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Abstract

We propose a non-Lransform image compression scheme based on approximate pattern
matching, that we name Pattern Matching Image Compression (PMIC). The main idea
behind it is a lossy extension of the Lempel-Ziv data compression scheme in which one
searches for the longest prefix of an uncompressed image thal approzimately occurs in the
already processed imager (e.g., in the sense of the Hamming distance or, alternatively, of
the square error distortion). This main algorithm is enhanced with several new features
such as searching for reverse approximate matching, recognizing substrings in images that
are additively shifted versions of each other, introducing a variable and adaptive maximum
distortion level D, and so forth. These enhancements are crucial to the overall quality of our
scheme, and their efficient implementation leads to algorithmic results of interest in Lheir
own right. Both algorithmic and experimental results are presented. Qur scheme turns out
to be competitive with JPEG and wavelet compression [or graphical and photographical
images. A unique feature of the proposed algorithm is that an asymptotic performance
ol the scheme can be theoretically established. More precisely, under stalionary mixing
probabilistic model of an image and fixed maximum distortion level I, it is shown that Lhe
compression ratio is asymplotically equal Lo the so called generalized Rényi entropy ro(17).
‘This entropy is in general smaller than the optimal rate distortion function R(D), but there
is numerical evidence that these two quantities do not differ too much for small and medium
values of D.

Index Terms: Lossy Lempel-Ziv scheme, approximate pattern matching, image compres-
sion, generalized Rényi entropy, Hamming and square-root distortion, mixing probabilistic
model, siring editing and algorithms on words, Fast Fourier Transform, image derivative,
JPEG, wavelets and fractal image compression.
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1. INTRODUCTION

Data compression based on ezact pattern matching can be traced back to seminal papers
of Lempel and Ziv [31, 32, 33], but recently there has been a resurgence of interest in
this type of data compression. This might be a consequence of rapid growth in digital
representation of multimedia (e.g., text, audio, image, video, etc.) which are particularly
amenable to paltern matching manipulations. It was known for a along time that pattern
matching based data compression — such as Lempel-Ziv schemes 1277 [32) and LZ78 [33]
— is very attractive for text compression. For example, such schemes were used in the
UNIX compress and gunzip commands, and in a CCITT standard for data. compression
for modems. An atlractive feature of such solutions is that one can prove asymptotical
optimality of lossless data compression schemes based on Lempel-Ziv algorithms. A natural
question that arises is whether lossy extensions of the Lempel-Ziv scheme are asymptotically
optimal, and whether they might be of practical interest. In particular, one may wonder
whether image compression based on approximate pattern malching is an attractive solution
and can be competitive with standards such as JPEG, or with newer Image compression
lechniques such as fractal or wavelet. In this paper, we belicve we can give an affirmalive
answer Lo these questions. After recalling (and somewhat extending) some recent theoretical
resulls of Luczak and Szpankowski [18, 19] which constitute a theoretical basis for the lossy
compression based on approximate pattern matching, we preseni our experimental results
with pattern matching image compression that support the above claim.

It must be said that early attempts on lossy compression based on pattern matching
were rather unsuccessful. Already in 1980 Ziv [31] (cf. also [28]) proposed an optimal lossy
compression scheme al fixed rate level, while Ornstein and Shields [21], and independently
Kieffer {14] gave a universal lossy compression for coding at fixed distortion Ievel. Unfortu-
nately, all of these schemes were prohibitively expensive from the computational complexity
point of view. Recently, a quest for asymptotically optimal and computationally attractive
lossy data compression based on approximate pattern matching has begun [9, 23, 24, 30].
Bul one may wonder whether a practical and optimal lossy compression exists at all. Yang
and Kieller in their recent paper [28] expressed the following opinion: “... it is our belief that
a universal lossy source coding scheme with attractive computational complexity aspects
will never be found.” We share this view, and we believe that investigations of suboptimal
and practical heurislics for lossy comproession are needed.

In view of this, Luczak and Szpankowski [18, 19] (cf. also [24]) constructed a simple,

computationally attractive lossy data compression based on approximate pattern matching.




The main idea was to search for the longest prefix of the uncompressed file that approxi-
mately occurs in the already compressed file (the so called “training sequence” or “database
sequence” ). It was proved in [19] that under a stationary mixing probabilistic model of an
image, the compression ratio can asymptotically achieve the so called generalized Rényi en-
tropy 7o(D) (cf. next section for a precise definition). It was observed that ro(D) > R(D)
where R(D) is the optimal (rate-distortion) compression ratio. The next step to undertake
is to sce whether a lossy (e.g., for images) compression scheme based on such an approxi-
mate patlern matching can lead to a practical and cfficient algorithm (i.e., computationally
and in terms of compression ratio). In this paper, we discuss algorithmic issues encountercd
in image compression based on pattern matching, and report our experimental studies.

It must be stressed Lhat the scheme we shall propose in this paper, henceforth called
Paltern Matching Image Compression (PMIC for short), is a major modification of the
basic idea described above and analyzed in [19]. A straightforward implementation of Lthe
basic scheme on real images (structured data) seems not to be attractive from a practical
point of view, so that the enhancements we describe in what follows play an important role
in the quality of the experimental results we obtained. These include searching for reverse
approximate matching, recognizing substrings in images that are additively shifted versions
of each other, making the maximum distortion level I variable and adaptive, and so forth.

The implementation of our scheme leads to algorithmic issues that are of independent
interest, c.g., the computation of the longest prefix of a string that almost-occurs in another
string (perhaps in an additively shifted form). The algorithms we give for the Ilamming
distance case are quite different from those we give for the square error distortion.

Our gencral practical conclusion can be summarized as follows: The proposed non-
transform scheme achieves compression ratios comparable to JPEG (UNIX implementa-
tion), wavelel compression (implementation based on [8]), and better than fractal image
compression (implemented according to [10]). PMIC works particularly well for images
with high frequencies (e.g., containing sharp egdes, etc). The compression time is slower
than transform based methods such as JPEG and wavelet, but decompression time scems
to be the fastest possible due to the fact that our decompression scheme mostly only reads
and writes data without any processing (occasionally it performs one addition operation
between the read and the write). We belicve that our compression time will become com-
petitive with transform based methods once we implement the faster compression schemes
of Section 3.

