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4.4. Accounting for Compaction Variability in Setting Specification Limits 

 

In the previous section, several factors potentially leading to variability in soil 

compaction are discussed. This variability should be accounted for while establishing the 

specification criterion for soil compaction. For example, if the specification requirement 

is to obtain an in-place compacted dry unit weight corresponding to 95% RC, then values 

greater than or equal to 95% RC should have high probability of occurrence. Table 4.2 

suggests that a mean RC value of roughly three percent higher than the required RC 

needs to be achieved in order to obtain the required RC in the compacted area.  

In order to utilize in situ tests for compaction QC, the criteria using the tests [e.g., 

Dynamic Cone Penetration Test (DCPT)] need to account for compaction variability. To 

accomplish this, a two-step statistical approach can be adopted. First, a minimum value of 

the test measurement that exceeds at least a certain percentage (e.g., 80%) of occurrences 

in the frequency diagrams of test results associated with the required RC is first selected 

(N in Figure 4.3). Second, the minimum value of the test measurement is tested for test 

results less than the minimum required value. The test here is that the most of test 

measurements, e.g., 90% of test measurements, corresponding to less than the required 

RC must be less than the selected minimum value. 

 In the case of the DCPT, the blow count satisfying both requirements will be 

referred to as the minimum required blow count. It provides reasonable assurance that, if 

the measured blow count matches or exceeds it, the desired relative compaction will have 

been achieved.  
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Figure 7.14 Comparison of predicted with measured deviator stress values by Peterson 
(1990). 

7.4.7. Oloo and Fredlund (1996) Data: Indian Head Till 

The soil tested by Oloo and Fredlund (1996) consisted of Indian Head till. According to 

Oloo (1994), samples were initially air-dried and sieved through the No. 10 sieve. The 

samples were prepared to a dry unit weight of 17.0 kN/m3. 

 Twelve direct shear tests were performed on saturated samples of Indian Head till 

under drained conditions by Vanapalli (1994). The compacted specimens were extruded 

into the shear box, flooded with water, and left to saturate. After saturation, direct shear 

samples were allowed to consolidate under normal stresses of 50, 100, 200, and 400 kPa. 
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 The approach presented in Section 4.4 for development of compaction quality 

control criteria is used here in connection with the pit test results. The minimum required 

blow count is associated with 80% exceedance for the data shown in Figure 9.7. In other 

words, the approach assures that the minimum required blow count includes at least 80% 

of the occurrences in the histogram of the test results associated with 95% RC.  

 As shown in Figure 9.7(a), at a RC of 95%, an NDCP│0~6” equal to 8 is greater or 

equal to 80% of the test results. Similarly, the minimum required blow count that is 

greater or equal to 80% of the test results for a RC 95% is 12 [see Figure 9.7(b)].  

 The proposed minimum required blow count is then checked for the data 

corresponding to all values of RC, as shown in Figure 9.8. Figure 9.8(a) shows that all 

other test results are less than the selected value for 0-to-6 inch penetration. Figure 9.8(b) 

shows that all the test results except one are below the selected value for 6-to-12 inch 

penetration. 
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(b) 

Figure 9.7 Histograms of DCPT pit results at 95% RC plotted together with the minimum 
required blow count: (a) 0-to-6 inch penetration and (b) 6-to-12 inch penetration. 
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(b) 

Figure 9.8 Histograms of DCPT pit results plotted together with the minimum required 
blow count: (a) 0-to-6 inch penetration and (b) 6-to-12 inch penetration. 
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9.3. Field Tests on A-3 Soils 

 

Four road construction sites were selected for tests on A-3 soil:  County Road 500W, 

SR25, SR31, and I-70. A-3 soils generally consist of sand containing less than 10 percent 

passing the #200 sieve. In addition to the density and confinement, the engineering 

behavior of A-3 soil is mainly influenced by the relative proportions of the different 

particle sizes present and the shapes of the soil particles. 

 Figure 9.9 shows the particle-size distribution of the soils tested. The soils mainly 

consisted of sand particles with minimal percentages of fines and gravels. These soils are 

classified as A-3 soils per the AASHTO classification system and SP (Poorly graded 

sand) per USCS following AASHTO M145-91 and ASTM D2487-06, respectively.  

The compaction tests were performed in accordance with ASTM D698-12, 

Standard Test Methods for Laboratory Compaction Characteristics of Soils Using 

Standard Effort. Figure 9.10 shows the compaction curves of the soils. 

In an effort to investigate the variability of soil samples taken from the same job 

site, particle-size distribution and the compaction tests were performed on eight samples 

taken from County Road 500W as presented on Figure 9.9(b), and Figure 9.10(b) and (c). 

In Figure 9.9(a), two out of eight test results from County Road 500W are presented for 

the comparison with the soils tested on samples from the other job sites.  
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(b) 

Figure 9.9 Particle-size distributions of A-3 soils from (a) SR25, SR31 and I-70 site, and 
(b) County Road 500W site. 
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(b) 

Figure 9.10 Compaction curves of the soil taken from (a) SR25, SR31, and I-70 site and 
(b) County Road 500W site (Sample 1 through 4) (Cont’d). 
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(c) 

Figure 9.10 Compaction curves of the soil samples from: from (a) SR25, SR31, and I-70 
site, (b) County Road 500W site (Samples 1 through 4), and (c) County Road 500W site 

(Samples 5 through 8). 

