Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1996

Dynamic Scheduling of Process Groups

Kuei Yu Wang
Dan C. Marinescu

Octavian F. Carbunar

Report Number:
96-030

Wang, Kuei Yu; Marinescu, Dan C.; and Carbunar, Octavian F,, "Dynamic Scheduling of Process Groups”
(1996). Department of Computer Science Technical Reports. Paper 1285.
https://docs.lib.purdue.edu/cstech/1285

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

DYNAMIC SCHEDULING OF PROCESS GROUPS

Kuei Yu Wang
Dan C. Marinescu
Octavian F. Carbunpar

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

CSD TR-96-030
May 1996
{Revised 6/96)

Dynamic Scheduling of Process Groups*

Kuei Yu Wang, Dan C. Marinescu, and Octavian F. Carbunar
Computer Sciences Department,
Purdue University
West Lafayette, IN 47907

May 30, 1996

Abstract

In this paper we introduce the concept of temporal locality of communication for
process groups. Empirical evidence suggests that, once a2 member of a process group
starts to communicate with other processes in the group, it will continue to do so,
while an independent process will maintain its state ol isolation for some time. Qther
instances of inertial behavior of programs are known. Temporal and spatial locality
of reference are example of inertial behavior of programs, exploited by hicrarchical
storage systems; once a block of information (program or data) is brought into faster
storage, it is very likely that it will be referenced again within a short time frame.
The temporal locality of communication can be used to schedule concurrently multiple
process groups. When process groups exhibit temporal locality of cominunication,
this information can be used to hide the latency of paging and I/Q operations, to
perform dynamic scheduling to reduce processor fragmentation, and Lo identify optimal
instances of time for checkpointing of process groups.

" Work supported in part by NSF grants BIR-9301210 and MCR-9527131, by Lhe Scalable 1/O lniliative,
by a grant from Intel Corporation and by CNPq Brazil

1 Overview

The availability and usage of multiprocessor systems have grown rapidly. Multiprogramming
parallel machines, with several parallel applications being processed concurrently, has been
proposcd as a method to improve utilization of multiprocessor systems.

Multiprogramming can be achieved by time sharing the multiprocessor among several
applications, as in the uniprocessing systems, or by space sharing where subsets of proces-
sors are assigned to various applications. Thus, although multiprogramming allows better
service to be provided to the users, it also complicates the processor allocation issues in
multiprocessor systems.

Processor scheduling algorithms for general purpose multiprogrammed multiprocessors
are nol yct well understood [9]. Two classes of processor scheduling algorithms [or multi-
programmed parallel systems are the static and the dynamic scheduling algorithms [8], [3],
[L1], [12]. Static scheduling algorithms are non-preemptive scheduling algorithms in which
each application runs to completion without interruption on the set of processors initially
allocated for it. All others belong to the class of dynamic scheduling. The static scheduling
algorithms are simpler to implement and have lower overhead than dynamic algorithms. On
the other hand, dynamic algorithms may adjust the spatial and /or temporal allocations of
processing clements to execute a parallel application according to its need for resources and
to system'’s requirements for load balancing and load sharing.

Dynamic scheduling algorithms are rarely used because it is very difficult to characterize
analylically the behavior of interacting processes. The interaction between the computation
time of the processes, the time spenl while waiting for messages from other processes, and
the time spent while waiting for processor to be available are too complex to be predicted
accurately and studied in advance.

A commonly implemented processor allocation strategy, available on most existing sys-
tem, is the gang scheduling with busy waiting. Gang scheduling with busy waiting is a
scheduling strategy supporting a static partition of a mulliprocessor system. A job consist-
ing of a process group is assigned a partition of the machine with a number ol processors
equal to the process group size and releases the partition upon the completion of all pro-
cesses in the group. When a process blocks due Lo a page fault, an 1/O operation, or a
communicalion cvent, it does not release the control of the processor. When combined with
support [or demand paging, this strategy leads Lo wasted CPU cycles and longer execution
time [2], {13].

