
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1996

Dynamic Scheduling of Process Groups Dynamic Scheduling of Process Groups

Kuei Yu Wang

Dan C. Marinescu

Octavian F. Carbunar

Report Number:
96-030

Wang, Kuei Yu; Marinescu, Dan C.; and Carbunar, Octavian F., "Dynamic Scheduling of Process Groups"
(1996). Department of Computer Science Technical Reports. Paper 1285.
https://docs.lib.purdue.edu/cstech/1285

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

DYNAMIC SCHEDULING OF PROCESS GROUPS

Kuei Yu Wang
Dan C. Marinescu

Oc:tavian F. Carbunar

Department of Computer Sciences
Purdue UnIversity

West LaFayette, IN 47907

CSD TR·96-OJO
May 1996

(Revised 6196)

Dynamic Scheduling of Process Groups*

Kuei Yu Wang, Dan C. Marinescu, and Octavian F. Carbunar
Computer Sciences Department

Purdue University
West Lafayette, IN 47907

May 30,1996

Abstract

In this paper we introduce the concept of temporal locality of commUnici:Ltion for
process groups. Empirical evidence suggests that, once a member of a process group
starts to communicate with other processes in the group, it will continue to do so,
while an independent process will maintain its state of isolation for some time. Other
instances of inertial behavior of programs are known. Temporal and spatIal locality
of reference are example of inertial behavior of programs, exploited by hierarchical
storage systems; once a block of information (program or data) is brought into faster
storage, It 1s very likely that it will be referenced again within a short time frame.
The temporal locality of communlcation can be used to schedule concurrently multiple
process groups. When process groups exhibit temporal locality of commun..ic;:Liion,
this information can be used to hide the latency of paging and I/O operations, to
perform dynamic scheduling to reduce processor fragmentation, and to identify optimal
instances of time for checkpointing of process groups.

·Work supported in part by NSF grants BJR-9301210 and MCR-9S27131, by lhe Scalable I/O Iniliativc,
by a grant from Intel Corporation and by CNPq Brazil

1

1 Overview

The availability and usage of multiprocessor systems have grown rapidly. Multiprogramming
parallel machines, with several parallel applications being processed concurrently, has been
proposed as a method to improve utilization of multiprocessor systems.

Multiprogramming can be achieved by time sharing the multiprocessor among several
applications, as in the uniprocessing systems, or by space sharing where subsets of proces­
sors are assigned to various applications. Thus, although multiprogramming allows better
service to he provided to the users, it also complicates the processor allocation issues in
multiprocessor systems.

Processor scheduling algorithms for general purpose multiprogrammed multiprocessors
are not yet well understood [9]. Two classes of processor scheduling algorithms [or multi­
programmed parallel systems are the static and the dynamic scheduling algorithms [8], (3],
[11], [12]. Static scheduling algorithms are non-preemptive scheduling algorithms in which
each application runs to completion without interruption on the set of processors initially
allocated for it. All others belong to the class of dynamic scheduling. The static scheduling
algorithms are simpler to implement and have lower overhead than dynamic algorithms. On
the other hand, dynamic algorithms may adjust the spatial and/or temporal allocations of
processing elements to execute a parallel application according to its need for resources and
to system's requirements for load balancing and load sharing.

Dynamic scheduling algorithms are rarely used because it is very difficult to characteri~e

analytically the behavior of interacting processes. The interaction between the computation
time of the processes, the time spent while waiting for messages from other processes, and
the time spent while waiting for processor to be available are too complex to be predicted
accurately and studied in advance.