 Table 9.5 summarizes the grain-size distributions and classifications of the soil 

taken from three sites. Each is discussed in detail next. 
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Table 9.5 Summary of grain-size distribution analyses and compaction tests 

Site 
% 

passing 
No. 10 

% 
passing 
No. 40 

% 
passing 
No.200 

Cu Cc 
γdmax wcopt 

(%) 
(kN/m3) (pcf) 

SR 25 
at Carroll Co. 75.4 23.1 1.2 5.06 1.02 18.5 117.9 12.1 

SR 31 at 
Marshall Co. 84.2 61.6 0.8 2.92 0.84 17.1 108.5 12.8 

I-70  
at Indianapolis 74.3 27.7 1.0 6.01 0.86 18.4 117.1 12.1 

County 
Rd 500W 

at 
Kokomo 

1† 82.3 47.1 3.1 3.80 0.76 18.5 117.9 14.5 

2† 82.4 47.2 3.8 3.79 0.76 18.6 118.0 12.5 

3† 85.3 53.7 3.4 3.43 0.75 18.5 117.8 12.7 

4† 86.2 53.6 4.4 3.44 0.75 18.5 117.9 13.1 

5† 86.1 53.2 3.8 3.41 0.75 18.5 117.9 12.7 

6† 86.2 53.4 4.0 3.43 0.75 18.5 117.9 12.5 

7† 84.1 49.3 2.0 3.74 0.74 18.6 118.0 12.5 

8† 84.2 49.2 3.0 3.63 0.75 18.6 118.1 12.2 

†: Sample number. 

9.3.1. Field Tests on SR25 

An embankment was constructed using A-3 soil as fill material at the State Road 25 

highway construction site located in Carroll County, Indiana. Field DCP Tests were 

performed on the embankment. Figure 9.11 shows the histogram of the DCPT results. 

The relative compactions in Figure 9.11 were computed using a γdmax of 18.5 kN/m3 

(117.9 pcf) taken from the laboratory Standard compaction test. The dry unit weight and 

the water content were measured using the nuclear gauge tests. In each case, three nuclear 
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gauge tests were performed along with five DCP tests. The relative compaction and the 

water content results in Figure 9.11 through Figure 9.13 are the average values from three 

nuclear gauge tests.  

 Based on the test results shown in Figure 9.12, the minimum required blow count, 

(NDCP)req│0~12”, associated with 80% exceedance for the test results corresponding to 

95.6% RC was 8. However, (NDCP)req│0~12”  was increased to 9 in order to have two test 

results associated with less than 95% RC equal to the minimum required blow count, as 

shown in Figure 9.13. 

 Figure 9.13 shows that the NDCP│0~12” of 9 works well when considered in the 

context of all results. The blow counts for RC of less than 95% are less than the minimum 

required blow count except for a case with 93.3%, where an unusually low water content 

led to an abnormally high blow count. The test results corresponding to RC more than 

95% supported this explanation because several DCP test results associated with RC 

more than 95% are below the  (NDCP)req│0~12” of 9, as shown in Figure 9.13. 
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Figure 9.11 Histogram of DCPT results (SR25): 0-to-12 inch penetration. 
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Figure 9.12 Histogram of DCPT results at 95.6% RC plotted together with the minimum 
required blow count (SR25): 0-to-12 inch penetration. 
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Figure 9.13 Histogram of DCPT results plotted together with the minimum required blow 
count (SR25): 0-to-12 inch penetration. 

9.3.2. Field Tests on SR31 

An embankment approaching a bridge was constructed using A-3 soil as a fill material at 

a highway construction site on State Road 31 in Marshall County, Indiana. Figure 9.14 

shows the histogram of the DCPT blow counts for the site.  

As shown in the figure, relative compactions were computed using a γdmax of 17.1 

kN/m3 (108.5 pcf) obtained from the laboratory Standard compaction test (see Table 9.5). 

Also, the dry unit weight and the water content were measured using the nuclear gauge 

test. In each case, three nuclear gauge tests were performed along with five DCP tests. 

The RC and the water content results in Figure 9.14 through Figure 9.16 represent the 

arithmetic mean values from three nuclear gauge tests.  
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 A minimum required blow count (NDCP)req│0~12” was determined based on the test 

results shown in Figure 9.15. Since DCP test results associated with 95% RC were not 

acquired, the DCP test results corresponding to 96.7% were used to determine the 

minimum required blow count. Based on the test results shown in Figure 9.15, the 

(NDCP)req│0~12” greater or equal to 80% of the blow counts associated with 96.7% RC was 

7. In Figure 9.16, a NDCP│0~12” of 7 was assessed based on the RC values associated with 

test results exceeding the selected value.  
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Figure 9.14 Histogram of DCPT results (SR31): 0-to-12 inch penetration. 
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Figure 9.15 Histogram of DCPT results at 96.7% RC plotted together with the minimum 
required blow count (SR31): 0-to-12 inch penetration. 
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Figure 9.16 Histogram of DCPT results plotted together with the minimum required blow 
count (SR31): 0-to-12 inch penetration. 
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9.3.3.  Field Tests on I-70 

An embankment was constructed using A-3 soil as fill material as part of an I-70 

extension project in Indianapolis, Indiana, and the DCPTs were performed during the 

construction. For each case of relative compaction, four DCPs were conducted along with 

three nuclear gauge tests.  

 Figure 9.17 shows the histogram of the DCPT results taken for site. The RC 

values were computed using a γdmax of 18.6 kN/m3 (117.1 pcf) obtained from the 

laboratory Standard compaction test (see Table 9.5). The RC and the water content values 

in Figure 9.17 through Figure 9.19 represent the arithmetic mean values from three 

nuclear gauge tests.  