There is a huge volume of knowledge on image processing (ef. (12, 13, 22]) but the

majorily of image compression techniques are based on transform methods. On the other




hand, lossy Lempel-Ziv schemes based on approximate patiern matching were discussed
in (9, 16, 18, 19, 23, 24, 29], however, to the best of our knowledge (with a possible ex-
ception of [9]) no real and successful image compression implementation was reported so
far. In fact, a literature on the probabilistic analysis of approximate pattern matching is
rather scarce, too. We should mention here the paper of Steinberg and Guiman [24], and
Luczak and Szpankowski [18, 19], as well as recent results of Yang and Kieffer [20]. Arratia
and Waterman [3] also analyzed an approximate pattern matching problem in the context
of molecular biology. The reader is referred to the survey [11] and/or a recent book by
Crochemore and Rytler [6] on string matching algorithms. As will become apparent soon
(cf. Section 3), most of the algorithms for approximate pattern matching proposed in the
literature so far will not be applicable to our situation of lossy image compression.

The paper is organized as follows. In the nexl section we recall some concepts and
results from Luczak and Szpankowski [19]. Next we discuss algorithmic issues, namely fast
algorithms to identify a longest prefix that occurs approximalely in the database, and we
present several variations ol image compression algorithms. Finally, we discuss our imple-
mentation of the PMIC scheme, and present several results on graphic and photographic

images.

2. PROBLEM FORMULATION AND THEORETICAL RESULTS

In Lhis section, we describe in general terms a lossy data compression based on approx-
imatle pattern matching, and review and slightly generalize theoretical results of Luczak
and Szpankowski [19] (cf. also [24, 29]) that constitute a foundation for the performance of
the lossy compression scheme. We formulate our results in terms of distortion rate theory
of source coding to show their generalily and further polential applicability to multimedia

(e.g., audio compression).
2.1 Basic Definitions

Consider a stationary and ergodic sequence {X;}{2, taking values in a finite alphabet
A. For image compression the alphabet A has size |4| = 256. We write X2 to denote
XmXmi1 ... Xn, and for simplicity X™ = X7 ... X,. We also use P(X™) for the probability
of the n-tuple X7. We encode X7 into a compression code C,, and the decoder produces
an estimate X} of X}. We assume that the reproduction alphabet .4 = 4. More precisely,
a code C, is a function ¢ : A" — {0,1}", thus, ¢, = @(z}), wherc lower-case letters
represent realizations of a stochastic process. On the decoding side, the decoder function
¥ {0,1}" — A" is applied to find 2] = w(c,). Let £(cy) be the length of a code




representing z7. Then, the compression ratio is defined as r(z}) = £(c,)/n (e.g., for image
compression r(z]) is expressed in bits per pixel, i.e., bpp), and the average compression
ralio is E(r{X7])) = E¢(C,)/n.

Since we are interested in lossy compression, we need a measure of fidelity d(-,-) that
defines how far away the reproduction vector X" (e.g., compressed/decompressed image)
is from the source vector X™. We only consider single-letter fidelity measures, that is, such

that |
d(z",&") = ;;d(mi,:ﬁ;) .

Furthermore, in order to use properly the rate distortion theory we impose the {ollowing

two conditions on the fidelity measure (cf. [5, 14, 24]):

F1 SUBADDITIVIIY. TFor any two inlegers n, m, and given veclors 5.."”" ntm we pOStU-
. g 1y g Y
late that

n m

d(In+m,yn+m) S — md(:c“,y“)+

(T ) ¢

(F2) FiNITENESS. For each D > 0, there exists a countable subsel A; of A and a countable
measurable partition {fZ;} of A such that d(z,y) < D lor z € {E;} and y € A; such
that

— " P(E)log P(12;) < o0 .

Examples of fidelity measurcs satislying (F1) and (F2) are: Hamming distance, where
d(zi,%;) equals one if z; = &; and equals zero otherwise, and the square error dislortion
where d(z;, ;) = (z; — 2)%.

Our experimental work has concentrated on the square error distortion, which is natural
[or image compression, and constructs, for a given D > 0, a D-semifaithful code, ie.,
one such that d(z",£") < D. QOur code will also satisfy the additional constraint that
|#; — &;| < A where A is a suitably chosen value. This additional constraint, which we
call maz-difference constraint, ensures that visually noticeable “spikes” are not averaged
out of existence by the smoothing effect of the square error distortion constraint. We
incorporate this max-difference constraint in the function d(-,-) by adopting the convention
that d(z;, £;) = 400 if [2; — £;] > A, otherwise d(z;, #;) is the standard distortion as defined
above (i.e., lamming or square of difference).

We are now in a position to describe an approximate pattern matching that constitutes
a basis for a lossy compression scheme. We assume that {Xi}1L, is a file to be compressed

(e.g., M = N? {or an N x N image). Let X" = X;...X,, be a database or training sequence




(which is sent to a decoder without compression). One can think of X™ as the first few rows
in an N X N image. Our goal is to find a code that represents the rest of the file, X,‘?’_{l, in
as few bils as possible, and Lo assure that the construction of the code is computationally
efficient.

As in Luczak and Szpankowski [18, 19] we define the depth L, as the length of the

longest prelix of X123, that approximately occurs in the database. More precisely:

Let L, be the length & of the longest prefix of X33, for which there exists i,
| i< n—~k+1,such that d(X[71+ Xty < p.