A commonly implemented processor allocation strategy, available on most existing sys­
tem, is the gang scheduling with busy waiting. Gang scheduling with busy waiting is a
scheduling strategy supporting a static partition of a multiprocessor system. A job consist­
ing of a process group is assigned a partition of the machine with a number of processors
equal to the process group size and releases the partition upon the completion of all pro­
cesses in the group. When a process blocks due to a page fanH, an I/O operation, or a
communication event, it does not release the control of the processor. When combined with
support [or demand paging, this strategy leads to wasted CPU cycles and longer execution

time [21, [131·
The paper is organized as follows. Section 2 discusses the concept of temporal locality

2

of communication and describes a simple mechanism to hide latency of page faults and I/O
operations for temporarily independent processes. Section 3 presents a simple state transi­
tion diagram used to detect at run time when a member of a process group is temporarily
independent and then shows how dynamic scheduling can be used to minimi'l,c the effects
of processor fragmentation. Section 4 presents the empirical evidence suggesting that pro­
cess groups exhibit temporal locality of communication. We describe the programs we have
instrumented and the clustering algorithms used to identify the clusters of communicating
processes In a process group_

2 Interleaved scheduling of multiple process groups

A process group, P = {PI,P2, ... ,Pi, ... ,Pn}, consists oIn processes, Pi, i = 1,n, that need
to be scheduled concurrently on the Processing Elements, PEs, of a parallel system because
they communicate with one another.

The corresponding scheduling mechanism called gang scheduling requires concurrent
scheduling of all members of a process group regardless of the dynamics of their synchroniza­
tion. When a member Pi of a process group P encounters a page fault, in case of demand
paging, or waits for the completion of an I/O operation, the process blocks but the local
scheduler does not perform a context switch. Gang scheduling, coupled with busy waiting,
is used extensively by existing MIMD systems, e.g., Paragon, CM5, SP2, Alliant FX/8 for
parallel applications which exhibit fine-grain interactions.

Co-scheduling is an alternative to gang scheduling [1], (10]. In case of co-scheduling, the
dynamics of synchronization requirements of the application is taken into account; only those
members of the process group which need to communicate with one another are scheduled
concurrently. Determining the working set of the process group - the set of members which
need to communicate with one another at a given moment of time - is a difficult proposition,
and we are not aware of any system which implements such a co-scheduling policy.

There is another practical motivation for gang scheduling with busy waiting, namely,
memory constraints. OfLen, since the amount of physical memory available to individual
PEs is insufficient to accommodate multiple process groups, performing a partial context­
switch is impractical. Yet, gang scheduling with busy waiting is likely to incur increasingly
higher costs because the processor speed experiences a considerable higher improvement rate
than the 1/0 speed. Moreover, onc way to increase the I/O bandwidth is to coalesce I/O
operations based on temporal and spatial locality of reference, to transfer larger blocks of
data.

3

The question on how to hide the high latency of I/O operations in case of gang scheduling
is still unresolved. In this section we discuss a possible solution to this problem, based upon
our studies of the dynamics of synchronization for several applications we have examined.
For simplicity, assume that time is sloHed and the duration of a slot, tJ., is much larger
than the time required to perform a local context switch of process Pi running on PEk . We
consider tJ. to be approximately equal to the time to perform an I/O operation. Ld. us for
the moment assume that we can predict with some level of confidence that a member of a
process group is unlikely to experience a communication event during the next few slots. Call
such a process a lempom1'ily independent process, or TI-process. If at time i, process Pi E P
experiences an event leading to blocking, then one could consider the following altemative
to busy waiting:

(a) Determine if Pi is a TI-process and, if so, find if there is another Tl-process Qj E Q
ready to run on P E,,_, where Pi is the currently running process. This is a local decision
of the scheduler of PEk .

(b) If conditions in (a) are satisfied then perform a local context switch and let Qj run until
Pi becomes dispatchable again. Otherwise, block Pi and wait until it is ready.

The strategy described above is practical if one can determine with relative case when a
member of a process group belongs to the Tl-class.

To explain the intuition behind the heuristics used to determine if a process belongs to
the TI-class, we review briefly the concept of locality of reference, another example of inertial
behavior of a program. Modern computer systems have a hierarchy of storage, primary and
L2 caches, main memory, virtual memory based upon demand paging. As one traverses
this hierarchy, the latency increases, but the cost of storage decreases, and the size of the
available storage increases. Hierarchical storage systems work because programs tend to
exhibit both temporal and spatial locality of reference. This implies that once a block of
information (program or data) is brought into faster storage, it is very likely that it will be
referenced again within a short time frame.