 Based on the same approach employed for the previous sites, the minimum 

required blow count that was associated with 80% exceedance for the test results in the 

histogram of the test results corresponding to 95.0% RC was 8. However, (NDCP)req│0~12”  

was increased to 10 in order to have the test results associated with 93.2% RC be less or 

equal to the minimum required blow count, as shown in Figure 9.19. In Figure 9.19, a 

NDCP│0~12” of 10 is shown to work well for cases with RC < 95% had lower blow counts 

and cases with RC > 95% had higher blow counts.  

 

 

 



 266 

 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

DCP blow count for 0-to-12 inch penetration

0

2

4

6

8

Fr
eq

ue
nc

y

RC=95.6% (wc=4.5%)
RC=95.0% (wc=4.2%)
RC=93.2% (wc=4.1%)

 

Figure 9.17 Histogram of DCPT results (I-70): 0-to-12 inch penetration. 
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Figure 9.18 Histogram of DCPT results at 95.0% RC plotted together with the minimum 
required blow count (I-70): 0-to-12 inch penetration. 
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Figure 9.19 Histogram of DCPT results plotted together with the minimum required blow 
count (I-70): 0-to-12 inch penetration. 

9.3.4. Field Tests on County Road 500W 

County Road 500W approaching to SR31 was constructed using A-3 soil as a backfill 

material at a highway construction site on County Road 500W (CR500W) in Kokomo, 

Indiana.  

 Eight locations was were selected for the field testing. In each test location, 10 

DCPTs were performed, together with one sand-cone test. Also, at each location, a 

sample was taken to perform index tests and laboratory compaction. By doing so, each 

relative compaction value was computed from the in-place dry unit weight obtained from 

the sand-cone test divided by the maximum dry unit weight obtained from the laboratory 

compaction test at each location. Laboratory compaction test results, together with index 

properties obtained from the samples are summarized in Table 9.6. 
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Table 9.6 Grain-size distribution analyses and compaction tests (CR500W) 

Sample 
No. 

% 
passing 
No. 10 

% 
passing 
No. 40 

% 
passing 
No.200 

Cu Cc 
γdmax wcopt 

(%) 
(kN/m3) (pcf) 

1 82.3 47.1 3.1 3.80 0.76 18.5 117.9 14.5 

2 82.4 47.2 3.8 3.79 0.76 18.6 118.0 12.5 

3 85.3 53.7 3.4 3.43 0.75 18.5 117.8 12.7 

4 86.2 53.6 4.4 3.44 0.75 18.5 117.9 13.1 

5 86.1 53.2 3.8 3.41 0.75 18.5 117.9 12.7 

6 86.2 53.4 4.0 3.43 0.75 18.5 117.9 12.5 

7 84.1 49.3 2.0 3.74 0.74 18.6 118.0 12.5 

8 84.2 49.2 3.0 3.63 0.75 18.6 118.1 12.2 

 

 As shown in Table 9.6, laboratory compaction test results were fairly consistent. 

For instance, maximum dry unit weight values ranged between 18.5 and 18.6 kN/m3 

(between 117.8 and 118.1 pcf). The coefficient of uniformity Cu values ranged between 

3.4 and 3.8. Hence, the DCP test results were grouped according to Cu values. In Table 

9.6, Samples 1, 2, and 7 showed the Cu value of 3.8 (Group 1), while Samples 3, 4, 5, and 

6 showed the Cu value of 3.4 (Group 2). The Cu value of Sample No. 8 was 3.6 (Sample 

8). 

 Figure 9.20 shows the histogram of the DCPT blow counts for the Group1 (G1). 

In Group1 tests, since DCP test results associated with 95% RC were not acquired, the 

DCP test results corresponding to 97.8% were used to determine the minimum required 

blow count.  
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Figure 9.20 Histogram of DCPT results [CR500W (Group 1)]: 0-to-12 inch penetration. 
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Figure 9.21 Histogram of DCPT results at 97.8% RC plotted together with the minimum 
required blow count [CR500W (Group 1)]: 0-to-12 inch penetration. 
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Based on the test results shown in Figure 9.21, the (NDCP)req│0~12” greater than or 

equal to 80% of the blow counts associated with 97.8% RC was 9. In Figure 9.22, a 

NDCP│0~12” of 9 was assessed based on the RC values associated with test results 

exceeding the selected value.  
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Figure 9.22 Histogram of DCPT results plotted together with the minimum required blow 
count [CR500W (Group 1)]: 0-to-12 inch penetration. 

Figure 9.23 shows the histogram of the DCPT blow counts for the Group2 (G2). 

In Group2 samples, since DCP test results associated with 95% RC were not acquired, 

the DCP test results corresponding to 97.3% were used to determine the minimum 

required blow count.  
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Figure 9.23 Histogram of DCPT results [CR500W (Group 2)]: 0-to-12 inch penetration. 
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Figure 9.24 Histogram of DCPT results at 97.8% RC plotted together with the minimum 
required blow count [CR500W (Group 2)]: 0-to-12 inch penetration. 
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Based on the test results shown in Figure 9.24, the (NDCP)req│0~12” that is greater 

than or equal to 80% of the blow counts associated with 97.3% RC was 10. In Figure 

9.25, a NDCP│0~12” of 10 is shown to work well for cases with RC < 97.3% had lower 

blow counts and cases with RC > 97.3% had higher blow counts. .  
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Figure 9.25 Histogram of DCPT results plotted together with the minimum required blow 
count [CR500W (Group 2)]: 0-to-12 inch penetration. 