A variable-length compression code can be designed based on f,,. The code is a pair
(pointer to a positioni,length of L,),if asufficiently long 1, is found. Otherwise we
leave the next L, symbols uncompressed. We clearly need log n + log L, bits for the above
code. Once X:_,Tf’" is coded, we append the next L, symbols to Lhe database, and repeal
the procedure with X259, ... Such a scheme can be called the enlarged-dalabase scheme.
In another implementation one can keep the database fixed so that the longest prefix is not
added to the database. The latter is called fized-database scheme 9cf. [27]).. Finally, in a
sliding window implementation one adds L, symbols to the database and simultaneously
the first L, symbols of the database arc deleted keeping the size of the databased constant.
In our implementation (cf. Section 3} we keep the database unchanged while comprossing
the next row of an image, and after processing a whole row we add it to the database
deleting the first row from the previous database.

In the enlarged-database scheme discussed in this section, the compression ratio r can

be approximated by

length of the overhead information  logn + log L,
= = - (2)
length of repeated subword Ly

However, Kieffer in a private correspondence [15] pointed out that a precise estimation of
the compression ratio is more complicated. Indeed, let X ) be the database after the kth
application of the above procedure. QObserve that

|X(k)f+le(k)

XH) — x (8, X 50911 (3)

where * denotes concatenation. Then, the compression ratio » should be computed as

_log | XM £ log | XN + -+ + log | X))
- D] - (4)

In this paper, we adopt (2) to simplify the presentation.




Finally, we should mention in passing that one can design a block coding (i.c., fixed
length code) for lossy data compression based on another parameter, namely the wailting
time Ny (cf. [24, 26, 29, 27]), defined as the smallest N > 2¢ such that d(X§, X§_,,,) < D.

In this paper, we focus on L, and variable length compression codes.
2.2 Main Theoretical Results

We review and slightly gencralize results of Luczak and Szpankowski [19] to demonstrate
the quality of the lossy data compression outlined in the previous subsection. In order to
[ormulate the results we must adopt a suitable probabilistic model. This turns out to be a

mixing stationary model, to be defined below.

(M) Mixine MoDEL

Lel Fp, be a o-field gencrated by {X}]_,, for m < n. There exists a function a(-)
of g such that: (i) limg_o a(g) =0, (ii) a(1) < 1, and (iii) for any m, and two events
AeFr  and B € F, the following holds

—co m+g

(1-a(g))P(A)P(B) < P(AB) < (1+ o(9))P(A)P(B) . (5)

The probabilistic behavior of L, (as well as ¥;) depends on a generalized entropy. To
define it, we must first introduce a D-ball Hp(wy) with center wy € A*, which represents
all strings of lenglh % that are within distance D from the center wy; that is, for w; € A*,
Bp(wy) = {&f : d(wy,2¥) < D}. We simple write P(Bp(XT)) for the probability measure

of the sel of all scquences of length n within distance D from a random sequence XT.
Definition. (GENERALIZED RENYI ENTROPY) For a fixed D > 0 let

—Elo &
ro(D) = E‘go El gP;E.BD(Xl )) i (6)

provided the above limit exist. O
The following lemma provides a condition under which ro(D) exists.

Lemma 1. Under assumption (M) regarding the mizing stationary model, the generalized
enltropy ro( D) exisls for any subadditive distorlion measure satisfying conditions (F'1)-(F2),

and, furthermore
_ &
ro(D) = klim log P(;?D(Xl ) (a.s.) . (7)




Proof. Result (7) follows directly from the subadditivity of the distortion measurc (F1)
and mixing model assumption (M) by an application of the Subadditive Firgodic Theorem
along the lines of arguments presented in [19). m

We finally can present our main theorctical results that provides a basis for the image

compression discussed in the next section.

Theorem 1. Under assumption (M) and condition (F1) regarding the distortion measure,

the following holds
Ln

m
n—o logn

1
- T. 8
5y ) ®
provided a(g) — 0 as g — co, and the rate of convergence of log P(Bp(X}))/n in Lemma I
is at least as good as O(1/n't?) for some § > 0. Under the same assumplions, we have

BN D) e ©)

however, L,/logn does not converge almost surely to any limil while log Ne/£ — 7o(D)

(a.s.) provided 3,5 a(g) < co.
Furthermore, the compression ratio as defined in (2) becomes

lim

f—oo

r=ro(D} (pr.). (10)

Proof. The results (8) and (9) follow directly from Lemma 1 and the first and second
moment methods along the lines of arguments used in [19]. The almost sure convergence of
log N¢/€is proved in [29], while the lack of almost sure convergence of L, / log n is established
in [18]. T'inally, (10) is a simple consequence of (2) and (8). We conjecture alter Kieffer [15]

that the compression ratio as defined in (4} also converges almost surely to ro(D).

In [18, 19] the Rényi entropy ry( D) was computed for memoryless sources and 1lamming
distance. In Iigure 1 we compared it 1o the optimal rate distortion R(D) =k + Dlog D +
(1 — D)log(1 — D), where 4 is the source entropy rate. One should observe that ro(D) is
very close to the optimal R(D} for small and medium values of D. We expect this Lo be
Lrue for Markov sources as well as mixing sources satisfying the conditions of (M).

Finally, in a practical implementation of lossy data compression for images one must
vary the maximum distortion measure D in order to avoid visual errors for low frequency
components of an image. Let us assume only two distortion levels D; and D, Dy < Dy,
and let the level D; be used on a large arca of, say A; pixels, while D is applied to an area
of Ay = N? — A pixels, where an image of N x N pixels is analyzed. Then, one easily sces
that

A A
TR N—lzro(Dl) + (1 - N—;) ro(Dy) , (11)

8




o'p 0.05 0.1 0.15 0.2 0.25 0.3

Figure 1: Comparing optimal rate distortion R(D) and Rényi entropy ro(D) for p = 0.3

where ro(D1) and ro( D7) are computed according to (6) provided one can adopt assumption
(M) on the arcas A; and A;. The above formula is valid asymptotically when n becomes
large. We should also observe that in fact 7 = ro(D)(1 + O(loglog n/logr)), thus one
expects the redundancy to be of order O(loglog r/logn).