The question we address is if it is reasonable to assume that the synchronization require­
ments of a member of a process group exhibit the same type of inertial behavior; namely,
if a process which has been communicating during the immediate past will continue to do
so during the next slots, and conversely, if it has not been communicating, it will continue
to work in isolation in the immediate future. If we can support a positive answer to this
question, then we can design very simple algorithms to determine if at time t process Pi E P

4

belongs to the TI-class or not. The analogy with demand paging can be extended, and we
call usc as models the page replacement algorithms.

3 Exploiting temporal locality of communication for
dynamic scheduling and checkpointing

Given a process group P of size np, let us define two np bit vectors: PCCp , Process Group
Communication status vector, and PGTIp, Process Group Temporarily Independent sLatus
vector. If Pi E P belongs to the TI-da.%, then PGCp(i) = 0 and PGTIp(i) = 1; jf Pi docs
not belong to tbe TI-elass, PGCp(i) = 1 and PGTlp(i) = O.

Ca.ll n~(tk) the number of processes Pi E P with the PGC bit on at time t k = k· .6. alld
n~I(tk) the number of processes ill P belonging to the TI-class. In general, n~(tk)+n~I(ld $
np. Indeed, jf the state of Pi E P is given by the tuple (PGCp(i), PGTIp(i)) a process may
he ill an Lransient state (0,0). The full state transition diagram of process Pi is given in
Figure 1.

0,0 NC

r: NC

1,0 0,1

C

C NC

Figure 1. The state transition diagram of process Pi E P at Lime tk. The time is slotted
tk = k . .6.. A transition in slot k is determined by the occurrence of a communication event
(C) or the absence of a communication event (NC). Initially, processes start in state (0,1).

We conjecture that knowing the pair of vectors PCC and PGTI for a seL of process
groups P,Q,R ... , a global system scheduler could make scheduling decisions leading to a

5

better utilization of the resources of a system with N processing elements. Onc of the main
drawbacks of static scheduling is processor fragmentation. If we call np, nQ, nR, etc., the
number of processes in each of the process groups P, Q, R and so on, a static scheduler
attempts to partition the system into disjoint partitions and allocate each process group to
one partition, such that nt = np + nQ + nR + ... be as close as possible to N. But in this
scheme, N - nl processing elements may end up not assigned to any pal'Li tion, leading to t.he
so-called processor fragmentation. Knowing the dynamics of synchronir.ation for each process
group provides some fiexibility. Instead of being constrained to schedule all np processes
belonging to process group P, the global schedulel' may elect to schedule any number np of
members of P such that n~ ~ np :S np. Clearly n~ = np +no + nH + ... may cover IV
better than nl previously defined.

Whenever n~ increases because one or mOl'e processes leave their state of temporal iso­
lation, the global scheduler needs only to discover which process group has more active
processes than its current communication vector and order few local context switches.

Checkpointing -is a problem of concern for massively parallel systems, yet few systems
support automatic checkpointing. We contend that, knowing the two state vectors defined
earlier in this section, the system scheduler could make intelligent decisions relative to check­
pointing of a process group.

Clearly, checkpointing a process group at a time of intense communication, when n~ is
close to np, involves a considerable overhead; there are np(~ n~) active processes' contexts
to be saved and all the active pages of all np processes to be backed up. An alternative
strategy is doing the checkpointing when n p ~ n~ « np; that is, when the only active
processes arc those that communicate with one another. The strategy can be achieved by
following the TI-status vector and, when n~[exceeds a certain threshold, the local schedulers
force context switching for all processes Pi E P which belong to the TI-class, at the same
time, checkpointing processes being released. When only communicating processes in the
process group are active, the entire group is propitious for checkpointing.

