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ABSTRACT
 

This paper presents a novel method for patterning metal fin surfaces used in HVAC&R applications to mitigate 

problems associated with condensate retention. In this work, metallic surfaces are patterned to promote water droplet 

migration towards a specified region acting as a central drainage conduit. The surfaces were fabricated using 

photolithography, physical vapor deposition, and a surface-specific chemical coating and then characterized using 

spray (fine mist) testing and small droplet (2-10 µL) injection via microsyringe. In this study, we have also analyzed 

the effect of the chemical treatment on the observed wettability change (i.e. the degree of transformation of our 

surfaces from hydrophilic to hydrophobic). The impact of surface tension gradients was also explored by analyzing 

the deformation and asymmetry of droplets on such surfaces.  Results from these tests have shown a significant   

(30
o 

- 40
o
) increase in the static contact angle and severe deformation of droplets due to these surface gradient 

patterns on the surface. These preliminary results suggest that micro-structural patterning could be used to help 

reduce condensate retention on metallic fins.  
 

1. INTRODUCTION 

The motivation for this project stems from the application of heat exchangers in heating, ventilation, air-

conditioning and refrigeration (HVAC&R) systems. Current designs make extensive use of copper and aluminum 

surfaces which are naturally hydrophilic. Because of this intrinsic property, water is likely to condense and adhere to 

these surfaces in the form of water droplets when the system is operating below the dew point temperature. 

Ordinarily, this water will continue to build on the surface until it is removed by gravity or the air-flow passing 

through the system. Water condensation can be problematic in these systems for a number of reasons. Water 

retention often leads to decreased heat transfer performance and increased air-side pressure drop. In refrigeration 

systems, water retention leads to ice formation and shorter defrost intervals. The net result is a decrease in the 

overall efficiency of these systems. This research is therefore aimed at developing new techniques which can be 

applied to metallic surfaces to help mitigate these issues. More specifially, the goal of this research is to produce 

non-homogenenous, chemically-modified aluminum and copper surfaces to more effectively manage and remove 

condensed water on heat transfer surfaces.  

The most common approach to this problem is the use of a homogenous chemical coating to decrease the wettability 

of the surface. This behavior can be seen in nature through the numerous, naturally occurring ways that plants and 

animals repel water (Sharma et al., 2011, Feng et al., 2007). While this would certainly decrease water retention on 

these surfaces, a homogenously coated surface would permit (even facilitate) condensate carryover into the occupied 

space which could give rise to several additional concerns as well as biological hazards (Puckorious and Thomas, 

1995). In HVAC&R applications, controlling the direction of condensate movement on the surface is often as 

important as the physical removal of those droplets. Therefore, a surface with a patterned anisotropic wettability 

may be preferred since droplet motion can be restricted to one direction—namely, downward with gravity. Previous 

work has shown that anisotropic surfaces can be created using photolithography and chemical treatment. For 

                                                           
*
 Assistant Professor, corresponding author, e-mail: sommerad@muohio.edu 

mailto:sommerad@muohio.edu


2389, Page 2 

International Refrigeration and Air Conditioning Conference at Purdue, July 16-19, 2012 

 

example, Sommers and Jacobi (2006) demonstrated that aluminum surfaces with anisotropic micro-scale 

topographical features can be used to manipulate the critical droplet size and affect the overall wettability. 

Furthermore, if a gradient exists on the surface, then a net surface tension force is produced that tries to move the 

droplet in the direction of the gradient. This could then be used to help move water droplets to a desired location on 

the fin surface. Adding both the effects of an anisotropic wettability and a surface tension gradient is predicted to 

lead to a significant reduction in the overall retention of water on heat exchangers used in HVAC&R systems. 

Surface tension gradients have been applied everywhere from hydrodynamics to the herding of bacteria (Fauvart et 

al., 2012). Induced droplet motion was first reported by Chaudhury and Whitesides (1992) who applied a chemical 

surface tension gradient on a solid silicon substrate. With this gradient, they were able to create droplet motion on a 

horizontal plate tilted upwards to 15
o
.  This was important as they explained that droplet motion required contact 

angle hysteresis θ < 10
o
. Improvements were made by Daniel et al. (2001) who showed a displacement velocity of 

0.15-1.5 m/s for a 0.1-0.3 mm diameter droplets using the same approach as Chaudhury and Whitesides but 

arranged the gradient radially rather than linearly. Daniel and Chaudhury (2002) determined that the droplet velocity 

was also related to the contact angle hysteresis which affected the surface tension (Clegg, 2011). They also found 

that the measured velocities were linearly proportional to the droplet radius. These gradient surfaces were all created 

using a continuous chemical deposition method described by Elwing et al. (1986) which could not be used here. (In 

this study, the surface tension gradients were created by linearly varying the spacing of parallel microchannels / 

microstripes on the surface. It was thought that this geometry would not only facilitate improved drainage but may 

also better resist condensate carryover.) Many studies have also been published on the modeling of droplet behavior 

in both static and dynamic contexts; however, most of these works have been concerned with homogeneous surfaces 

(i.e. El Sherbini, 2003; Dussan, 1985; Vranken et al., 2010; Patankar et al., 2005; Brakke, 1992). 