3. ALGORITHMIC RESULTS

In this section we address the computational challenge, that is, how o compress effi-
ciently an image. The pivotal problem is to find an efficient algorithm that scarches for
the longest prefix approximately appearing in the database. We discuss several algorithms
to accomplish it, and we use them to present general compression algorithms. Detailed
implementation, with crucial enhancements, is discussed in the next section.

Throughout the rest of the paper we consider an N x N pixels image. We oflen assume
that » = f X N where 1 < f <8. As before, we write 27 as the database, and y* = zpt
as the yet uncompressed file. In other words, we number all M = N? pixels consecutively
from i = 1 to i = M, and consider a linear string m{”. In some cases, it is more convenient
for us to use double-index, so we wrile {I:',j}?;:_p Iinally, we observe that to compress an
image of N x N pixels one must look at least once at every pixel, thus Q(N?) is an obvious

lower bound for the compression time complexity.

3.1 Brute-Force Algorithm




As mentioned above, the main algorithmic problem is that of finding an cfficient way of
computing the longest prefix of #J* that approximalely occurs in a database zt.

We start with a judicious implementation of the brute force idea that computes the
longest prefix in O(mn) steps in the worst case. As before, we write d(z;, y;) for a distortion
mneasure between two symbols, where d(-, -) is understood to incorporate the max-difference

criterion discussed earlier.

Algorithm PREFIX

Input: z7 and y[*

Output: Largest integer & such that, for some index ? (1<t < n— m), d(m{'”"‘l,yf) < D.
The algorithm outputs both & and ¢.

Method: We compute, for all 7,5 $;; = Lolal distortion measure between a:::+j_l and y-l’

begin

Initialize all 5;; := 0.
fori=1ton-—mdo

for i =1tomdo

Compute S;; := S + d(ziyi—1, ¥5)

doend
doend
Let k be the largest j such that 53; < jD, and let ¢ be the corresponding
Output & and ¢

end

The above can easily be modified to incorporate the enhancements discussed later (additive
shift, etc) and to use O(1) variables rather than the S;; array. We avoided doing so here in
order not to unnecessarily clutter Lhe exposition.

Or course the above algorithm is used within a compression routine whose goal is to
compress all of y{* rather than just the prefix y¥. More specifically, in an image of size
N x N, the database 2} consists of the last f rows (we typically use 1 < f < 8) encountered
prior to the current row (i.e., n = fN), and the string y1* to be compressed is the current
row (i.e., m = N). Such an algorithm for compressing a row would use PREFIX repeatedly,

as follows:

Algorithm COMPRESS_ROW
Input: #7 where n = fN and y* where m = N.

Output: A compressed version of y1', in the form of (pointer,length) pairs.

10
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Method: We use PREFIX to “peel off” a prefix of the row being compressed, and repeat

on the remaining portion of that row uantil we use it all up.

begin
Initialize ¢ := 0
Repeat the following until i = m:
Call PREFIX on z7 and 37,.
Let & and ¢ be returned by this call to PREFIX:
If k is small (say, < 4)

then y:ﬁ is stored explicitly,

else y:ﬂ is stored as a (pointer,length) pair.
Seti: =i+ &

end

Since COMPRESS_ROW uses PREFIX O(N) times its time complexity is O(N3). (An-
other version of COMPRESS_ROW would append the already compressed portion of 4§* Lo
the database within the main loop, i.e., would subsequently call PREFIX on 77 +3i and Vg1
we expect only a minor performance improvement due to such a change).

The algorithm for compressing an ¥ X N image by & applications of the above COMPRESS_ROW
is called COMPRESS_LONG_DATABASE (in short: CLD) in contrast Lo another algorithm called
COMPRESS._ SHORT_DATABASE (in short: CSD), in which » = O(log N) and is which discussed
laler.

Algorithm COMPRESS_LONG_DATABASE (CLD)
Method: We use a “sliding window”’ of the f previous rows as the databasc for COmPpressing
the current row.

1. begin
2. fori=1to N do

3. Use COMPRESS_ROW on &} = concatenation of rowsi— f,---,i— 1, and with =
TOW 7.

4. endo

5. end

The worst case time complexity of COMPRESS_LONG_DATABASE is O(N1) because it calls
COMPRESS_ROW N times, each time at a cost of O(N?). The corresponding decompression

algorithm mostly copies and reads, and thus is very fast. Its concrete implementation (e.g.,

how the pointers are stored, how il improves on the above, etc) will be discussed in Lhe

11




Figure 2: Comparison of compression quality and computational time for similar compres-
sion ratios of the “San Francisco” image by: (a) COMPRESS_SHORT_DATABASE PMIC scheme
(56 seconds compression time); (b) COMPRESS_LONG. DATABASE PMIC scheme (1380 seconds

compression time)

next section. The worst case complexity of the above CLD algorithm is too expensive for
some applications (e.g., in a real-time system). To improve this we either must design a
faster algorithm searching for the longest prefix (given later) and/or decreasc the database

length. The latter solution turns out to be very attractive and we discuss it below.

We next sketch the COMPRESS_SHORT_DATABASE algorithm, which imitates CLD except
that it makes use of two observations to reduce the compression time. The first is that
Theorem 1 of Section 2 shows that the length L, of the prefix we seek is, with high proba-
bility, O(log ¥'). This suggests that it is reasonable to restrict the search to a prefix of length
O(log V) (although there is 2 chance we may be missing the best possible L,, by only looking
for an L,, which is O(log N')). The second observation is that, in an image, most similarities
occur within close proximity, which suggests that only a fixed number of positions at the
f previous rows be checked for the almost-occurrence of the length-L, prefix: Namely, if
we are at column j of the current row ¢ (the row currently being compressed), then the
positions we check arc positions (7', j') where ¥ € [i - f,i— 1] and j' € [j - ¢/, 5+ ¢/], and ¢
is a constant. This implies that the prefix computation now takes O(log N) time because

we are now checking only 2f¢’ (= O(1)) posilions in the f previous rows rather than all fN

12




positions in these rows, and each position takes time O(log N) since we are looking only for
a prefix of length O(log N'). Thus the total worst-case complexity is O(N?log V), only a
factor of log N away from the lower bound. The average case complexity is O(N?) since,
on average, we do O(N/log N} prefix computations per row, at a cost of O(log N) time
each, and there are N rows. (We will henceforth write O(-) for the worst case complexity,
and O(-) for the average case complexity.) This is an attractive compression speed which
makes the PMIC scheme competitive with other transform based schemes such as JPEG.
But, shortening the database and using “locality” lead to a deterioration of the compression
ratio. How much do we pay for this ? Fortunately, our experiments indicate that for most
images the deterioration is slight. Figure 2 is but one of the figures supporting this claim.