4 Empirical evidence

To gather experimental evidence to confirm temporal locality of communication among
members of a process group, we have monitored several parallel applications. We have
instrument.ed the communication statements and examined the collected data. One possible
approach to represent the results is to display the time elapsed between successive commu­
nication events for every thread of control. Such a representation has obvious disadvantages

6

since it is dependent upon the number of threads of control. We have opted to represent the
dynamics of the size of the working set of the process group_ If we consider a window of size
6., for each 6. the synchronization dependencies partition the entire process group Pinto
disjoint working sets. We represent the size of the largest working set as a function of time.

4.1 Correlation of Communication Events

For the characterization of communication patterns, we want to identify sub-groups of pro­
cesses within a process group which arc related to each other through communication events.
To clarify the definitions, we nsc thc following notation:

A a process group; A= {11t,A 2 , ••• ,Anll }.

a collection of communicating sub-groups; A = {G1 U G2 U ... U G"G},
for i # j, G, n Gj = 0

n~l the size of the process group.
nG the number of clusters (sub-groups).
G i cluster i.
gi the number of elements of cluster i.

Following the definition of working set model introduced by Denning [7], we define the
communication working set of process Ak at time t as:

collection of processes that communicate with process A k during the
time interval (1 - 6., 1)
working set parameter

For a given time window [t - 6.,1], CAk (t,6..) can be obtained by looking at the com­
munication events between process Ak and others of the same application during the time
window. For example, CA/;(t, 6.) can be calculated from the set of trace files containing the
communication events of an processes of a parallel application.

Based on the assumption that non-overlapping communicating groups may be scheduled
independently, Oul' objective is to identify sub-groups {Gt, G2 , ••• , GnG } based on C(t, 6.) of
each process, obtained from the trace data of program execution.

Given a set of trace files of a parallel program A executed on nA PEs with the overall

7

l = To
while l < Tp {

for each trace file k {
select trace records belonging to [t - .6.., lJ ;
construct CAk (communication relationship map, fill M[k,]) ;

}
use M to find the largest cluster of communicating processes;
out.put. the elements a.nd the size of the largest cluster;
l=t+.6..;

}

Figure 2. Algorithm for calculating the largest communlcating cluster (sub-group).

execution time lA, we are interested in the size and the clements of the largest communicating
sub-group throughout the execution from To to TA , at each intcrval .6..

Let M be an nA x nA matrix, a communication relationship map, where each element
J\Jl[i,j] (0 ~ i,j < nA) can be either onc or zero defined as follows:

JI1[i,j] = { ~ Ai sends messages to Aj during the time window .6.
if there is no communication between Ai and A j

The pseudo code for finding the largest communication working set is illustrated in Fig­
ure 2. The algorithm for finding communicating sub-groups (or clusters) is similar to the
algorithm in [4] for determining the connected components of an undirected graph using the
disjoint-set data structure. Figure 3 adapted from [4], illustrates the pseudo code for finding
connected components (clusters).

8

[or each AI- E A {
do

Make....set(Ai)

}
for each M(j, j] = 1 {

do

I I create a set for each Ai

if Find...set [i] ¥ Find...set [j] then
Union(i,j) II unite two disjoint sets

}

Figure 3. Procedure that uses disjoint set operations for finding connected components (clusters).

Using the union by rank and path compression heuristics presented in [4], the running
time for finding connected components is almost linear in the total number of operations.
(Make-set, Fin&..set and Union operations.) A snapshot of the computation is illustrated in
Figure 4. In Figure 1(a) a directed graph with four conneded components illustrates the
send communication relationship among components. Note that., although what we have is a
directed graph, the edges can be treated as undirected edges without altering the clustering
algorithm. And Figure 4.(b) illustrates the communication matrix M[i,j] and the collection
of clusters {GI , G2 , •.• , G.d after processing CAk of each PE 11~..