 Figure 9.26 shows the histogram of the DCPT blow counts for the Sample 8. In 

Group3 tests, DCP test results associated with 94.3% were only acquired. Based on the 

test results shown in Figure 9.26, the (NDCP)req│0~12” greater than or equal to 80% of the 

blow counts associated with 94.3% RC was 4.  
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Figure 9.26 Histogram of DCPT results at 94.3% RC plotted together with the minimum 
required blow count [CR500W (Sample 8)]: 0-to-12 inch penetration. 

 

9.3.5.  Summary of Test Results on A-3 Soils 

Table 9.7 summarizes the DCP test results with the coefficient of uniformity (Cu) and the 

compaction properties. In the case of the A-3 soils tested, the minimum required blow 

count, (NDCP)req│0~12”, corresponding to a RC of 95% varies from 7 to 10.  

The (NDCP)req│0~12” is higher for the SR25 and I-70 sites than for the SR31 site. 

Two factors can explain this outcome. First, the coefficient of uniformity (Cu) values of 

the soils at the SR25 and I-70 sites were both higher than that of the soil at the SR31 site 

(see Table 9.7). In general, a higher Cu results in a higher minimum required blow count. 

Second, the soils at the SR25 and I-70 sites involved higher percentages retained on the 
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#10 sieve (2 mm) than the SR31 site. This higher percentage of coarse sand particles may 

increase or sometimes distort the DCP test results. Note that, if the soil contains a 

significant amount of gravel-size particles (more than 2mm in equivalent grain size per 

the AASHTO classification), the DCPT should be avoided as a tool for soil compaction 

quality control. 

Table 9.7 Summary of the DCPT results with the coefficient of uniformity (Cu) and 
compaction properties on A-3 soil 

Test site SR25 SR31 I-70 CR500W 

AASHTO classification A-3 A-3 A-3 A-3 

Coefficient of 
uniformity (Cu) 5.06 2.92 6.01 3.41~3.80 

γdmax 
(kN/m3) 18.5 17.1 18.4 18.5~18.6 

(pcf) 117.9 108.5 117.1 117.8~118.1 

wcopt (%) 12.1 12.8 12.1 12.2~14.5 

(NDCP)req│0~12” 9 7 10 4~10† 

† DCPT results are associated with RC values between 94.3 and 97.8% 
 

For the DCP tests performed at CR 500W, minimum DCP blow counts obtained 

from the statistical approach were associated with higher RC than 95% (Groups 1 and 2), 

or the DCP tests did not have several sets to test the statistical approach that we adopted 

(Sample 8). Hence, we presented the required minimum blow counts as a reference 

values together with RC values as presented in Figure 9.27. 

 



 275 

 

 In summary, we propose the (NDCP)req│0~12” for A-3 soils that is a function of the 

coefficient of uniformity as shown in Figure 9.27. The same figure shows the values 

proposed by White et al. (1999). Based on numerous DCP tests on A-3 soil, White et al. 

(1999) proposed that the DCP index would have to be less than or equal to 35mm/blow, 

which is equivalent to NDCP│0~12” ≥ 8.7. This blow count was deemed necessary to 

achieve DR ≥ 80% in 90% of the tests (Larsen et al. 2007). According to Lee and Singh 

(1971), a DR of 80% is associated with a RC of 96%, while a RC of 95% corresponds to a 

DR of 75%. However, White et al. (1999) did not account for the difference in DCP test 

results based on changes in the coefficient of uniformity. With respect to the DCP test 

results at the DR500W site, DCP test results were presented in Figure 9.27 and used only 

as a reference since selected DCP blow counts were not associated with 95% RC. 
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Figure 9.27 The coefficient of uniformity versus the (NDCP)req|0~12” for A-3 soils. 

9.4. Field Tests on A-1 and A-2 Soils 

 

Six different soils at three construction sites were selected for field testing on “granular” 

soils. The majority of the soils presented in this section are A-2 soils, which consist of 

“granular” soils with small percentages of fine particles, less than 35% passing the # 200 

sieve per the AASHTO classification.  

 Figure 9.28 shows the particle-size distribution of the soils. The soils shown in the 

figure are classified as either A-1 or A-2 soil as per the AASHTO classification. Figure 

9.29 provides the compaction curves of five soil samples taken from the sites. 
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Figure 9.28 Particle-size distributions of “granular” soils. 
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(a) 

Figure 9.29 Compaction curves for the soil samples from: (a) SR31 (I) (Cont’d). 
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(b) 
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(c) 

Figure 9.29 Compaction curves for the soil samples from: (b) SR31 (II) and (c) SR31(III) 
(Cont’d). 
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(d) 
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(e) 

Figure 9.29 Compaction curves for the soil samples from: (d) SR31 (Plymouth) and (e) 
Honda access road site (Cont’d). 
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(f) 

Figure 9.29 Compaction curves for the soil samples from: (a) SR31 (I) (b) SR31 (II) (c) 
SR31 (III) (d) SR31 (Plymouth) (e) Honda access road site and (f) SR25 (Delphi). 
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 Table 9.8 summarizes the compaction and the Atterberg limit test results with 

AASHTO classification of the soils tested in this section. 

Table 9.8 Summary of grain-size distribution analyses and compaction tests 

Site 
Atterberg limits (%) γdmax wcopt 

(%) 
AASHTO 

classification 
PL LL PI (kN/m3) (pcf) 

SR31 (I) at 
Marshall Co. 15.0 17.1 2.1 19.1 121.3 10.2 A-1-b 

SR31 (II) at 
Marshall Co. 13.4 21.7 8.3 19.2 122.4 10.5 A-2-4 

SR31 (III) at 
Marshall Co. 15.5 17.1 1.6 19.0 120.6 12.0 A-2-4 

SR31 at 
Plymouth 18.3 29.1 10.8 19.1 121.3 11.9 A-2-6 

Access road to 
Honda plant 16.4 21.2 4.8 18.9 120.2 10.7 A-2-4 

SR25 at 
Delphi 

1† 13.0 17.0 3.0 20.6 131.2 9.2 A-1 

2† 13.7 16.9 3.2 21.0 133.5 7.9 A-1 

3† 13.3 16.8 3.5 19.7 125.5 10.4 A-1 

†: Sample number. 