However, the next sub-seclions show that it is possible to obtain faster compression
limes even without resorting to the use of COMPRESS_SHORT_DATABASE. They do so by
giving algorithms for faster (but approximate) implementations of the PREFIX procedure.
Two of these approximation schemes arc based on the Fast Fourier Transform (cf. [17), pp.

290-294), and are discussed in the sequel.
3.2 Faster Algorithm for Square Error

This sub-section deals with a fast approximate implementation of PREFIX for Lhe square
error, without the max-difference enhancement but with the additive-shift enhancement
described earlier (we laler explain how to handle max-difference).

The first building block we need is an algorithm which tests whether one specific prefix
¥ of y* almosl-occurs in the database z7, i.e., whether there is a position ¢ in 2T for which

the following holds:
. 1.F .
d(zi 1 g) = 2 (ziria—y -8 < D,
i=1

where
_ o1&
b= D (@ivj1 — ¥5) -
=

Before giving the algorithm for detecting the above situation, let us recall that, in such a
case, datla compression is possible by avoiding storing ¢f explicitly, and instead storing the
additive shift § together with a (pointer, length) pair = (i, k) (so that, at decompression,
one would approximate each y; by ;451 — 8,1 < 7 < k).

It clearly suffices to compute a score vector C(1),- - -, C{n—k) where C2) = Zf=1($£+j—1—
y; —6)2. Once one has such a vector it is a simple matter to check whether any of its entries

is < kD. We next sketch an algorithm for computing the C(i)’s in time O(nlog ). In what
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follows, let §; = k1 Zi+k_l z;, and let § = k! Z_Ll y;- We expand the equation defining
C(i) into 10 terms:

C(2) = Coo(1)+Cyy(1)4-Caa(8)+Cap(2) +2Ca2(8)+2C5(1) = 2C0, (1)~ 2Ca5(8)~ 2C5 () —2Cz5(5)

j=i

where

k &

k x
Cre(i) = Z($i+j—1)2 v Co(B) =D (), Cz() =3 (50, ng(i)=_2(?)2

! k k
Cez(i) = Si) mwjr , Culd =92 v » Coyli)= iy
j=1

=1 i=1

k k
C,j—_,;.(i) = kS,'?_ y Cg—;y(l) = S’Zyj N CIE(E) = gz&‘:.‘.l.j_] .
i=1

j=1

The algorithm below computes the C()’s by computing each of the above 10 component

vectors.

Algorithm TEST

Input: =7 and gf.

Output: The score vector C(1),---,C(n — k), and an answer YES if any of the C(¢)’s is
< ED.

1.
2.
3.
4.

@ e

begin
Compute Crz(2), 1 <1< n— k. This is easy to do in O(n) time.
Compute Cyy (), which is independent of i, in O(k) lime.

Compute Czz(2) = k(S5,)?, 1 < i < n—k. This takes O(n) time, by the observation
that once we have §;, obtaining from it $;;; takes constant time.

Compute Cyy(2) = k(§)?, which is independent of 4, in O(k) time.

Compute Cyz(i) = S Z_’f:] Tiyi—1 = (8% 1 € i € n—k We have already
observed that computing the Si’s can be done in O(n) total time.

Compute Cyz(i) = 5-%_, 4; = #2. This is independent of i and can be computed
in constant time since we have already computed .

Compute Cy,(i) = E_f:] ZTitj—1Yi» 1 £t < n — k. This is done as follows: Par-
tition z7 into n/k chunks of size & each, call these chunks (in left to right order)
@1, 0,7+, @) Let (3 consist of the vector of length 2/ obtained by first reversing
y¥ and then padding with k zeroes. The convolulion product of # with aq *ay can be
done in O(klog &) 2nd contains the values of Cyy () for all ¢ € {1,2,- - -, k}. Similacly,
the convolution product of 3 with ap+as contains C. (i) forall i € {k+1, k42, - - -, 2k).
And so on: We do a total of »/& such convolutions in order to obtain all the Cry(t)’s.
Since each such convolution takes O(klogk) time, the total time for this step is

O((klog k)(n/k)) = O(nlog k).
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9. Compute Czy(4) = k57, 1 <i < n—k. Time: O(n).
10.  Compute Cz{(i) = 5; ZLI ¥; = 59, 1<i < n—k Time: O(n).
11. Compute Co(¢) = 3‘;2’5:] T;p;-1 = ykS;. Time: O(n).

12. Compute the C(7)’s from the 10 component vectors computed above, and check
whether any of them is < D. Time: O(n).

13. end

The time complexity of TEST is dominated by the convolution computations, and is
O(nlogk). Notice that TEST is an exact algorithm and involves no approximations. It is in
the way we use TEST that the approximation comes in the picture: We use it Iogﬁ Limes,
in a forward birary search for the value & defined as the largest & for which TEST returns
YES when given z7 and y:" as inputs. In other words we use TEST for & = 2,4,8... until
we hit a value of & (say, k') for which TEST fails: ;From then on TEST is used as in the
standard binary search over the interval [k’/2, k'] (recursive halving of the scarch interval).
It is striclly speaking inaccurate to use binary search, because TEST might fail for k and yet
that does not preclude that TEST would succeed for a bigger value than k. This lortunately
does not occur often, and can easily be accounted for in the implementation by checking a
[ew additional matchings in the modified binary search. This approach turned out to be a
reasonable approximation, and we adopted it in our implementation discussed in the next
section.