4.2 The applications

We discuss below two programs in the Molecular Replacement suite we have examined,
envelope and fftsynth, and results gathered during their execution on a Paragon system

[61·
The envelope program computes the molecular envelope of a virus. It needs as input a

3-D lattice with up to 109 grid points and produces a lattice of equal size as output. For
every grid point, information about the electron density and a mask describing if the grid
point is located in the protein, nucleic acid or solvent is provided. A spherical vir.us has
icosahedral symmetry, and the program exploits this symmetry to get better estimates of
the electron density at every grid point by calculating the average of the electron density
of all points related by non-crystallographic symmetry. The program implements a shared

9

(a)

012345 6 7 8 9
0 • • G 1:AO,A1,A2,A3 91= 4
1 •
2 •
3 G2 :A4 ,A S 2M[i,j] 4 9 =• 2
5 •
6 •

G3:A6·~·A8 93= 3
7 •
•
9 G4: A 9 94= 1

(b)

Figure 4. Snapshot of communlcal.ion working set at lk = k· 6.. There are [our dusters, G I , G2 ,

G3 and G4 - The size of the largest clusLer is 4. The algorithm indicates that 9 processes (0 to 8)
are communicating and one is temporary independent.

10

virtual memory and operates in two modes, the DD mode, where the shared virtual memory
resides on the external storage device, and the DC mode, where the input data is distributed
over the set of compute nodes. Reference [5] describes different. data management strategies
for implementing a shared vidual memory. The entire data set is partitioned into Data
Allocation Units, DAUs. The w01'king sci of DAUi consists of all DAUs needed to carry out the
computations associated with DAUi. DAU Ja1l11s occur when a compute node needs to access
a DAU stored elsewhere; the penalty for a DAU fault can be significant. In the DD mode a
DAU fault requires a disk <Lccess, and in the DC mode it requires access to data stored on a
different compute node or on a data server node. 1\ load balancing algorithm distributes
the DAUs based upon an estimate of the amount of work associated with each of them. Both
modes exploit the locality of reference and attempt to minimize the number of DAU faults
by processing the DAUs assigned to each compute node to maximize the iTltersection of the
working sets of DAUs processed in sequence.

The second program, fftsynth, carries out a 3-D FFT. It reads in a set of complex
valued strudure factors (discrete Fourier coefficients), computes the FFT and writes out
the calculated electron density. A 3-D FFT is obtained by a 2-D FFT followed by a 1-D
FFT in the third dimension. The algorithm requires a global exchange between phase one
and phase two of the algorithm. If the amount of the combined local memory of the PEs is
large enough to hold all the data, then intermediate results are exchanged through message
passing among PEs, otherwise the global exchange is done using an external file.

4.3 Experimental results

We have instrumented all the communication statements of the envelope and fftsynth
program. The aTlalysis package processes the trace records and calculates the seLs of com­
municating sub-groups for each time window of size.6.. The output of the analysis is the
working scL profile of a parallel application showing the largest process working set size for
each time window .6..

For example, Figures 5, 6 and 7 show the communication working set of the envelope
program running on 64 nodes, with f:j" equal to 0.2, 0.5 and 1 second, respectively. Note that
these graphs derive from the same set of trace record files, but are processed with different
ll.

POl' an execution of a parallel application using nA processes, the maximum communica­
t.ion working set of size nA indicates that each of the nA processes is directly or indirectly
related to all others during the interval [t -.6., f]. On the other hand, a working set si:.-:e equa.l

11

Process Work[n~ ~l Prolilc (64 nodes, 0.20 sec \\'Indow size)
"'",""" ...5=

""XI-f.--J...~,

••
".

"0>-

•• -\1--
"m

.rn

~,.m-\l--

mm-

.0> "'Ill 11Il'" '30m Nlm

Figure 5. Envelope working set proftle, .6. = 0.2 seconds, for a parallel execution using 64 nodes.

1,0 one indicates that none of the processes communicates wiLh others during the period.