9.4.1.  Field Tests on SR31 (I)   

An embankment was constructed using A-1-b soil as fill material. The site is a part of the 

extension project of State Road 31 in Marshall County, Indiana.  

 Figure 9.30 shows the histogram of the DCPT blow counts for the site. In the 

figure, the RC was computed using a γdmax of 19.1 kN/m3 (121.3 pcf) obtained from the 

laboratory Standard compaction test (see Table 9.8). Also, the dry unit weight and the 
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water content were measured using the nuclear gauge test. In each case, three nuclear 

gauge tests were performed along with five DCP tests. The RC and the water content 

values in Figure 9.30 through Figure 9.32 represent the arithmetic mean values from 

three nuclear gauge tests.  

 The same approach employed earlier was adopted in order to develop the criteria 

for compaction quality control for the soil. Based on the test results shown in Figure 9.31, 

the minimum required blow count associated with 80% exceedance for the test results in 

the histogram of the test results corresponding to 95.1% RC was 18. In Figure 9.32, a 

NDCP│0~12” of 18 is greater than all the DCP test results associated with a RC of less than 

95% and even some test results corresponding to a RC of more than 95%.  
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Figure 9.30 Histogram of DCPT results [SR31 (I)]: 0-to-12 inch penetration. 
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Figure 9.31 Histogram of DCPT results at 95.1% RC plotted together with the minimum 
required blow count [SR31 (I)]: 0-to-12 inch penetration. 
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Figure 9.32 Histogram of DCPT results plotted together with the minimum required blow 
count [SR31 (I)]: 0-to-12 inch penetration. 
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9.4.2.  Field Tests on SR31 (II)   

This site is at the same location described in the previous section. However, the soil on 

which the tests were performed was an A-2-4 soil as per the AASHTO classification.  

 Figure 9.33 shows the histogram of the DCPT blow counts for the site. In the 

figure, the RC was computed using a γdmax of 19.2 kN/m3 (122.4 pcf) obtained from the 

laboratory Standard compaction test (see Table 9.8). The dry unit weight and the water 

content were measured using the nuclear gauge test. In each case, three nuclear gauge 

tests were performed in combination with five DCP tests. The RC and the water content 

values in Figure 9.33 through Figure 9.35 represent the arithmetic mean values from 

three nuclear gauge tests.  

 Based on the test results shown in Figure 9.33, the minimum required blow count 

associated with 80% exceedance for the test results in the histogram of the test results 

corresponding to 94.7% RC was 15 (see Figure 9.34).  

 Figure 9.34 shows that the (NDCP)req│0~12” of 15 is greater or equal to 80% of the 

test results associated with a 94.7% RC. The (NDCP)req│0~12” of 15 is also greater or equal 

to 80% of test results associated with a 96.3% RC, as shown in Figure 9.35. We also 

observe that the minimum required blow count exceeds a majority of the DCP test results 

regardless of the RC. This may be due to the fact that the soil associated with 94.7% and 

96.3% RC values was compacted more to the dry of the optimum water content than the 

test results corresponding to the other RC values.  
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Figure 9.33 Histogram of DCPT results [SR31 (II)]: 0-to-12 inch penetration. 
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Figure 9.34 Histogram of DCPT results at 94.7% RC plotted together with the minimum 
required blow count [SR31 (II)]: 0-to-12 inch penetration. 
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Figure 9.35 Histogram of DCPT results plotted together with the minimum required blow 
count [SR31 (II)]: 0-to-12 inch penetration. 

 

9.4.3.  Field Tests on SR31 (III)   

This site is at the same location as that described in the two previous sections. The soil is 

classified as A-2-4 according to AASHTO.  

 Figure 9.36 shows the histogram of the DCPT blow counts for the site. In the 

figure, relative compactions were computed using a γdmax of 19.0 kN/m3 (120.6 pcf) 

obtained from the laboratory Standard compaction test (see Table 9.8). The dry unit 

weight and the water content were measured using the nuclear gauge tests. In each case, 

three nuclear gauge tests were performed along with five DCP tests. The RC and water 

content values in Figure 9.36 through Figure 9.38 represent the arithmetic mean values 

from three nuclear gauge tests.  
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 Based on the test results shown in Figure 9.37, the minimum required blow count 

associated with at least 80% exceedance for the test results in the histogram of the test 

results corresponding to 94.8% RC was 14. Note that in order to determine the minimum 

required blow count for this site, test results corresponding to 94.8% RC tested at 

wc=8.2% were used because other test results associated with 94.8% RC tested at 

wc=6.6% were too dry considering the optimum water content of this soil, 12.0%. The 

DCP blow count increases as the water content decreases due to the effect of a decreasing 

degree of saturation and increased suction. The DCP blow counts tested at 97.5% RC 

showed the effect of water content because the test results corresponding to 97.5% RC 

are lower than all test results corresponding to 94.8% RC tested at wc=6.6% and some 

test results corresponding to 94.0% RC tested at wc=6.3%. 
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Figure 9.36 Histogram of DCPT results [SR 31 (III)]: 0-to-12 inch penetration. 
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Figure 9.37 Histogram of DCPT results at 94.8% RC plotted together with the minimum 
required blow count [SR31 (III)]: 0-to-12 inch penetration. 
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Figure 9.38 Histogram of DCPT results plotted together with the minimum required blow 
count [SR31 (III)]: 0-to-12 inch penetration  
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9.4.4.  Field Tests on SR31 (Plymouth)   

A subgrade embankment was constructed using A-2-6 soil as fill material as part of the 

extension project of State Road 31 in Plymouth, Indiana.  