The paper is organized as follows. Section 2 discusses the concept of temporal locality

of communication and describes a simple mechanism to hide latency of page faults and I/0
operations for temporarily independent processes. Section 3 presents a simple state transi-
tion diagram used to detect at run time when a member of a process group is temporarily
independent and then shows how dynamic scheduling can be used to minimize the effects
of processor fragmentation. Section 4 presenis thc empirical evidence suggesting that pro-
cess groups exhibit temporal locality of communicalion. We describe the programs we have
insirumented and the clustering algorithms used to identify the clusters of communicating
processes in a process group-

2 Interleaved scheduling of multiple process groups

A process group, P = {P, P,,..., P, ..., P,}, consists ol n processes, P, i = 1, n, thal need
to be scheduled concurrently on the Processing Elements, PEs, of a parallel system because
they communicate with one another.

The corresponding scheduling mechanism called gang scheduling requires concurrent
scheduling of all members of a process group regardless of the dynamics of their synchroniza-
tion. When a member F; of a process group P cncounters a page fault, in casc of demand
paging, or waits for the completion of an 1/O operalion, the process blocks bul the local
scheduler does not perform a conlext switch. Gang scheduling, coupled with busy waiting,
is used extensively by existing MIMD systems, e.g., Paragon, CM5, SP2, Alliant [FX/§ for
parallel applications which exhibit [ine-grain interactions.

Co-scheduling is an alternative to gang scheduling [1], [10]. In case of co-scheduling, the
dynamics of synchronization requirements of the application is taken into account; only those
members of the process group which need Lo communicate with one another are scheduled
concurrently. Determining the working set of the process group — the set of members which
nced Lo communicate with one another at a given moment of lime - is a difficult proposition,
and we are nol aware of any system which implements such a co-scheduling policy.

There is another practical motivation for gang scheduling with busy waiting, namely,
memory consirainis. Often, since the amount of physical memory available o individual
PEs is insufficient to accommodate multiple process groups, performing a pariial context-
swilch is impractical. Yet, gang scheduling with busy waiting is likely to incur increasingly
higher costs because the processor speed experiences a considerable higher improvement rate
than the [/O speed. Moreover, onc way to increase the I/Q bandwidth is to coalesce 1/O
operations based on temporal and spatial locality of reference, to transfer larger blocks of
data.

The question on how to hide the high latency ol 1/O operations in case of gang scheduling
is still unresolved. In this section we discuss a possible solution Lo this problem, based upon
our studies of the dynamics of synchronization for several applications we have examined.
For simplicity, assume that time is sloited and the duration of a slol, A, is much larger
than the time required to perform a local context switch of process P; running on PE;. We
consider A to be approximately equal to the time to perform an I/0 operation. Lel us for
the moment assume that we can predict with some level of confidence that a member of a
process group is unlikely to experience a communication event during the next few slots. Call
such a process a lemporarily independent process, or Tl-process. If at time ¢, process P € P
cxperiences an event leading to blocking, then one could consider the following alternative
Lo busy waiting:

(a) Determine if P; is a TI-process and, if so, find il there is another Tl-process Qe @
rcady to run on P Fy, where P; is the currently running process. This is a local decision
ol Lhe scheduler of PE.

{b) If conditions in (a) are satisfied then perform a local conlext switch and let (; run until
Fi becomes dispatchable again. Otherwise, block P and wait until il is ready.

The strategy described above is praclical if one can determine with relative case when a
member of a process group belongs 1o the TI-class.

To explain the intuition behind the heuristics used to detcrmine if a process belongs to
the Tl-class, we review briefly the concept of locality of reference, another example of incrtial
behavior of a program. Modern computer systems have a hierarchy of storage, primary and
L2 caches, main memory, virtual memory based upon demand paging. As onc traverses
this hierarchy, the latency increases, but the cost of storage decreascs, and the size of the
available storage increases. Hierarchical storage systems work because programs tend to
cxhibit both temporal and spatial locality of reference. This implies that once a block of
information (program or data) is brought into faster storage, it is very likely that it will be
referenced again within a short time frame.

The question we address is if it is reasonable to assume that the synchronization require-
ments of a member of a process group cxhibit the same type of inertial behavior; namely,
if 2 process which has been communicating during the immediate past will continue to do
so during the next slots, and conversely, if it has not been communicating, it will conlinue
to work in isolation in the immediate future. If we can supporl a positive answer to this
question, then we can design very simple algorithms to detcrmine if at time ¢ process P; € P

belongs Lo the Tl-class or not. The analogy with demand paging can be extended, and we
can usc as models the page replacement algorithms.