The parameter ,6, plays an important role in Lhe analysis of the processor working set.
The characterization of the communication groups could provide information for a dynamic
processor scheduling algorithm to make beLLer use of computing resources. For example,
by using .6. in the order of magnitude of the time necessary for a group context switch, we
could observe the communication dependency among processes of a process group within the
granularity of context switch Lime.

Figures 8, 9, and 10 show the processor working set of the envelope program running
on 32 nodes for 6. equal to 0.2, 0.5 and 1 second respectively. From both sets of graphs, we
note that the envelope program presents a strong communication relationship during most
of its execution time (for example, the period between SO seconds and about 170 seconds in
the 64 node execution and the period between 90 seconds and 240 seconds in the 32 node
execution).

The fftsynth program presents a communication characterization completely different
from the envelope program. Even when the global exchange is carried out "in-place",
as shown in Figures] 1, 12, and 13 there is little communication dependency during the
execution of the fftsynth. Figures 14, 15 and 16 show the working set profile of a fftsynth
execution using external storage for the global exchange.

12

Pr~ Workln~ Set Profile (64 nodes, 0.50 51:C window5lu)
W-'."'5~,

"00 -I;----t'"
.oo -/1---11~ f
". -IIr---IIHf
om

uoo -IIr---IIHf
om -I1f---1I111
"m

"oo -1t---1llif

"oo-IIf---
'"00
,oo
om

ooo ,mm ''1000 :0000

Figure 6. Envelope working set profile, ~ = 0.5 seconds, for a parallel execution using 6-1 nodes.

PrOC\'S!i Working Sel Profile (64 nodes, 1.00 see wIndow size)
.......,.. "'-.",.

.oo

OOm

urn

.oo

."1Il

.m

"oo
om

om

000 OOm ,m m '."'00 :0000

Figure 7. Envelope working set proIile, ~ = 1 second, for a parallel execution Ilsing 64 nodes.

13

P...,.,CS' Workln~ Sel Profile (32 noll..,O.2O""" window size)
W.....,""~<

o.

,~ -I-ffi­
100> -1-----ftH-

"91••..
~

o.

.00

"'-"'-

'00,,"'-
"....

,..
Figltre 8. Envelope working set profile, 6. = 0.2 seconds, for a parallel executIon using 32 nodes.

Pr""""" Working Sot Profile (32 nade5, 0.50sec: wIndow size)

W""""''''"..

'00.o.

~+-IIR

::t::1It_..~

1.0> - -

"00...+--fllf-

100>_

"00£1,."'-
••o.

...

1.'"
"'a••
1''''

Figure 9. Envelope workIng set proftle, b. = 0.5 seconds, for a parallel execution using 32 nodes.

14

Process Workiogs"t Profile (32 nod.., 1.00 ~c wlnd~w size)
w ,,.

Figure 10. Envelope working set profile, .6. = 1 second, for a parallel execution using 32 nodes.

Proce.<.' Worklnll Sel Profilc (32 oDd..., 0.10 sec "indO"'she)
W""""'~

••"roo.

=~iililiiom.""

".

oroll==i==Ea.00oro
"00

-----+,:_--f- -
··:!gff'0I11l .

>00 I
"OJ I

I

"·lE==E=Fl=E=,.
".

"·EF±".
J~'"

Figure 11. Fftsynth working set proftle, 6­
and 11MB of input data.

0.1 seconds, for a parallel execution usmg 32 nodes

15

ProrelS Working Sel Prom. (32 nodes, O.20sec window sIze)
w...... ,..,,""

". ,,
". ---,,,.
,.
""",.
••
".
".
""
I:<Il

"oo

'oo
.oo

.oo
,oo

.oo

o. ". • oo

1-,

-~

1

'-

I

••
Figure 12. Fftsynth working set profile, ~
and 11M B of input data.