 Figure 9.39 shows the histogram of the DCPT blow counts for the site. In the 

figure, RC was computed using a γdmax of 19.1 kN/m3 (121.3 pcf) obtained from the 

laboratory Standard compaction test (see Table 9.8). Also, the dry unit weight and the 

water content were measured using nuclear gauge tests. In each case, three nuclear gauge 

tests were performed along with 10 DCP tests. The RC and the water content in Figure 

9.39 through Figure 9.41 represent the arithmetic mean values from three nuclear gauge 

tests.  

 Based on the test results, the minimum required blow count associated with 80% 

exceedance for the test results in the histogram of the test results corresponding to 95.0% 

RC was 13 (see Figure 9.40). In Figure 9.41, a minimum required blow count of 13 

exceeds the blow counts of all DCP tests associated with RC less than 95%, except for 

one case, and even some test results corresponding to RC greater than 95%.  
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Figure 9.39 Histogram of DCPT results [SR 31 (Plymouth)]: 0-to-12 inch penetration. 
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Figure 9.40 Histogram of DCPT results at 95.0% RC plotted together with the minimum 
required blow count [SR 31 (Plymouth)]: 0-to-12 inch penetration. 
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Figure 9.41 Histogram of DCPT results plotted together with the minimum required blow 
count [SR 31 (Plymouth)]: 0-to-12 inch penetration. 

9.4.5.  Field Tests on Access Road to Honda Plant 

A subgrade embankment was constructed using A-2-6 soil as fill material. The site was a 

road extension project for access to the Honda Plant located in Greensburg, Indiana.  

 DCPT and nuclear gauge tests were conducted after every two roller pass at this 

site. Thus, several different RC values, from a very low RC up to more than 100% RC, 

were attained throughout the testing on the site. Figure 9.42 shows histogram of DCPT 

results taken from the site. The (NDCP)req│0~12” that was associated with at least 80% 

exceedance for the test results in the histogram of the test results corresponding to 95.6% 

RC was 15 (see Figure 9.43). In the same way, a (NDCP)req│0~12” of 15 was assessed with 

the entire test results (see Figure 9.44). 
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Figure 9.42 Histogram of DCPT results (access road to Honda plant): 0-to-12 inch 
penetration. 
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Figure 9.43 Histogram of DCPT results at 95.3% RC plotted together with the minimum 
required blow count (access road to Honda plant): 0-to-12 inch penetration 
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Figure 9.44 Histogram of DCPT results plotted together with the minimum required blow 
count (access road to Honda plant): 0-to-12 inch penetration. 

9.4.6. Field Tests on SR25 (Delphi)   

An embankment was constructed using A-1 soil as fill material. The site is a part of the 

extension project of State Road 25 in Carroll County, Indiana. For each location, 10 DCP 

tests were conducted along with one sand-cone test. Three locations were selected for the 

field testing. Samples were taken at each location for laboratory testing.  

 Figure 9.45 shows the histogram of the DCPT blow counts for the site. In the 

figure, the RC was computed using a γdmax of and 20.6 kN/m3 (Sample 3, 131.2 pcf), 21.0 

kN/m3 (Sample 2, 133.5 pcf), and 19.7 kN/m3 (Sample 3, 125.5 pcf) obtained from the 

laboratory Standard compaction tests (see Table 9.8). Also, the field dry unit weight and 

the water content were measured by performing the sand-cone test at each location.  
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Figure 9.45 Histogram of DCPT results plotted together with the gravel contents of the 
samples [SR31 (Delphi)]: 0-to-12 inch penetration. 

As shown in Figure 9.45, DCP test results associated with Sample 3 are highly 

variable, ranging between 16 and 46. The variability of DCP test results was due to the 

large portion of particle sizes more than 2 mm in equivalent grain size, as shown in 

Figure 9.28. Relatively high blow counts recorded in DCP test results corresponding to 

Sample 1 are attributed to gravel was detected during the testing. Meanwhile, DCP test 

results associated with Sample 2 did not have high variability of test results.  

The DCP test results at the site indicated that this high percentage of large size 

particles increases or distorts the DCP test results. Note that, if the soil contains a 

significant amount of gravel-size particles (more than 2mm in equivalent grain size per 

the AASHTO classification), the DCPT should be avoided as a tool for soil compaction 

quality assessment.  
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In addition, based on the DCP tests performed in Delphi, high percentage of large 

size particles increase or sometimes distort the DCP test results. Note that, if the soil 

contains a significant amount of gravel-size particles (more than 2mm in equivalent grain 

size per the AASHTO classification), the DCPT should be avoided as a tool for soil 

compaction quality control. 
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Figure 9.46 The optimum water content vs. the (NDCP)req│0~12” for “granular” soils. 
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(b) 

Figure 9.74 The (PI)(%passing the #200 sieve) versus the (NDCP)req│0~6” and 
(NDCP)req│6~12” for silty clayey soil: (a) 0-to-6 inch penetration and (b) 6-to-12 inch 

penetration. 

As shown in Figure 9.74, some of the test results are presented as reference values. 

For instance, one of the values selected as the minimum required DCP blow count tested 

at SR31 (Touby Pike) was associated with 97.6% RC, which is a bit higher than 95% RC.  