3 Exploiting temporal locality of communication for
dynamic scheduling and checkpointing

Given a process group {? of size np, lel us define two np bit veclors: PGCp, Process Group
Communication status vector, and PGTIp, Process Group Temporarily Independent sLalus
vector. If #; € P belongs to the Tl-class, then PGCp(Z) = 0 and PGTIp(:) = 1; if P docs
not belong to the Tl-class, PGCp(i) = 1 and PGTIp(z) = 0.

Call n§(tx) the number of processes P € P with the PGC bil on at time t; = k- A and
nT!(t:) the number of processes in P belonging to the TI-class. In general, n§(¢;)+nk/ (1) <
np. Indeed, if the state of P; € P is given by the tuple (PGCp(i), PGTIp(2)) a process may
be in an transient state (0,0). The full state transilion diagram of process P is given in
Figure 1.

NC
C
NC
oo
C

C NC

Figure 1. The state transition diagram of process F; € P at Lime ;. The time is slotted
tr = k- A. A transition in slot £ is determined by the occurrence ol a communication cvent
(C) or the absence of a communication event (NC). Initially, processes start in state (0,1).

We conjecture that knowing the pair of vectors PGC and PGTI for a sct of process
groups P,Q, ..., a global system scheduler could make scheduling decisions leading to a

5

better utilization of the resources of a system with N processing elements. One of the main
drawbacks of static scheduling is processor fragmentation. If we call np, ng, ng, etc., the
number of processes in each ol the process groups P, @, R and so on, a static scheduler
attempts to partition the system into disjoint partitions and allocate cach process group to
one partition, such that n, = np + ng + np+ ... be as close as possible to N. But in this
scheme, N —n, processing elements may end up not assigned to any parlition, leading to the
so-called processor fragmentation. Knowing the dynamics of synchronization for each process
group provides some flexibility. Instead of being constrained to schedule all np processes
belonging to process group 2, the global scheduler may elect to schedule any number n$ of
members of P such that n§ < n% < np. Clearly n? = n% + ng + ng + ... may cover N
beller than n, previously defined.

Whenever n% increases becausc one or more processes leave their state of temporal iso-

lation, the global scheduler needs only to discover which process group has more aclive
processes Lhan ils current communication vector and order few local conlext switches.

Checkpointing s a problem of concern for massively parallel systems, yet few systems
support automatic checkpointing. We contend that, knowing the two stalc vectors defined
carlicr in this section, the system scheduler could make intelligeni decisions relative Lo check-
pointing of a process group.

Clearly, checkpointing a process group at a time of intensc communication, when n$ is

close to np, involves a considerable overhead; there are n%(~ n§) active processes’ contexts
to be saved and all the aclive pages of all % processes to be backed up. An alternative
strategy is doing the checkpointing when n% ~ n§ << np; that is, when the only active
processes arc those that communicale with one another. The strategy can be achicved by
following the TI-slatus vector and, when nh! exceeds a certain threshold, the local schedulers
force context switching for all processes Pz € P which belong to the TT-class, at the same
time, checkpointing processes being released. When only communicating processes in the

process group are active, the entire group is propitious for checkpointing.

4 FEmpirical evidence

To gather experimental evidence to confirm temporal locality of communication among
members of a process group, we have monitored several parallel applications. Wec have
instrumented the communicalion statements and examined the collected data. One possible
approach to represent the results is to display the time elapsed between successive commu-
nication events for every thread of control. Such a representation has obvious disadvantages

6

since it is dependent upon the number of threads of conlrol. We have opted to represent the
dynamics of the size ol the working set of the process group. If we consider a window of size
A, for each A the synchronization dependencies partition the entire process group P inlo
disjoint working sets. We represent the sizc of the largest working set as a function of time.

4.1 Correlation of Communication Events

Ior the characterization of communication patterns, we want Lo identify sub-groups ol pro-
cesses within a process group which arc related to each other through communication evenis.
To clarify the definitions, we use the [ollowing notation:

A = aprocess group; A= {A,As,..., A, }.
a collection of communicating sub-groups; A = {G1UG.U ... UG},
Fori;éj,G;ﬂGj;:@

1y = Lhe size of the process group.

ng = the number of clusters (sub-groups).
G; = clusler:.

¢i = the number of elements of cluster z.