0.2 seconds, for a parallel execution llsing 32 nodes

Proe= Working Set prom. (32 nodes, 0.50 sec window 51u)
"'.-nl=<""'''''

.00
,~"" t::=-j -:-

"OOE=fit~
,~""

'OJ.,
~

••
".
".

o·4If---t---+1I

"ro *---t----+

••"ooo.

ooo

"•.II-=I--.:+Jlj.• ./i-

,~

Figure 13. Fftsynth working set profile, ~
and 11MB of input data.

0.5 seconds, for a parallel execution using 32 nodes

16

Process WorklngSel Profile (16 node<;, O.SOsec \I'lndow size)
""'......"'"""

,.'" -I~---+--~-+--
"·E=f=1=I===±".
".

".f=E8§"ro

"ro
oroo.ES3i

- ~'ro --I-
.'" --

,"'--

··BEi'ro

,ro

,ro

oro •• ,.. "'"''
Figl1re 14. Fftsynth working set profile, b.
and 40MB of input data.

0.5 seconds, for a parallel execution using 16 nodes

Process Working Sel Profile (16 nod~ 1.00 see wIndow size)

I

Ii
i,

i
i I, , II ,,

I
I I
i I
I

,,- I,
I I,
,

I --I I -

-

".
".
".
,~'"

".
".
oro

o.
,.
o.
,.
,.
,.
o.

o. •• ,.. ,..
Figure 15. Fftsynth working set profile, /:::,. = 1 second for a parallel execl1tion using 16 nodes and
40MB of input data.

17

Process WorklngS.1 Pronle (1/. nod"", 2.00sec wlndo" size)..',....."...".

"'8£"=1".,,,,, I
, I

:::l~=f==-f~-!~~--,i,,~~ -l

::£~~~I-'.,.
"l==±=tEd••,.

o. .oo ,.. "00

Figure 16. Fftsynth working set profile,.6. = 2 seconds, for a parallel execution using 16 nodes and
40MB of input data.

4.4 Discussion of the results

The two programs we have examined exhibit very different communication patterns. The
envelope program starts with a global communication stage followed by a relatively long
period of isolation when different threads of control perform initialization tasks, and caching
the input lattice across nodes. This phase ends after about 80 seconds and a period of intense
communication follows until the execution completes. As expected, during this period the
working set size is close to the si:r.e of the process group; different PEs use the active message
facilities available on the Paragon to retrieve data stored elsewhere, as needed by the local
computations.

Even for a relatively small window size (0.2 seconds) we observe that a process has a
high probability of communicating with virtually all other processes in the group. This
trend becomes dominant as the window size increases to 0.5 and 1.0 seconds. The same
trend is observed whether 64 or 32 PEs are used.

The fftsynth exhibits quite an opposite behavior. The threads of control work in isolation
until the time [or the global exchange course. Again this behavior is independent upon the
number of PEs.

18

5 Conclusions

'We conjecture that sometimes processes belonging to a process group exhibit the following
communication pattern: once they start. communicating, they do so for some time; when they
are working in isolation, they tend to maintain the state. Clearly, not all applications are
expected Lo exhibit such a behavior at all times. Similarly, there are programs which do noL
exhibit localit.y of reference. But when process groups do exhibit locality of communication,
the state of the process group provides information useful to hide the latency of I/0 and
paging for the individual processes in the group, and to avoid processor fragmentation.
In the first case, when the process experiencing a high latency operation is temporctrily
independent, a local contexL switch to another temporarily independent process is bett.er
than busy waiting.

Processor fragmentation can be avoided, or its negative effects diminished through dy­
namic scheduling. Indeed, insLead of being constrained to schedule all the members of a
gronp, the system scheduler lIas the flexibility to schedule any number of processes larger
Lhan the kernel of n~ communicating processes at that time. Dynamic scheduling requires
global decisions. The scheduler needs to maintain the state vectors for all process groups.