What about the max-difference criterion, which is not accounted for in the above ? As
a practical matter, we use that criterion as an additional filter (on line 12) to the output
of the above convolution-based computation, which actually returns more than just a YES
since it also gives all the candidate locations which correspond io the YES. Therefore we
can eliminate, by using the max-difference criterion, the candidate locations that fail that
criterion (if all of them are eliminated by that criterion then the YES actually becomes
a NO). The time Laken by this max-difference screening is O(n) so long as the candidate
locations being screened correspond to nonoverlapping sections of z7, but even in the worst-
case is guaranteed to be no more than O(nk).

Note that the above is not meant as a substitute for CLD (or CSD) but rather as a faster
way of performing the PREFIX computation. It could indeed be used, e.g. within CLD, as
a substitute for the old, brute force PREFIX (in that case we would have n = O(N) and
k = O(log N)). We have not yet implemented the above way of performing the prefix

computation.
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3.3 Faster Algorithm for Hamming Distance with Additive Shifts

We show now how to compute the longest prefix when Hamming distance with additive
shifts is used. Observe thal one can use Fast Fourier Transform (FFT) to find the “compare-
add” convolution of Lwo strings (this is similar to the usual convolution of two sequences,
cxcept thal the “product” of two symbols is 1 if they are equal and zero olherwise) in
time O([A[nlogn) (cf. [1]) where [A] is the size of the alphabel. This was used in [1] to
obtain an O(n'®polylog(n}) time algorithm for the case when |A] = n. Here we seek to
achieve O(n - polylog(n)) lime irrespective of the size of the alphabet, so we propose below
an agpprorimate algorithm.

We starl with the general idea behind our approach. Let ™ = zq -+ -2, be a fext string
and y™ = g1 -+ -Ym be a pallern string (m < n), both over the alphabet 4 = {1,2,.--,V}.
Recall that our goal is to find: (i) the largest k such that y; - - -y almost eccursas a substring
of z (here and in the following analysis the notion of “almost occur” is understood Lo
incorporate the additive shifl idea, that is, some additively shifted version of g - - g3 is
close, in the Hamming distance sense, to z®); and (i) the position ¢ in ™ at which it
-almost occurs, as well as the corresponding amount of additive shift. For given & and i,
the almost occurrence of y; - - -y at position 4 in z" will be determined by computing the

modulus of the following function

k
Fu(6) = Z 2™V TN Td (=i 4 5,5) (12)
=1
where d(-, -) is the distortion measure function. For computational reasons, we use d{a,b) =
a — b, that is,
k
Fk(i) - Zc2ﬂV—l\/——l(zi—1+J"y,) . (13)
i=1
We claim that y; - - -yx almost occurs in =™ if the modulus | Fi.(?)] is close to k. This is based

on the following observations:
(i) The special case of y; = zi_14; for all j € {1,---,k} implies an F¢(:) = k.

(ii) The special case of y; + ¢ = x;_y4; for all § € {1,---,k}, where ¢ is a constant (the
additive shift), also results in the above sum having 2 modulus of k and an angle of 27¢/V,
that is, Fj() = ke2™V~'V-1,

(iii) Let y; + € = &i_y4; for all § € {1,---,&}, where C is random noise with a symmetric
distribution function. For example, for €' uniformly distributed over an interval [c — 6, c+ 6]

where ¢ and § are constanl and 6 < ¢, exlensive experimentation has shown that when z
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and y are random and § is “small” compared to ¥V then the modulus of the above sum is
close 10 k. Indeed, obscrve that

F@G) = (cos(2?rV_IC') + \/—_lsin(%'V_lC))

k
=1
X 2
> (1 — 2V TR0 41 2nV IO - §Trav-acﬂ' + - -)) :
i=1
Thus, EFi(i) = k since EC%t! =0 (§ > 0) by symmetry of the distribution, and EC% ~ 0

for j > 1 by the above assumptions.

(iv) When the modulus of the above sum is close o &, we observed Lhrough an extensive
experimentation that the angle of Fi(z), that is, arg Fi(i) =9/ 8, is approximately equal
to 2rV 1 E_’;':l (Zic145 — ¥3), thus y; ~ 2;_14; — 6V (27)~1. This is not surprising since,
when |Fi(7)| ~ k, we have 8; =%/ arg (ezﬁv"v"—_l{z.-lﬂ—y:)) ~ 0. Since sin(#;) = 0 and
cos(#;) = 1, we have arg(Fy(i)) ~ 27V 1 Zfﬂ(z,-_l_'_j — ¥;), as observed.

The above implies that, for a given &, determining whether ¥; - - -3 almost occurs in
Tx can be done by computing the Fi(-) vector and checking whether the modulus of Fi(7)
is within a factor a of k for some i, where the parameter « is close to 1 (say, @ = 0.95).
The problem of computing the Fi(-) vector is easily seen to be a convolution computation:
"The convolution of the two n-length vector A = a3 ---a, and B = by,---, by, 0, -+, 0 where
aj = e2V=1V7'z; and b, = e~V i 5 < kand = 0 if 7 > k. Doing this convolution
directly takes time O(nlogn), but this time can be reduced to O(nlogk) by doing instead
n/k convolutions of (2k)-length veclors each (partitioing z™ as in Step 8 of algorithm TEST
of the previous subsection, etc).

The algorithm called APPROXIMATE PREFIX replaces the brute force PREFIX algorithm:
start with a small value for & (say, k = 4) and binary search upwards for the largest value
of k (call it k) for which the largest modulus among the entries of the Fi(+) vector is < ak.