I'ollowing the definition of working set model introduced by Denning [7], we definc the
communication working set ol proccss Ay at time £ as:

Ca(t,A) = collection of processes that communicate with process A; during the
time interval ({ — A, 1)
A = working set parameler

For a given time window [t — A, t], Ca,(¢,A) can be obtained by looking at the com-
munication events between process Ay and others of the same application during the time
window. For example, Cx, (1,) can be calculated from the set of trace files containing the
communication events of all processes of a parallel application.

Based on the assumption thal non-overlapping communicating groups may be scheduled
independently, our objective is to identify sub-groups {Gy,Gy,..., Gy} based on C(¢, A) of
each process, obtained from the trace dala of program execution.

Given a set of trace files of a parallel program A execuled on ns PEs with the overall

L= Tg
while ¢ < T}, {
for each trace file & {
select trace records belonging to [t — A, {] ;
construct C'4, (communication relationship map, fill M([k,]);
}
use M to find the largest cluster of communicating processes ;
ouiput the elements and the size of the largest cluster ;
=1+ A :
}

Figure 2. Algorithm for calculating the largest communicaling cluster (sub-group).

cxecution time 1’4, we are intercsled in the size and the clements of the largest communicating
sub-group throughout the execution from Ty to Ty, at each interval A.

Let M be an n4 X n4 malrix, a communication relationship map, where each element
M, 7] (0 €¢,7 < na) can be either onc or zero defined as follows:

1 A; sends messages lo A; during the time window A
0 if there is no communication between A; and A;

M 5] = {

The pseudo code for finding Lhe largest communication working set is illustrated in Fig-
ure 2. The algorithm for finding communicating sub-groups (or clusters) is similar o the
algorithm in [4] for determining the connected components of an undirected graph using the
disjoint-set data structure. Figure 3 adapted from [4], illustrates the pseudo code for {inding
connected components (clusters).

for each A; € A {
do
Make set(A;) // create a sel for each A;
}
for each M[i, j] = 1 {
do
il Find set[i] # Find_set[j] then
Union(i,j) // unite two disjoint sets

Figure 3. Procedure that uses disjoint sct operations for finding connected components (clusters).

Using the union by rank and pall compression heuristics presented in [4], the running
Lime for finding connected components is almost linear in the total number of operations.
(Make_set, Find_scl and Union operations.) A snapshot of the computation is illustrated in
Figure 4. In Figure 4(a) a direcled graph with four connected components illustrates the
send communication relationship among components. Nole that, although whal we have is a
directed graph, the edges can be trcatcd as undirected edges without altering the clustering
algorithm. And Figure 4(b) illustrates thc communication mairix M|z, j] and the collection
of clusters {G1,Ga,. .., Gy} after processing Cy4, of each PE A;.

4.2 The applications

We discuss below two programs in the Molecular Replacement suite we have examined,
envelope and fftsynth, and results gathered during their execution on a Paragon system
[6].

The envelope program computes the molecular envelope of a virus. It needs as inpul, a
3-D lattice with up to 10” grid points and produces a lattice of equal size as outpul. TFor
every grid poinl, information about the electron density and a mask describing il the grid
point is localed in the protein, nucleic acid or solvent is provided. A spherical virus has
icosahedral symmetry, and the program exploits this symmetry to get belter estimates of
the electron density at every grid point by calculating the average of the electron density
of all points related by non-crystallographic symmetry. The program implements a shared

9

b & ¢

Cf)ﬂ-@ OB OO
© ©

2 .

3 - —
i, J1 & - G2iRqrs 9,7 2

6 . . = 3

- : Gyihg By, Ag 93

8

5 G 4g:Ag gp= 1

(b)

Figure 4. Snapshot of communication working set at {x = k- A. There are lour clusters, G;, G,
Gg3 and Gy. The size of the largest cluster is 4. The algorithm indicates that 9 processes (0 to 8)
are communicating and one is temporary independent.

10

virtual memory and operates in two modes, the DD mode, where the shared virtual memory
resides on the external storage device, and the DG mode, where the input data is distributed
over the set of compute nodes. Relerence [5] describes different data management strategies
for implementing a shared virtual memory. The entire data set is partitioned into Data
Allocation Units, DAUs. The working sel of DAW consists of all DAUs needed to carry out the
compulations associated with DAUY. DAU faulls occur when a compule node needs Lo access
a DAU storcd clsewhere; the penalty for a DAU [ault can be significani. In the DD modec a
DAU fault requires a disk access, and in the DC mode il requires access to data stored on a
different compute node or on a data server node. A load balancing algorithm distributes
the DAUs based upon an cstimate of the amount of work associated with each of them. Bolh
modes exploit the localily of reference and atiempl to minimize the number of DAU faulis
by processing the DAUs assigned to each compute node to maximize the intersection of the
working sets of DAUs processed in sequence.

