms are correeL or have certain properties.

• find optimal (or nearly optimal) algorithms (from a given class of
algorithms) [or solving various problems.

These goals arc very hard to achieve even for many problems where
questions about modeling the real world do not exist. They are espe­
cially difficul t in numerical analysis because of the weaknesses in models
for arithmetic and functions. These goals are nevertheless of equally
great imparLance in numerical analysis and we have

ATTRIBUTE 4- The definition/structure allows for realistic anal­
ysis of the cO'I~rectness and efficiency of algorithms for solving problems
involving functions.

Example 3 show one form of unrealistic analysis that results from
the current mathematical theory of functions. Another form of unreal­
isLic analysis permeates numerical analysis now and is discussed in the
next section.

5.2. Verifiable Hypotheses for Numerical
Analysis

AbouL 20 yeal·S ago I heard a talk where it was pointed out that the
hypotheses of many, if not most, theorems in numerical analysis are
unverifiable. The speaker then went on to question the value of theo­
rems whose hypotheses cannot be verified. He even observed that really

14

striking theorems can be established within a theory that allows such
hypotheses in a general way. The person giving the talk attributed the
observation to a third person. In the past five years I have searched
(not too vigorously) for the origin of this idea or its discussion in the
literatmc. The two persons whom I recall being involved say they have
never heard of the idea.

Many theorems in numerical analysis have hypotheses like

If f(x,y) has Jour continuous derivatives then...

This is unverifiable from the mathematics point of view 1 there is no the­
oretical or practical way to test this property. From the point of view of
computable function theory, it is a tautology. Every computable func­
tion is infinitely differentiable. We ignore the fact that the arithmetic
Oll real computers makes every function discontinuous as the useful­
ness of numerical analysis depends on keeping function theory isolated
in some way from computer hardware arithmetic. This does not au­
tomatically make the theorems in numerical analysis nonsense, many
theorems have the hypotheses in the form of

...lhen the error is bounded by "stuff" xllf(m)(x,Y)11

which uses the norm of the mth derivative. At least here one immedi­
ately sees that one cannot use the theorem if one does not know the
value of the nann involved.

I pose a number of rhetorical questions which I think illustrate that
the users of numerical analysis (and perhaps the Professors of Numerical
Analysis also) pay little attention to hypotheses of such theorems:

• How many times have you calculated or estimated the value of
norm of the fourth derivative?

• Suppose you were given plots of 10 functions and asked to esti­
mate the norm of their fourth derivative? What is the average
accuracy you would expect your estimates to have?

• Do you know a reasonably reliable way to compute estimates of
the norm of the fourth derivative of a given function?

15

• Do you know a reasonably reliable way to compute estimates of
the norm of the fourth derivative of a function defined by a given
second order ordinary differential equation?

Qne goal of a new structure for functions is to produce theorems
with hypotheses that are more frequently verifiable. Such hypotheses
should include properties like

• Characlc1'istic lengths. These are lengths over which the function
behavior is truly simple.

• Numbe1' of pieces. An explicit count for functions defined using
logical operations.

• Symbolic/Geometric p1'Operties. Pieces might be convex, have
three infiection points, be polynomials of degree three, etc.

• Number of singularities. The types might also be included.

• Characte1'istic sizes. The size of the domain of definition, the size
o[the function, etc.

• Unce1'tainly measure. This might be zero for some functions that
define a problem, it is unlikely to be zero for the computed results.

Further, the properties should be naturally measurable and visualized.
Thus, II/(x)11 is acceptable while 11/(41(x)11 is not; one knows what 11111
means intuitively and can usually estimate it well. These properties
are representative of the information that actually exists (or can be
expected to be readily obtained) for science and engineering computa­
tions.

An example of hypothesis properties is illustrated in Figure 1. Here
we have a function of size two on a domain of size four which has four
convex pieces, a characteristic length of 0.5, one singularity and an
accuracy (uncertainty) of 0.01. Note that the properties illustrated here
include several geometric items. Geometric information is commonly
available about functions and often provides very useful insight into
the behavior and nature of functions. Unfortunately, we do not have
well developed measures, tools, etc., [or many important geometric
properties.

Example 5. A Theorem with Verifiable Hypotheses

16

f

2

oL--------.::==---------.:::::=:=::::=--- --+_ x
I singularily .. 0 ~ 4 pieces

4

e = accuracy = thickness of the curve as drawn
B= characleristic length = length shown

VISUALIZATION OF A VERIFIABLE HYPOTHESIS FOR A THEOREM

Figure 5.1: Plot of a function with verifiable properties. It has size 2,
domain size 4, four convex pieces, one singularity, characteristic length
of 0.5 and uncertainty of 0.01.