In summary, this study which builds upon earlier research on the topic describes a relatively inexpensive method for 

manufacturing anisotropic fin surfaces and managing condensate on the fin surface of heat exchangers. To date, 

photolithography, metal deposition, laser etching, and micro-milling techniques have all been explored as means of 

creating these micro-scale gradient geometries. In this study, photolithography was used to selectively deposit a thin 

layer of aluminum on a copper surface to create the gradient pattern. A hydrophobic self-assembled monolayer (i.e. 

heptadecafluoro-1-decanethiol) was then used to reduce the surface energy of the copper to form alternating regions 

of increased hydrophobicity and hydrophilicity. A ramé-hart goniometer was used to measure the local static contact 

angle of water droplets placed on these modified surfaces, and a high-resolution CCD camera was used to determine 

the location of these measurements with high accuracy. Our initial results have shown that the surface tension 

gradient on these surfaces not only affects the local contact angle in a way that is consistent with the underlying 

surface tension force, but these surfaces also promote the collection of water in preferred regions on the surface. The 

results from this work are expected to provide guidance in the design and development of advanced heat transfer 

surfaces for use in high-efficiency air conditioning systems.   

 

2. EXPERIMENTAL METHODS 
 

2.1 Sample Fabrication 

Our research utilizes a two-step technique developed by Saunders et al. (2007) where a metallic surface is 

roughened to increase surface area, and then submerged in a solution containing heptadecafluoro-1-decanethiol 

(HDFT) to grow a self-assembled monolayer (SAM). Starting with a Cu block with a polished surface, the first step 

is to immerse the block in an AgNO3 solution for 2 minutes to create a silver-coated Cu surface with significant 

nanoscale roughness. Following this step, the sample is rinsed in deionized (DI) water, sonicated in an ultrasonic 

bath for 1 minute, and dried by nitrogen gas. Next, the sample is immersed in the HDFT solution (diluted in 

dichloromethane) for six minutes and rinsed. The HDFT SAM is hydrophobic due to its non-polar bond. Thus, the 

static contact angle increases from approximately 90  for the original polished Cu surface to 130  for the rough, Ag-

coated surface. (If the roughening step is not performed, the static contact angle following immersion in the HDFT 

increases to only approximately 110 .) 

 

When trying this process on aluminum, we noticed that the contact angle did not change appreciably from its 

original value of just below 90 following immersion in the HDFT solution. Capitalizing on this discovery, we then 

fabricated Al microchannels on a polished Cu surface (using metal deposition techniques) and immersed the samples 
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in HDFT which caused the Cu stripes to become more hydrophobic while the Al stripes remained mildly 

hydrophilic. The relative width of the alternating Al and Cu stripes was varied smoothly so as to create a surface 

tension gradient on the surface. The aim of the gradient was to create a directional force that would act on the water 

droplets and cause them to move along the gradient direction. Furthermore because the Al stripes would be 

preferentially wetted more than the Cu stripes, it was expected that the three-phase contact line of the droplets would 

be highly distorted from the typical circular/elliptical shape.  

 

Standard photolithography was used to fabricate the Al stripes, where a lift-off resist (LOR)/S1813 bilayer was used 

to pattern Al stripes of thickness 150 nm on a polished Cu block. After lift-off in 1165 remover, the sample was 

immersed for 6 minutes in HDFT diluted in dichloromethane and rinsed for 2 minutes in dichloromethane and then 

finally dried using nitrogen gas. (Note: The samples reported in this work were not pre-roughened using AgNO3.) 

Table 1 shows the spinning, baking, and exposure parameters used in this work. Our finished surface was a 3 x 3 

inch copper square containing nine 1 x 1 inch aluminum/copper striped patterns as shown in Fig. 1. 