The second program, fftsynth, carries oul a 3-D FFT. It reads in a set of complex
valued structure factors (discrete Fourier coefficients), computes the FFT' and writes out
the calculated electron density. A 3-D FFT is obtained by a 2-D FFT followed by a 1-D
IFI'T in the third dimension. The algorithm requires a global exchange between phasc one
and phase two of Lthe algorithm. If the amount of the combined local memeory of the PEs is
large enough to hold all the data, then intermediate results are exchanged through message
passing among PEs, otherwise the global cxchange is done using an external file.

4.3 Experimental results

We have instrumented all the communication statements of the envelope and fftsynth
program. The analysis package processes Lhe trace records and calculates the sets of com-
municaling sub-groups for each time window of size A. The oulput of the analysis is the
working sct profile of a parallel application showing the largest process working set size for
each time window A.

For example, Figures 5, 6 and 7 show the communication working set of Lhe envelope
program running on 64 nodes, with A equal to 0.2, 0.5 and 1 second, respectively. Noic that
these graphs derive from the same set of trace record files, but are processed with different

A,

Ior an execution of a parallel application using n4 processes, the maximum communica-
tion working set of size 7,4 indicates that each of the na processes is directly or indirectly
rclaled to all others during the interval [t — A, 1]. On the other hand, a working sel size equal

11

Process WarkIng Sel Profile {64 nodes, 0.20 sec window sizc)
Werlaag Sex Suze

Mm -—| B

=1
§

s —|— II
am —

LI Som 10000 L5000 WD

Fioutwn Th=e (s}

Figure 5. Envelope working set profile, A = 0.2 seconds, for a parallel execution using 64 nodes.

lo one indicates that none of the processes communicates with others during the period.

The parameter A plays an important role in Lhe analysis of the processor working set.
The characterization of the communication groups could provide information for a dynamic
processor scheduling algorithm to make beller use of computing resources. For example,
by using A in the order of magnitude of the time necessary for a group context switch, we
could observe the communication dependency among processes of a process group within the
granularity of context switch Lime.

Figures 8, 9, and 10 show the processor working set of the envelope program running
on 32 nodes for A equal to 0.2, 0.5 and 1 second respectively. From both sets of graphs, we
note that the envelope program presents a strong communication relationship during most
of its execution time (for example, the period between 80 seconds and about 170 seconds in
the 64 node execulion and the period between 90 seconds and 240 seconds in the 32 node
exccution).

The fftsynth program presenis a communication characterization completely different
[rom the envelope program. Even when the global exchange is carried out “in-place”,
as shown in I"igures 11, 12, and 13 there is litlle communication dependency during the
execution of the fftsynth. Figures 14, 15 and 16 show the working set profile of a fftsynth
cxecution using external storage for the global exchange.

12

Process Warklng Set Profile (64 nodes, 0,50 sec window slze)
Workang Sox Sue

A DD

1=

LL17

oo

4300

oo 3am 1D 1 a0

Figure 6. Envelope waorking sct profile, A = 0.5 seconds, for a parallel execution using 641 nodes.

Farcunm Ti=e (ke)

Process Workling Set Profile (63 nodes, 1.00 see window size)

Worling %t Sher

Eancroon Thae (K.

oo m 1m0 o 1003 260 00

Figure 7. Envelope working set prolile, A = 1 second, for a parallel execution using 64 nodes.

13

Process Warkling Set Profile (32 nodes, 0.20 sec window size)
Worklo S<t Sue

o

il - -

1m0 -

om 1mon 0000 X m

Figure 8. Envelope working set profile, A = 0.2 seconds, for a parallel execution using 32 nodes.

Eaerteana Tome [t}

Process Yorking Sct Profile {32 nodes, 0-50 sec window size)
Workazg 5ot Sl

o

1

am

2600 -

Mm —
m
X0

1hoo

Ho

1w

laco

L1

ha}

400

Excvuizm Tlme (1 1
om impa o 30000

Figure 9. Enveclope working sel prolile, A = 0.5 seconds, for a parallel execution using 32 nodes.