The worst case complexity of APPROXIMATE PREFIX is O(n(logk)?) since the computa-
tion of each Fy(+) vector takes O(nlog k) time, and an additional O(log ) factor comes from
the binary search (see end of Sec. 3.2 for a comment on the approximate nature of such a

binary search).
3.4 Suffix Tree Algorithm

Finally, we brielly mention an O(N?) approximate algorithm based on a suffix tree (cf.
(2, 20]).
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The main idea is quite simple. We first build a suflix tree of the whole image N x N
(either using McCreight’s algorithm in O(N?) time [20] or by a brute lorce approach in
O(N?log N) time [2]). Once the suffix tree is constructed, one can find ezact longest prefix
in a row starting at any position in O(N') steps or with high probability in O(log N) steps.
Searching for an approximate prefix it much more complicated and usually leads to an
explosion in the search time. To circumvent this problem, we explore from every node of
the suffix tree only a lixed number, say g, of paths (cf. [9]). Our preliminary experimental
results indicate that such a restriction does not lead to significant deterioration of the

compression ratio and quality of the image.

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS

This section describes in details the currently implemented version of Paltern Matching
Image Compression that is based on the ideas discussed above. As we shall see several
enhancements to this main idea were implemented. Results of our experimental studies of
PMIC are also discussed. We conclude with a discussion of the advantages and disadvan-
tages of PMIC method.

4.1 Implementation

The main idea of our scheme was already described in the previous sections. In short,
after selecting a database — which consists of few last rows in in image — we search for the
longest prefix in the uncompress image that approximately occurs in the database. In our
implementation we chose quadratic distortion measure with the max-difference criterion, as

already discussed in Section 3.2. Recall that this distortion between slrings z§ and yf is:

_ 11X

§ = ¢ D (=i —w)
=1

1&E _
d(.?:k, yk) = Z(:L‘“ — - 5)2 .
i=1
This main idea is modilied with several enhancements that make PMIC attractive, Wo

describe them in the sequel:

Additive Shift. As mentioned in the previous section, it is reasonable to cxpect that in an
image there are several substrings, say ™, y™, that differ only by almoest conslant pattern,
that is, % = #; + ¢ for I < ¢ < m where c is not necessary a constant, bul whose variation
is rather small. Storing e as well as a (pointer, length) pair enables us to recover %; [rom

zi, instead of storing y; explicitly. In general, we determine the additive shift ¢ by checking
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whether the following condition is fulfilled or not

2
1 (& , 1 (& ,
; (Z(le - yl) - ; (Z(:’cl —‘y:)) ) S D
i=1 i=1
where D' is a constant. If the above holds, we compute the shift ¢ as
LS @i- )
c= — Pi— v .
m i=1 Y
The reader can easily verify that for z; = % + ¢, and ¢ a constant, the above procedure

returns c.

Reverse Prefix. It turns out that in an image there arc substantial similarities belween a
substring in the uncompressed file and reverse substring in the database. That is, we search

for the largest prefix of y™ that occurs approximately in z) (scanned backward).

Variable Maximum Distortion. It is well known that human eyes can easily distinguish
an “undesired” pattern in a low [requency (constant) background while the same patlern
might be almost invisible to human eyes in high frequency (quickly varying) background (cf.
[7, 13]). Thercfore, we used a low value of maximum distortion, say Dy, for slowly varying
background, and = high value, say Dy, for quickly varying background. To rccognize these
Lwo different situations, we review the notion of the derivative D of an image Z. It is defined
in a natural way as the average difference between a pixel and its down and right pixels.
More precisely, the derivative D;; of pixel z;; at position (Z,7) is a scalar computed as
Dy; = (it = Tij) ; (Zij1 = i)

In our implementation, we used the lower value of ) whenever D;; < 3 and the higher value

of D olherwise. In Figure 3 we compared the quality of the compression for constant D
and variable D (with two values of D). In Figure 3(2) a constant D was used, and one can
easily recognize the distortion around the cloud on the slowly varying sky. This problem

disappears in Figure 3(b) where a variable D is used.

Small Prefix. It does not make too much sense to store a (pointer, position) when the

longest prefix is small. In this case, we store the original pixels of the image.

Run-Length Coding. For those parts of the picture that do not vary at all, or vary little,
we used run-length coding: if the next pixels vary little, we store a pixel value and the

number of repetitions.

We are finally able to describe the compression code which is also presented in Figure

4. T{ consists oft
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Figure 3: Comparison of the “San Francisco” image compressed by PMIC: (a) with constant

D and compression ratio 7.5; (b) variable D and compression ratio 8.3.

¢ 1 bit (C/I") to indicate whether the next 4 bytes are copied from Lhe image or a

(posttion,length) pointer pair,
* 1bil (F/R) to indicate whether we store forward or reverse prefix,

¢ variable length pointer to the position in the database or copy from the database
depending whether C/F =1 or 0,

¢ variable length of the longest prefix,
¢ additive shift ¢ described ahove.
Optionally, we can also store the {ollowing information if the run-length code is used
o 1 bits (Rn) whether run length code is used or not,
s repealed pixel,
¢ number of repetitions.

From the above description, one can easily see that the decompression algorithm is very
simple and amounts most of the time to reading a value and writing it elsewhere (with,
occasionally, an additive shift ¢). No inverse transforms, no multiplications - it is indeed a

very simple decompression algorithm.
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Figure 4: Structure of the compression code

4.2 Experimental Results

In order to assess the quality of our PMIC scheme, we performed a series of experiments,
and compared PMIC with the standard JPEG (UNIX implementation), wavelet compression
(cf. [8]), and also fractal compression (implemented as described in [10]).

Before presenting our experimental results, one must decide about metrics of compari-
son. It is natural to use (real) compression (scale) = (size of the original file)/(size of the
compressed file) as one metric. We also use the compression ratio r in bpp (bits per pixel),
as defined in Section 2.

There is, however, more controversy on how to measure the quality of compression (cf.
[13, 22]). In Section 2 we discussed a measure of distortion d(-,-) which usually for image

compression becomes squarc-root measure or root-mean-squared-error (RMSE) defined as

1 XN
RMSE = ﬁ (l?:,'j - .’E‘ij)z
ilj:I
where Z represents the compressed /decompressed image. In fact, traditionally this measure
is redefined as

o
PSNR = 20log,q (R—M"’%) .