Another data point tested in SR31 (Touby Pike) was corresponding to 95.6% RC, though 

there was no other set of data to perform the statistical approach that we adopted. 
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Similarly, for the US50 site, the minimum required blow count selected from the test 

results were associated with 97.3% RC.  

9.6. Summary 

 

An extensive experimental program was undertaken to assess the DCPT as tools for soil 

compaction quality control. The main objective of the experimental program was to 

investigate the DCPT results for various soil types on road sites and also in a test pit at 

Purdue University. Based on the results of the experimental program presented here, the 

DCPT appears to hold some promise as an economical tool for soil compaction quality 

assessment. Minimum required blow counts for RC ≥ 95% with high probability were 

determined as summarized in Table 9.16. 

Table 9.16 Relationship between NDCP, Cu, wcopt, PI, and percent the #200 passing sieve 

Type of soil Parameters in 
correlation Relationship₸ 

A-3 soils NDCP│0~12” Cu 
NDCP│0~12” = 4.0 ln(Cu) +2.6 
(see Figure 9.27, R2=0.99) 

“Granular” 
soils NDCP│0~12” wcopt NDCP│0~12” = 59exp(-0.124wcopt) 

(see Figure 9.46, R2=0.73) 

Silty, 
clayey soils 

NDCP│0~6” 
PI, % passing 
the #200 sieve 

NDCP│0~6” =-4.3ln[(PI)(F200)] +17.9 
[see Figure 9.74(a), R2=0.83]  

NDCP│6~12” PI, % passing 
the #200 sieve 

NDCP│6~12” =-6.4ln[(PI)(F40)] +27.0  
[see Figure 9.74(b), R2=0.78]  

₸ F200 = (%passing#200 sieve)/100 
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coefficient, etc. Using dynamic analysis results, possible range of DCP blow counts for 

typical sands at Indiana sites can be obtained.  

Dynamic analyses were performed with 95% RC and using input values presented 

in Table 11.2. The soil parameters used for the dynamic analysis are summarized in Table 

11.4  

Table 11.4 Input values for parametric study in sands 

Property Description 

    Dynamic stiffness/strength of compacted sands 

γm See  Figure 11.5 

Cu 2, 4, 6, and 8 

Κ 2Ko and 0.5Kp 

G0 See Figure 11.7 and Figure 11.8 

υ 0.20 

bf 5 

m and n m = 0.3, n = 0.2 

φc 30°, 32°, and 34° 
 

Since the objective is to find the DCP blow count associated with 0-to-12 inch 

penetration, analyses were performed with depths of 2, 4, 6, 8, and 10 inches, and 

analytical results were compared with blow counts at 6 inch depth. More details are 

discussed in the next section. A simulation time duration of 0.1 second was used. 100 

time fractions were used for this time duration satisfying Equation (8-35).  

As discussed in Section 2.4, the minimum and maximum void ratios depend on 

the uniformity coefficient Cu and roundness R of sand particles. Although the uniformity 
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Figure 11.16 Computed (NDCP)|0~6” with DCP test results for silty clays 

As shown in Figure 11.16, the effect of compaction water content is pronounced 

regardless of the soil. However, the rate of increase in NDCP from -2% OWC to NDCP at 

OWC is different depending on the critical-state friction angle. For instance, NDCP at -2% 

OWC for US50 is higher than NDCP at -2% OWC for SR31 (Touby Pike) due to the 

difference in critical-state friction angle [i.e., 21° for SR31 (Touby Pike) and 30° for 

US50, see Figure 9.49 and Figure 9.50 for direct shear test results]. For the comparison of 

analytical results with DCPT results, Figure 11.17 shows computed NDCP for 0-to-6 inch 

penetration, together with the DCP test results presented in Figure 9.74. 
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Figure 11.17 The comparison of computed (NDCP)|0~6” with DCP test results for silty 
clays 

 As seen in Figure 11.17, the magnitudes and trends of the analytical results are in 

general agreement with the DCP test results, as shown in Figure 11.17 in terms of the 

compaction water content and relative compaction in a test condition, The analytical 

results obtained based on the optimum water content were lower than the test results. 

However, as indicated in the figure, these test results were based on either slightly higher 

than 95% RC or slightly dry of the OWC. For example,  
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• The compacted Purdue clay in a test pit had RC=95%, but was 0.6% dry of the 

OWC; 

• The SR31 (Touby Pike) compacted soil had RC=95.6% RC and was 4% dry of 

the OWC;  

• The US 50 compacted soil had RC=97.3% RC and was 2.5% dry of the OWC; 

and 

• The Salem Rd compacted soil had RC=95.5% and was 1.5% dry of the OWC.  

11.5. Summary 

 

In this chapter, the dynamic response of the DCPT was predicted using the dynamic 

model presented in CHAPTER 8. The test results were then compared with the analytical 

results for both compacted sand and compacted silty clays. 

The model calibration to test results obtained from F-55 sand indicated that the 

dynamic model provided results in reasonable agreement with the measurements. In 

addition, the comparison between dynamic analysis results and DCP test chamber results 

confirmed that the assumed values of the dynamic parameters, such as viscous 

parameters (m and n) and energy ratio of the hammer (Eff), result in reasonable 

agreement between model output and measurements. 