14

Process Working 5ci Profile {32 nodes, 1.00 sec window sizc)
Wirking Xet $ire

oo

10— -

AOD - —

£ -

0 -

oo — -
I

003 log oo o m MO W

Figure 10. Envelope working sct profile, A = 1 second, for a parallel execution using 32 nodes.

oy ermmrn Tl fur)

Process Waorking Set Profile (32 nodes, 010 sec window size)
Worklag et Scre

200

MDY

1rm

00 -

oy -

Hm

O -

Earcmnan Tl {rec)
oo 10 xm w0

Figure 11. Fitsynth working set profile, A = 0.1 scconds, for a parallel execution using 32 nodes
and 11MB of input data.

15

Procuss Working Set Profile (32 nodes, 0,20 sec windaw slze)
Winking 5ot Sl
|
1m . - I

Mo - —_—

Figure 12. Fltsynth working set profile, A = 0.2 seconds, for a parallel cxecution using 32 nodes
and 11MB of input data.

Faermgng Tl (v)

Process Working Set Prafile (32 nodes, 0.50 scc window slze)
Wrrklag 5ot Sure

200

o 4l—

0

2600 _—
2o _—

m

o

1100 - —

b - —_

1o A—

1200 - JE—

oo - | [—

hOO

am A — -—

oo f— - —

acd T

i i
(2] ([:3::] Tom 000

Figure 13. Fitsynth working set profile, A = 0.5 seconds, for a parallel execution using 32 nodes
and 11MB of input data.

Fioouime Tl (16)

16

Process Working Sel Profile {16 nodes, 0.50 sec window slze)
Workeng et Kl

1A00 -

150 —

140

1300 —_—

1200 - —

[1F.]

10,00

o -

100

1

KOG --

L1

Am —1—

1m

Figure 14. I'flsynth working set profile, A = 0.5 seconds, for a parallel executior using 16 nodes
and 40MB ol input data.

Faoraimw Tira {uc)

Process Worklng Set Profife (16 nodes, 1.00 sec window slze)

Warking et Sree

1400

LY

o

11m - R

1202 —_—

Ll

10m

v —| |-

g —

10 -

Figure 15. Fftsynth working set profile, A =1 second [or a parallel execution using 16 nodes and
40MB of input data.

Erecomon Tl (e)

17

Process Working Sei Proflle (16 nodes, 200 sec window size)

Winklng Kot Kire

1500

150

H -

noe

12

100 —

200

00

sm —| '
L] — -L—
100 i

300

1m — —

1m—

oon
| |

Figure 16. Fitsynth working set profile, A = 2 scconds, for a parallel execution using 16 nodes and
40MB of input data.

Fanouxe Tims (v)

4.4 Discussion of the results

The two programs we have examined exhibit very different communicalion patterns. The
envelope program starts with a global communication stage followed by a relalively long
period of isolation when different threads of control perform initializalion tasks, and caching
the input lattice across nodes. This phase ends after aboul 80 seconds and a period of intense
communication follows until Lhe execution completes. As expected, during this period Lhe
working set sizc is close to the size of the process group; different PEs use the acljve message
facilitics available on the Paragon to retrieve data stored elsewhere, as needed by the local
compulations.

Even [or a relatively small window size (0.2 seconds) we obscrve that a process has a
high probability of communicating with virtually all other processes in the group. This
trend becomes dominant as the window sizc increases Lo 0.5 and 1.0 seconds. The same
trend is observed whether 64 or 32 PEs are used.

The fftsynth exhibits quite an opposite behavior. The threads of contrel work in isolation
until the time [or the global exchange course. Again this behavior is independent upon the
number of Plis.

18

5 Conclusions

We conjecture that sometimes processes belonging to a process group exhibit the following
communicalion pattern: once they starl communicating, they do so for some time; when they
are working in isolation, they tend to maintain the state. Clearly, not all applications are
expecled Lo exhibit such a behavior al all times. Similarly, there are programs which do not
exhibit localily of reference. But when process groups do exhibit locality of communication,
the state of the process group provides information useful to hide the latency of /O and
paging for the individual processes in the group, and to avoid processor fragmentation.
In the first case, when thc process experiencing a high latency opcration is temporarily
independent, a local contexl switch to another temporarily independent process is better
than busy waiting,.