 

Table 1 Standard photolithographic process as performed on Cu plates 

Photoresist Spinning Soft Bake Exposure Developer 

LOR 
40 sec @ 

3000 rpm 

150
o
C         

10 min 
  

S1813 
40 sec @ 

4000 rpm 

105
o
C           

1 min 
10 seconds 40 sec CD-26 

  

Single Gradient 

for 4 mm 

diameter 

droplet 

Single Gradient 

for 8 mm 

diameter 

droplet 

Single Gradient 

for 12 mm 

diameter 

droplet 

Double    

Gradient    

300/10 µm 

Double 

Gradient 

200/10 µm 

Double 

Gradient 

100/10 µm 

Bare 

homogenous 

baseline Al 

surface 

Triangular 

Pattern          

1:2 base to 

length 

Triangular 

Pattern        

3:10 base to 

length 

Fig. 1 Layout of various individual patterns on photomask/sample 

 

2.2 Sample Characterization 

A Rame-Hart precision goniometer was used to obtain information about the prepared surfaces by analyzing both 

the static and dynamic contact angles (i.e. advancing and receding angles) formed by water droplets on the surface. 

The apparent contact angle is the angle formed between the droplet and the surface in a static situation (usually a 

horizontal orientation). Advancing angles are determined by slowly injecting water into a droplet on the surface 

using a microsyringe and then measuring the contact angle that is formed when the droplet first begins to move (or 

advance) on the surface. The angle that is formed with respect to the surface just before the droplet advances is 

referred to as the advancing contact angle. Likewise the same process is used to capture the receding angle; we draw 
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water from the droplet into the microsyringe until the droplet recedes along the surface. The angle that is formed just 

before droplet recession is referred to as the receding contact angle. Once these measurements have been performed, 

then the difference between the advancing and receding angles (or the droplet hysteresis) can be calculated. 

Generally speaking, the lower the contact angle hysteresis is, the more hydrophobic the surface is. Thus, reduced 

water retention is usually associated with surfaces of low contact angle hysteresis. Coupled with the goniometer for 

contact angle measurement, a CCD camera was placed above the sample in order to accurately determine the droplet 

location on the surface and to check for consistency and gradient performance. Logistically speaking, this was done 

by taking a picture of the droplet with the overhead camera and then using a standard imaging software package 

(KAPPA ImageBase) to measure the distance of the droplet from a fixed edge.  

We also used the spray test method to analyze the preferential location of droplets on our patterned surfaces. After 

applying a fine mist to the sample from a nonbiased direction, the resulting droplet distribution was examined using 

an optical microscope. These tests proved extremely helpful in determining the effect that our patterns had on 

droplet behavior (including deformation due to interaction with the gradient surface).  

 
 

2.3 Surface Tension Modeling 

If we take a water droplet on a horizontal surface, the net surface tension force along any direction is zero. However, 

if we create a surface tension gradient, then the contributions from the two ends of the droplet will not completely 

cancel out. This results in a net surface-tension-gradient force that tries to move the droplet in the direction of the 

gradient (i.e. in the x-direction). Perhaps more importantly, this surface-tension-gradient force could be used to 

potentially facilitate the removal of small droplets from a surface and/or droplet movement on a flat horizontal 

surface. 

 

So how strong of a gradient would be needed to move a droplet on a horizontal surface? To begin, let us consider a 

simple circular droplet that is deformed due to the existence of an underlying gradient.  If the gradient was not 

present, this droplet would exist as a spherical cap as shown in Fig. 2. 

 

 

 

 

 
 

Fig. 2 Schematic of a droplet on a (a) homogeneous surface, and (b) a surface with an underlying gradient 

 

 

 
 

Fig. 3 Two possible linear surface tension gradient designs (single gradient pattern shown). In the double gradient 

design (not shown), both widths are systematically varied. 

MICRO-CHANNEL 

GRADIENT PATTERN

depth

width width

MICRO-STRIPE 

GRADIENT PATTERN

No Gradient With Gradient 
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Now let‟s consider a simple case where the local contact angle of a droplet on a horizontal surface does vary from 

one end of the droplet to the other due to the presence of a gradient (see Fig. 3) such that: 

43
2

2
3

1)( axaxaxaxcos              (1) 

where 

     maxcoscos (0)             (2a)  

mincoscos (D)             (2b) 

0 

 
)(

xdx

cosd
            (2c) 

Dxdx

cosd

 

 
)(

            (2d) 

as shown in Fig. 4.  Using these boundary conditions to solve for the constants, one finds that  

maxmaxminmaxmin xxDcos
D

xDcos
D

xcos cos         )(cos
3

  )(cos
2

 )( 2

2

3

3
   (3) 

The surface tension force associated with this droplet deformation can be calculated using the equation: 

       
 

0 
       dcoscosDFs                       (4) 

 

0 
43

2
2

3
1     )(   dcosaxaxaxaDFs             (5) 