 Parametric studies were performed to investigate the DCPT analytical results in 

sands. DCPT results in sands depended on the roundness and uniformity of coefficient 

values. The analytical DCPT results were compared with the test results obtained from 

the sites and the values were in reasonable agreement. 
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 For silty clays, dynamic analyses were performed accounting for the change in 

compaction water content and, consequently, matric suction. The proposed model in 

Chapter 7 was employed to estimate the matric suction, shear strength, and small-strain 

shear modulus. The analytical results were in reasonable agreement in magnitudes with 

the DCP test results.  The effect of the change in compaction water content observed in 

the analytical results was consistent with field observations. 

 



 407 

 

CHAPTER 12. SUMMARY AND CONCLUSIONS 

12.1. Summary 

 

The Dynamic Cone Penetration Test (DCPT) is a useful tool to assess the mechanical 

properties (i.e., strength, stiffness, and density) of compacted subgrade. Significant 

research has been performed to interpret the results of DCPT results.  However, existing 

literature to-date does not provide a reliable methodology to use DCPT for soil 

compaction quality control. 

 The main goal of this study was to propose interpretation methods of the DCPT 

results for compaction quality assessment. Numerous DCPTs were performed on road 

sites in Indiana, in a test pit, and in a test chamber at Purdue University. The soils tested 

were characterized through a series of laboratory tests (grain-size analysis, the laboratory 

compaction test, and the Atterberg limits tests). Test results were analyzed statistically to 

develop DCPT-based compaction criteria.  

The effect of matric suction on DCPT results was observed from DCPT results for 

silty clays. Matric suction induced in compacted silty clays was investigated to quantify 

the increase in effective stress, shear strength, and stiffness in unsaturated soils. 

Analytical solutions of the DCPT were also explored to calibrate the test results and to 

create a basis to interpret test results.  
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12.2. Conclusions 

 

Based on the results of the present study, the following conclusions are drawn: 

 

1. The specification of many agencies in the U.S. for density control (e.g., 95% relative 

compaction) can be used as a basis for control of compaction. 

 

2. Correlations were estimated between compaction properties (γdmax and wcopt) and the 

plasticity index. Based on the test results provided by INDOT, correlations were 

estimated among γdmax, Optimum Water Content (OWC, wcopt), plastic limit (PL), and 

liquid limit (LL) for Indiana soils.  

 

3. The data available in the literature indicated that the actual mean value of relative 

compaction achieved on the sites were roughly two to three percent greater than the 

specification requirements and that about 20% of the test results did not meet the 

specification requirement. 

 

4. In order to experimentally investigate the matric suction induced in compacted soils, a 

detailed procedure for measurement of the matric suction of soils compacted in the 

laboratory was proposed. Measurement accuracy was quantified. Based on the 

measurements of matric suction on silty clays compacted according to the standard 

Proctor procedure, the matric suction was found to be strongly dependent on compaction 

water content rather than the dry unit weight for a given soil. A method for estimation of 
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the matric suction for a given compaction condition of the compacted silty clay was 

proposed. 

 

5. The contribution of matric suction to the increase in effective stress was investigated 

and formulated to describe Bishop’s effective stress parameter. The proposed model was 

calibrated using the shear strength and small-strain shear modulus data available in the 

literature. The parameters were correlated with the soil index properties; hence, the 

proposed model is able to facilitate the prediction of shear strength and small-strain shear 

modulus of unsaturated soils. 

 

6. Based on the experimental program undertaken to assess the Dynamic Cone 

penetration Test (DCPT), DCP minimum required blow count criteria were suggested by 

grouping the soil into three categories related to AASHTO soil classification. In addition, 

statistical variability of the test results was considered. As a result, the equations to 

predict the compaction condition are proposed. The finding from this study was as 

follows: 

 

(a) A-3 soil: the minimum required blow count (NDCP)req|0~12” for 0-12” 

penetration corresponding to an RC of 95% varies from 7 to 10; it is a 

function of coefficient of uniformity;  

(b) “Granular” soil (A-1 and A-2 soils except soils containing gravel): the 

minimum required blow count (NDCP)req|0~12” for this type of soil is 

influenced by the fine particles that are present in the soil. Since the plasticity 
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index and the amount of fine particles contained in the “granular” soil 

correlate with the OWC, the minimum required blow count for “granular” 

soils was proposed as a function of the OWC; and 

(c) Silty clay: test results showed that the minimum required NDCP for this soil 

correlates with the plasticity index and the percentage of soil by weight 

passing the #200 sieve. Thus, the minimum required NDCP for silty clays were 

proposed as a function of the plasticity index and the percentage of soil by 

weight passing the #200 sieve.  

 

7. Dynamic analyses hold promise in forming the basis for interpretation of the DCPT. 

The prediction of the penetration process (DCPT) for sand under controlled conditions 

was compared with test results. For compacted silty clays, the effect of matric suction 

was interpreted using the selected dynamic model, together with the proposed model for 

the prediction of shear strength and small-strain shear modulus for unsaturated soils.  

12.3. Suggestions for Future Research 

 

Based on the work performed in this study, the following is recommended for future 

research.  

 

1. Extensive testing could be performed on various types of soil in conjunction with 

conventional density-control tests. This would allow refinement of the relationship 
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between the minimum required DCP blow count (NDCP)req and other geotechnical 

properties suggested in this research. 

 

2. The reported equations for compaction quality assessment are of such promise that an 

enlargement of the data base should follow, especially focusing on controlling the 

compaction water content for a variety of silty clays. 

 

3. Additional testing on the measurement of matric suction for various types of 

compacted soils would enable refinement of the proposed method of estimating the 

matric suction in compacted silty clays. 

 

4. Testing on the shear strength and small-strain shear modulus for unsaturated soils 

would increase confidence in the validity of the proposed model for the prediction of 

shear strength and small-strain shear modulus for unsaturated soils.  
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