Processor fragmentation can be avoided, or its negative effects diminished through dy-
namic scheduling. Indeed, instead of being constrained to schedule all the members of a
group, the system scheduler has the flexibility to schedule any number of processes larger
than the kernel of n§ communicating processes at that time. Dynamic scheduling requires
global decisions. The scheduler needs to maintain the state vectors for all process groups.

Thc analysis presented in Section 4 was done ofl line using data collected at run time.
The clustering algorithm allows us to identify several clusters of processes in a process group
communicating to each other. Yet, at run time, it is very expensive to identify such clusters.
Using status veclors, all we know is the set of processes which arc in a communicalion period,
n$. If we had the knowledge of the clusiers of communicating processes, then the system
(global) scheduler might be able to schedule one cluster of a process group at a time.

Last, but not least, we argue that checkpointing of a parallel program may be done more
cllectively using the information provided by the state vectors introduced in §3.1.

Finally, we need to answer the question ol what happens il a process group does not
exhibit locality of communication and the system attempts to either hide the latency by local
conlext switches or to reduce the effects of processor fragmentation by dynamic scheduling.
The answer is thal the overall effect will be loss of performance through ill advised local or
global context switches. But this is expected, as we already know thal hierarchical storage
systems have poor performance when programs do not exhibit localily of reference.

19

6 Acknowledgments

The authors express their thanks to Victor Abell [or pointing out the importance of memory
constraints for process group context switching.

References

(1]

3]

[4]

[5]

(6]

7]

[8]

M. J. Atallah, C. Lock, D. C. Marinescu, H. J. Siegel, and T. L. Casavant.
Models and algorithms for co-scheduling compulc-intensive tasks on a network
of workstations. Journal of Parallel and Distributed Computing, 16:319-327,
1992.

D. C. Burger, R. S. Hyder, B. P. Miller, and D. A. Wood. Paging tradcolls in
distributed-shared-memory multiprocessors. In Proceedings of Supercomputing
"84, November 1994.

S.-H. Chiang, R. K. Mansharamani, and M. K. Vernon. Use of application
characteristics and limited preemption for run-to-completion parallel processor
scheduling policies. Performance Ivaluation Review, 22(1):33-44, May 1994.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms.
McGraw-Hill Book Company, 1991.

M. A. Cornea-Hasegan, D. C. Marinescu, and 7. Zhang. Data management
for a class of iterative computations on distribuled memory MIMD systems.
Concurrency: Practice and Ezperience, 6(3):205-229, 1994.

M. A. Cornea-Hasegan, Z. Zhang, R. E. Lynch, D. C. Marinescu, A. Hadfield,
J. K. Muckelbauer, S. Munshi, L. Tong, and M. G. Rossmann. Phasc refine-
ment and extension by means of non-crystallographic symmetry averaging using
parallel computers. Acta Crystallographica, D51:749-759, 1995.

P. J. Denning. The working set model for program behavior. Communications

of the ACM, 11(5):323-333, May 1968.
A. Teumwananonthachai, A. N. Aizawa, S. R. Schwartz, 3. W. Wah, and J. C.

Yan. Intelligent mapping of communicating processes in distributed computing
systems. In Supercomputing 91, pages 512-521, November 1991,

20

)

[10]

[11]

[12]

[13]

S. Majumdar, D. L. Fager, and R. B. Bunt. Characterization of programs
for scheduling in multiprogrammed parallel systems. Performance fvaluation

13(2):109-130, 1991.

J. K. Ousterhout. Scheduling techniques for concurrent systems. In Proceedings
of the 3rd Intl. Conf. Distribuled Computing Systems, pages 22-30, October
1982.

K. C. Scvcik. Characterization of parallelism in applications and their use in
scheduling. Performance Evaluation Review, 17:171--180, May 1989.

K. C. Sevcik. Applicalion scheduling and processor allocation in multipro-
grammed parallel processing systems. Performance Evaluation, 19(2-3):107-
140, March 1994.

K. Y. Wang and D. C. Marinescu. Correlation of the paging activity of individual
node programs in the SPMD execution mode. In Proceedings of the 28th Hawaii
International Conference on System Scicnces, HICSS5°28, pages 61-71. IEEF,
Press, January 1995.)

21

	Dynamic Scheduling of Process Groups
	Report Number:
	

	tmp.1307986960.pdf.pMoWa