Substituting x = R (1 cos ) into this expression and integrating yields 

222

D
 

2

D

8

15
 3

2

2

3

1

D
aaaDFs            (6) 

   
32

 
    )(

32

9
 

D
coscosDF maxmins             (7) 

If the variation of the contact angle is linear as shown, then  = (cos min  cos max) / D. In this case, the surface 

tension force equation simplifies to: 

     maxmins coscosDF    
32

8
               (8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Possible contact angle variation due to a surface tension gradient 
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So how does this compare to published expressions for the surface tension force on a surface? According to El 

Sherbini (2003), the surface tension force on a homogeneous surface can be represented as: 

   advrec
*

s coscosDF    
24

3
               (9) 

In the case where the droplet is moving (i.e. max = adv  and min = rec), then these two expressions yield nearly the 

same value. Moreover, the leading coefficient in these expressions (referred to as the retentive force factor, k) 

depends on the shape of the droplet base contour as well as the variation of the contact angle. Various values for k 

have been suggested (Dussan and Chow, 1983; Extrand and Gent, 1990; Extrand and Kumagai, 1995). This simple 

analysis, however, does show that for a droplet to move on a flat surface, it must be able to overcome the contact 

angle hysteresis. 

 

2.4 Design of a Surface Tension Gradient 
The ideal for our gradient is to facilitate movement and growth of water droplets on metal during condensation. 

Thus, if we start with the Wenzel model of wetting (which assumes θ < 90
o
), we should be able to derive an 

expression that could be used when designing a surface tension gradient for droplet movement.  In the Wenzel‟s 

model, the new apparent contact angle θ* is related to the original contact angle θ through a roughness factor r such 

that 

                    cosrcos *
                 (10) 

where r is the area fraction of the liquid/solid contact (i.e. wetted area over the projected area).  (Note: In this model, 

r  1.) Now, let‟s consider a small circular droplet sitting atop a horizontal surface patterned with a surface 

wettability gradient and assume that half of the droplet is characterized by the advancing contact angle and half of 

the droplet is characterized by the receding angle to simplify analysis. This approach has been used by others 

including Dimitrakopoulos and Higdon (2001). Using Wenzel‟s model then to predict the advancing and receding 

contact angles, we can write the surface tension force on a micro-structured (or, micro-striped) gradient surface as: 

                        
 

2 

2 

0 
            dcoscosrDdcoscosrDF advrecs            (11) 

Let‟s further assume that the surface tension gradient varies linearly such that  

    )1( cosR
dx

dr
rx

dx

dr
rr oo       where       (12a) 

      
0 for  rr o           (12b) 

      
180 for R2

dx

dr
rr o         (12c) 

Substituting and simplifying, 

4
-1  2  

4
-1  2 2 R

dx

dr
rcosR

dx

dr
cosRR

dx

dr
rcosRF oadvadvorecs    (13) 

Here if Fs ≠ 0 then the droplet should move on the horizontal surface. Therefore, the minimum surface tension 

gradient necessary for droplet movement on a flat surface is found by setting Fs equal to zero and solving for dr/dx 

which results in 

recadv

advreco

coscosR

coscosr

dx

dr

4
1

4
1  

)(  
          (14) 

A few observations can be gleaned from this expression. First, the surface tension gradient scales directly with the 

contact angle hysteresis. In other words, the larger the underlying hysteresis is, the large the gradient needs to be to 

overcome it. Second, the gradient is proportional to the initial roughness factor, ro. Larger gradients are needed in 

cases of large initial roughness factors.  Third, the surface tension gradient is inversely proportional to the droplet 
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radius, R. This is because as the droplet radius increases, there is more distance for the contact angle to change.  

Thus, the necessary rate of change of the roughness factor (and hence the surface tension gradient) gets smaller as 

the droplet size gets larger. Finally, the gradient is smaller on surfaces with large advancing contact angles and 

larger on surfaces with small receding contact angles. (i.e. Droplets are more likely to move on surfaces with large 

advancing angles, whereas droplets are less likely to move on surfaces having small receding contact angles.) Note: 

The advancing and receding contact angles are key measurements that characterize the hydrophobicity or 

hydrophilicity of a surface (Oner and McCarthy, 2000; Hseih et al., 1995; Yerushalimi-Rozen et al., 2004; Walzel et 

al., 2005). 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Static Droplets 

After performing a spray test and then imaging the surface, we see droplets (1-5µL) that are significantly distorted 

from the typical circular base contour shape as they span multiple stripes on a linear gradient surface as shown in 