In [9] a broad class of adaptive algorithms for numerical integra­
tion is defined and analyzed. This class is called the metalgorit.hm.
The hypotheses used are examples of verifiable hypotheses as discussed
here. An example result is given here with the assumptions about the
metalgorithm omitted except as they involve function propertiesj these
oLher assumptions are rather lengthy and stating them would require
describing many details of the metalgori thm.

Consider a function f(x) with singularies S = {sdi = 1,2, ... , R}
and set w(x) ~ II(x - Si), i = 1,2, ... , R. We say that f(x) has p con­
tinuous derivatives except for a finite number of algebraic singularities
if: (i) If :1:0 is not in S then J(p}(x) is continuous in a neighborhood of xo.
(ii) There are constants K and" > 0 so that If1p)(x)1 S Klw(x)I"-P.
Let Jfbe the exact integral of f(x) and QN! be the estim~teproduced
by the metalgorithm using N evaluations of f(x). Then we have

17

l'he07'em 7[9]- Consider a function I(x) with characteristic length
AU) and with p continuous derivatives except for a finite number of
algebraic singula1'ities. Conside1' the metalgoTithm with the CTTOT bound
used only when the length of the subinte1lJai involved is less than AU).
Let EPS be the er1'Or bound of the metalgorithm. Then we have 111­
QNfl::; EPS::; O(I/NP).

This result is then applied to three existing algorithms [3, 5, 10]
to prove quickly their convergence. One of these [10] is a trapezoidal
rule algorithm (and thus has p = 2) whose entire description and as­
sumptions involve only geometric terms (convex, concave, inflection
and cusp) with no derivatives or singularities.•

6. Conclusion

An argument has been given that new definitions and/or structure are
needed for the theory of functions. The fact is that the current theories
for functions fail to model the real world properly. The difficulty is much
easier to identify than to correct. The inherent difficulty is shared in
computation for both functions and arithmetic. In both cases we have
a basic core of experience that is simple, familiar, and well understood.
Things in this core are excellent models for the real world. For functions
this core consists of low degree ($ 4) polynomials, low order (~ 2)
differentiation, and a few special functions (sin,log, ...). For arithmetic
this core consists of numbers with a few digits (~ 6), integers, and a
few special numbers (11", e, .../2, ...).

Then in both cases we have logically complete and mathematically
eloquent theories that includes everything. These theories aloe so big
that the real world analogs in them are of negligible relative size_ The
theories arc dominated by artificial entities and, in the case of function
theory, the real world is not modeled properly.

What is needed (and very hard to create) is something in between.
We must be able to "cut off" infinitely, give up the elegance of closed
and complete systems, and yet be able to consider and analyze "arbi_
trarily" large, complicated or accurate computations.

18

References

[1] A. Chen and John R. Rice, On grid refinement at point singular­
ities for h-p methods, Int!. J. Num. Melh. EngT., 33, (1992), pp.
39-57.

[2] M. Abramowitz and 1. Stegun, Handbook of Mathematical Func­
lions, Vol. 55, Nat. Bureau Standards, Applied Mathematics Se­
ries, 1964.

[3] Carl VI. deBoor, CADRE: An algorithm for numerical quadra­
ture. In kfathematica/ Software (J. Rice, ed.) Academic Press, NY
(1971), pp. 417-449.

[4] Dunham Jackson, UbeT die Genauigkeii deT Anniiherung stetiger
Punktionen dUTch ganze rationale Funktionen, Ph.D. Thesis,
Gottingcn, 1911.

[5] James N. Lyness, SQUANK (Simpson quadrature used adaptively­
noise killed), AIgOl"ithm 379, J. Assoc. Compo Mach., 16, (1969),
pp. 260-263.

[6] John R. Rice, The Approximation of Functions, Addison Wesley,
Reading, MA, Vol. I, 1964 and Vol. 2, 1969.

(7] John R. llice, Approximation formulas for physical data, Pyrody­
namics,6 (1968), pp. 231-256.

[8J John R. Rice, On adaptive piecewise polynomial approximation.
In l'heo1'y of App7'oximation with Applications (A. Law and B.
Sahney, eds.), Academic Press (1976), pp. 359-386.

[9] John R. Rice, 1\ metalgorithm for adaptive quadrature, J. Assoc.
Compo Mach., 22, (1975), Pl'. 61-82.

[10] John R. Rice, An educational adaptive quadrature algorithm,
SIGNUM Newsletter, 8, (1973), Pl'. 27-41.

[11] A.F. Timan, Theory of Approximation of Functions of a Real Vari­
able, MacMillan, New York, 1963.

19

	What is an Answer? An essay on the Theory of Functions
	Report Number:
	

	tmp.1307986960.pdf.63MeV