The analysis presented in Section 4 was done off line using data collected at run Lime.
The clustering algorithm allows us to identify several clusters of processes in a process group
communicating to each other. Yet, at run time, it is very expensive to identify such clusters.
Using status vectors, all we know is the set of processes which arc in a communication period,
n~. 1£ we had the knowledge of the clusters of communicating processes, then the system
(global) scheduler might be able to schedule one cluster of a process group at a time.

Last, but not least, we argue that checkpoint.ing of a parallel program may be done more
effectively using the information provided by the state vectors introduced in §3.1.

Finally, we need to answer the question or what happens if a process group does not
exhibit locality of communication and the syst.em attempts to either hide the latency by local
context switches or to reduce the effects of processor fragmentation by dynamic scheduling.
The answer is that. the overall effect will be loss of performance through ill advised local or
global context switches. But this is expected, as we already know that hierarchical storage
systems have poor performance when programs do not exhibit locality of reference.

19

6 Acknowledgments

The authors express their thanks to Vietor Abell for pointing out the importance of memory
constraints for process group context switching.

References

[1] M. J. Atallah, C. Lock, D. C. Marinescu, H. J. Siegel, and T. L. CasavanL.
Models and algorithms for co-scheduling compute-intensive tasks on a network
of workstations. Journal of Parallel and Distributed Computing, 16:319-327,
1992.

(2] D. C. Burger, R. S. Hyder, B. P. Miller, and D. A. Wood. Paging tradcoffs in
distributed-shared-rnemory multiprocessors. In Proceedings oj Supercomputin!J
'94, November 1994.

[3] S.-H. Chiang, R. K. Mansharamani, and M. K. Vernon. Use of application
characteristics and limited preemption for run-ta-completion parallel processor
scheduling policies. Performance Evaluation RelJiew, 22(1):33-44, May 1994.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms.
McGraw-Hill Book Company, 1991.

[5] M. A. Cornea-Hasegan, D. C. Marincscu, and Z. Zhang. Data management
for a class of iterative computations on distributed memory MIMD systems.
Concurrency: Practice and Experience, 6(3):205-229, 1994.

[6] M. A. Cornea-Hasegan, Z. Zhang, R. E. Lynch, D. C. Marinescu, A. Hadfield,
J. K. Muckclbauer, S. Munshi, L. Tong, and M. G. Rossmann. Phase refine­
ment and extension by means of non-crystallographic symmetry averaging using
parallel computers. Acta C7'Ystallogra'lhica, D51:749-759, 1995.

[7] P. J. Denning. The working set model for program behavior. Communications
of the ACM, 11(5):323-333, May 1968.

[8] A. Ieuffiwananonthachai, A. N. Aizawa, S. R. Schwartz, B. "V. Wah, and J. C.
Yan. Intelligent mapping of communicating processes in distributed computing
systems. In Supercomputing '91, pages 512-521, November 1991.

20

[9] S. Majumdar, D. L. Eager, and R. B. Bunt. Characterization of programs
for scheduling in multiprogrammed parallel systems. PelJormance Evaluation
13(2):109-130, 1991.

[10] J. K. Ousterhout. Scheduling tcchniques for concurrent systems. In P1'Ocecdings
oj the 3rd Inti. Conf. Dist7'ibuled Computing Systems, pages 22-30, Odober
1982.

[11] K. C. Sevcik. Characterization of pa.ra.llelism in applications and their liRe III

scheduling. PeIlormance Evaluation Review, 17:171·-180, May 1989.

[12] K. C. Sevcik. Application scheduling and processor allocation m multipro­
grammed parallel processing systems. Performance Evaluation, 19(2-3):107­
140, March 1994.

[13] K. Y. Wang and D. C. Marinescu. Correlation of thc paging activity of individual
node program.s in the SPMD execution mode. In P1'Oceedings oj the 28th Haww:i
Inte1'national Conference on System Sciences, I11CSS'28, pages 61-71. IEEE
Press, January 1995.

21

	Dynamic Scheduling of Process Groups
	Report Number:
	

	tmp.1307986960.pdf.pMoWa