Fig. 5. This image shows the extreme corrugation of the droplet contact line, the “pinning” of droplets at the edge of 

the copper regions, and the elongation of droplets. Furthermore, it can be seen that the droplet is preferentially 

wetting the hydrophilic Al stripes which appear to exhibit static contact angles characteristic of aluminum. Likewise, 

the portions of the contact line spanning a copper stripe reflect the much higher contact angles characteristic of 

copper coated with HDFT. (Note: The data presented here are for samples that were not pre-roughened using 

AgNO3. Thus, we might have expected to see static contact angles of approx. 90
o
 for droplets resting on the 

aluminum-coated regions of the surface and contact angles of 110  120
o
 for droplets resting on the HDFT-coated 

copper regions.) Sections of the droplets oriented parallel to the stripes also clearly demonstrate the “pinning effect” 

that occurs due to this sharp and abrupt contrast in hydrophobicity. For example, if a droplet on an aluminum stripe 

is pinned by the beginning of a copper stripe, the droplet will not spill onto the copper until a contact angle higher 

than that of copper is reached. This effect is demonstrated more convincingly by the extreme shape distortion of the 

droplets in Fig. 5a. As droplets from the sprayed mist come in contact with the surface, they show a clear tendency 

to stick to the aluminum sites but roll over the copper sites until they find aluminum. This interaction allows droplets 

to fully occupy the triangular areas as shown in Fig. 5b. 

 

3.2 Dynamic Droplets 

Based on our earlier modeling work, we initially expected to see some droplet motion on our gradient surfaces 

(albeit on the order of millimeters). Despite a lack of motion, we were able however to observe the preferential 

expansion of droplets in one direction as they were injected onto the surface. Figure 6 shows an image captured 

using our goniometer software, which reveals how a 5 L droplet „leans‟ in the preferred direction (to the right) but 

does not experience any motion. Increasing the volume of the droplet by injecting it with more water would further 

show the droplet expanding to the right. 

 

       

Fig. 5 Spray test images showing distorted droplets on a (a) linear gradient surface, and (b) triangular gradient 

surface where the copper regions are hydrophobic  

1 mm 

 

1 mm 

 

(b) (a) 
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Fig. 6 Image of an injected droplet (5 L) on a gradient surface 

 

 

Based on these results, we then examined the contact angles of droplets placed at different locations on a gradient 

surface. We had concluded that a droplet placed on an increasingly cupreous part of a gradient surface should reflect 

an increasing static contact angle. Given that the gradient pattern repeated itself 4 to 5 times on the surface, we thus 

expected to see the static contact angle decrease gradually and then increase abruptly as we moved from one 

gradient region to the next. Figure 7 shows the data collected for this test along with a visual representation of our 

surface. Although we expected to see a saw-tooth pattern restarting at each gradient boundary with the contact angle 

decreasing from left to right, such a conclusion was simply not possible with this initial set of data due to the 

uncertainty of these measurements. Follow-up testing is currently underway. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 7 Measured static contact angle data on a linear gradient surface 

 



2389, Page 9 

International Refrigeration and Air Conditioning Conference at Purdue, July 16-19, 2012 

 

4. CONCLUSIONS 
 

In this study, a method of manufacturing surface tension gradients on aluminum and copper substrates was explored. 

More specifically, surfaces were fabricated using photolithography, physical vapor deposition, and a surface-specific 

self-assembled monolayer (SAM). Following their manufacture, surfaces were characterized by spray testing and 

small droplet (2-10 µL) injection via microsyringe. The deformation and asymmetry of droplets on these surfaces 

were also studied. Although movement of individual droplets was not observed, the results from these tests revealed 

a significant (30
 
- 40 ) increase in the static contact angle coupled with significant droplet deformation due to the 

existence of the underlying surface tension gradient. Spray testing on surfaces in a horizontal orientation have also 

shown that the surface tension gradient on these surfaces not only affects the local contact angle in a way that is 

consistent with the underlying surface tension force, but these surfaces also promote the collection of water in 

preferred regions on the surface (i.e. regions of high hydrophilicity). Modeling work was also undertaken to examine 

the potential impact and design of using surface tension gradients in real systems. The results from this study 

(especially the spray testing images) suggest that these ideas could be beneficial in a variety of air-cooling 

applications where both heat and mass transfer occur. 

 
 

 

NOMENCLATURE 
  

D  Droplet diameter (mm)  Gradient rate of change  

F S  Surface tension force (N) x Distance  (mm)  

 Azimuthal angle  ( )  

 Surface tension (N/m) ( ) Subscripts  

r Roughness factor (--) adv  Advancing  

 Contact angle  ( ) red Receding 
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