One also observes that another possible measure is simply the average-gray-fevel-error
(AGLE), that is

1 Y )
AGLE = F .21 IIij - 93|'j| .

It is well known (ci. [13]), and cofirmed by our experiments, that either all the above
measures were doing well or none of them was good. For example, in our experimental study,
the latter situation occured when comparing ”variable-D” versus *constant-D” methods. In
Figure 3 both images scored almost the same RMSE/PSNR/AGLE while visual comparison
clearly indicates that “variable-D” method is much better. In such a situation, we either

must resort to sophisticated visual tests such as Contrast Sensitivity Function (CSF) (cf.
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[7]) or use another measure of comparison. We choose the latter, which is basically a
weighted L° norm for some b > 0 (cf. [13]).

We first observe that visual distortion is most visible for low frequency (slowly varying)
background. This suggests the introduction of weights that are inversely proportional to

the derivative D;; at pixel (z, 7). Let

W,'j =

D' Dy #0
z Di; =0

where Z Is a large number such that Z » max‘pl.J#g{D,-}l}. Then, for a parameter b we

define
N i/b
olw, &) = | ) wis(zij — &45)°
ij=1
where
W = Wi;
13— —N  vrr
f?;:l Wl‘.?.

Olserve that for & — o we obtain
feo(Z,Z) = ml_?x{:c.-j - 25} -

In most of our comparisons, we use the simplest “average grey level error” AGLE.

Now, we are in position to present some of our images and compare them with other
methods of compression. Since PMIC compression systematically was superior Lo a fractal
compression (cl. Figure 7) we concentrate here on comparing PMIC with JPEG and wavelet
compression. In I'igure 5 the “San Prancisco” image is shown. It has two features interesting
to us: First, the sky has almost constant (low frequency) background. Secondly, buildings
have sharp edges (high frequency). In Figure 3 we already investigated the former problem,
and concluded that for such images adaptive level of distortion (i.e., variable-D) is needed
to obtain high quality piclure. The latler problem is better shown in Figure 6 where a
magnified fragment of the “San Francisco” image is presented.

From these three pictures (Iigures 3, 5 and 6) we conclude the following. While TFigure
5 suggests that the overall quality of JPEG, wavelet compression and PMIC is almost the
same, Figure § indicates that PMIC is quite superior for images containing substantial
amounts of high frequencics. On the other hand, we observe that ore has to use adaptive
level of maximum distortion to obtain a good quality image. Finally, from Figure 2 we
conclude by a visual test that COMPRESS_SHORT_DATABASE does not deteriorate significantly

the quality of the picture, while decreasing by a factor of 25 the compression time.
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Figure 5. Comparison of “San Francisco” image compression: (a) Original picture; (b)

JPEG with the average gray-level error (AGLE) equal to 4.6 and compression ratio equal
to 8.5 (~ 1 bpp); (c) Wavelet based compression with AGLE=3.56 and compression equal
lo 6.82 (1.2 bpp); (d) PMIC with AGLE equal to 6.4 and compression ratio equal to 8.3 (~

1 bpp).
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(b)

Figure 6: Comparison of a fragment of the "San Francisco” image: (a) JPEG; (b) Pattern
Matching Image Compression (PMIC).

So [ar, we discussed only “photographic” images. It turns oul that PMIC works partic-
ularly well for “graphic” images like Figure 7, which are well suited for run-length encoding.
In addition, in Figure 8 we plotted a more extensive comparison graph where compression
ratio 7 (in bpp) versus average gray-level error AGLE is presented and compared with JPEG
and the wavelet compression approach. Our conclusion is that PMIC is competitive with

JPEG and wavelet based compression, and on many instances superior.

5. CONCLUDING REMARKS

In this paper we described an experimental image compression called Pattern Matching
Image Compression (PMIC) that is non-transform technique for processing images. It is
based on an approximate pattern matching and lossy extension of the Lempel-Ziv scheme.
To the best of our knowledge, it is the first image compression method for which one
can prove guaranteed performance metrics, that is, theoretical compression ratio versus
maximum measure of distortion. In Seclion 2 we indicated that for the basic scheme the
compression ratio achieves the rate of the generalized Rényi eniropy ro(D) introduced in
[19]. While 7o(D) is greater than the optimal rate-distortion function R(D), numerical

evaluation (cf. Figure 1) indicates that the difference is not too big for small values of
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Figure 7: Comparison of image compression of the "Basselope”: (a) Fractal compression
with an average gray-level error AGLE=2 and compression 5.5 (1.45 bpp); (b) Wavelet based
compression with AGLE=2.66 and compression 6.14 (1.3 bpp); (¢) JPEG with AGLE=4.3
and compression 7.8 (1 bpp); (d) Pattern Matching Image Compression (PMIC) with
AGLE=2.9 and compression 7.8 (1 bpp).
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Figure 8: Compression ratio r [bpp] versus the average greay-level error (AGLE) for JPEG
(o), wavelet transform (e}, and PMIC (o} of the “Basselope” image

D. More importantly, such a suboptimal lossy compression is computationally efficient. In
Section 3 we presented several algorithms for image compression.
Finally, the actual implementation of PMIC with several enhancements was discussed

in Section 4. Experimental image compressions shown in that section suggest that:

¢ PMIC is slower in the compression time but the fastest possible in the decompression

time,

e Qverall quality of compression is good and competitive with JPEG and wavelel based
compression; PMIC compression works better when high {requency components dom-

inate the image,

s PMIC is systematically beiter than fractal compression in the compression time and

quality,

o PMIC is an automatic image compression, in the sense thal its parameters adjust

adaptively during the compression.
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While so far results are promising, more research in this area is needed. In fact, com-
pression based on exact and a2pproximate pattern matching is not restricted to image com-
pression. Il is obviously good for text compression, but we belicve we have identified a

scheme for audio compression. This will be reported in a forthcoming paper.
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