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We propose a non-transform image compression scheme based on approximate pattern
matching, that we name Pattern Matching Image Comp"ession (PMIC). The main idea
behind it is a lossy extension of the Lcmpel-Ziv data compression scheme in which OIle
searches for the longest prefix of an ullcompressed image that approximately occurs in the
already processed imager (e.g., in the sense of tIle Hamming distance or, alternatively, of
the square errol' distortion). This main algorithm is enhanced with several new features
such as searching for reverse approximate matching, recognizing substrIngs in images that
are additively shifted versions of each other, introducing a variable and adaptive maximum
distortion level D, and so forth. These enhancements are crucial to the overall quality of our
scheme, and their efficient Implementation leads to algorithmic results of interest in their
own right. Both algorithmic and experimental results are presented. Our scheme turns out
to be competitive with JPEG and wavelet comprcssion for graphical and photographical
images. A unique feature of the proposed algorithm is that an asymptotic performance
of the scheme can be theoretically established. More precisely, under stationary mixing
probabilistic model of an image and fi...xed maximum distortion level D, it is shown that the
wmpressioll ratio is asymptotically cqual to the so called generalized Renyi entropy ro(1]).
This entropy is in general smaller than the optimal rate distortion function R(D), but there
is numerical evidence that these two quantities do not differ too much for small and medium
values of D.

Index Terms: Lossy Lempel-Ziv scheme, approximate pattern matching, image compres
sion, generalized Renyi entropy, Hamming and square-root distortIon, mixing probabilistic
model, string editing and algorithms on words, Fast Fourier Transform, image derivative,
.TPEG, wavelets and fractal image compression.
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1. INTRODUCTION

Data compression based on exact paUern matching can be traced back to seminal papers

of Lempcl and Ziv (31, 32, 33], but recently there has been a resurgence of interest in

this type of data compression. This might be a consequence of rapid growth in digital

representation of multimedia (e.g., text, audio, image, video, etc.) which are particularly

amenable to pattern matching manipulations. It was known for a along time that pattern

matching based data compression - such as Lempel-Ziv schemes LZ77 [32) and LZ78 (33]

- is very attractive for text compression. For example, such schemes were llsed in the

UNIX compress and gunzip commands, and in a CCITT standard for data compression

for modems. An attractive feature of such solutions is Lhat one can prove asymptotical

optimality of lossless data compression schemes based on Lempel-Ziv algorithms. A natural

question that arises is whether lossy extensions of the Lempel-Ziv scheme are asymptotically

optimal, and whether they might be of practical interest. In particular, one may wonder

whether image compression based on approximate pattern matching is an attractive solution

and can be competitive with standards such as JPEG, or with newer image compression

techniques such as fractal or wavelet. In this paper, we believe we can give an affirmative

answer to these questions. After recalling (and somewhat extending) some recent theoretical

results of Luczak and Szpankowski [18, 19J which constitute a theoretical basis for the lossy

compression based on approximate pattern matching, we present our experimental results

with pattern matching image compression that support the above claim.

It must be said that early attempts on lossy compression based on pattern matching

were rather unsuccessful. Already in 1980 Ziv [31] (d. also [28]) proposed an optimal lossy

compression scheme at ftxed rate level, while Ornstein and Shields [21], and independently

Kieffer (It\] gave a universal lossy compression for coding at fixed distortion level. Unfortu

nately, all of these schemes were prohibitively expensive from the computational complexity

point of view. Recently, a quest for asymptotically optimal and computationally attractive

lossy data compression based on approximate pattern matching has begun [9, 23, 24, 30].

But one may wonder whether a practical and optimal lossy compression exists at all. Yang

and KieIrer in their recent paper [28] expressed the following opinion: " ... it is our belief that

a universal lossy source coding scheme with attractive computational complexity aspects

will never be found." We share this view, and we believe that investigations of suboptimal

and practical heuristics for lossy compression are needed.

In view of this, Luczak and Szpankowski [18, 19] (cf. also [24]) constructed a simple,

computationally attractive lossy data compression based on approximate pattern matching.
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The main idea was to search for the longest prefix of the uncompressed me that approxi

mately occurs in the already compressed me (the so called "training sequence" or "database

sequence"). It was proved in [19J that under a stationary mixing probabilistic model of an

image, the compression ratio can asymptotically ach.ieve the so called genemlized Renyi en~

tropy ro(D) (cf. next section for a precise definition). It was observed that ro(D) ::::: R(D)

where R(D) is the optimal (rate-distortion) compression ratio. The next step to undertake

is to see whether a lossy (e.g., for images) compression scheme based on such an approxi

mate pattern matching can lead to a practical and efficient algorithm (i.e., computationally

and in terms of compression ratio). In this paper, we discuss algorithmic issues encountered

in image compression based on pattern matching, and report our experimental studies.

It must be stressed that the scheme we shall propose in this paper, henceforth called

Pattern Matching Image Compression (PMIC for short), is a major modification of the

basic idea described above and analyzed in [19]. A straightforward implementation of the

basic scheme on real images (structured data) seems not to be attractive from a practical

point of view, so that the enhancements we describe in what follows play an important role

in the quality of the experimental results we obtained. These include searching for reverse

approximate matching, recognizing substrings in images that are additively shifted versions

of each other, making the maximum distortion level D variable and adaptive, and so forth.

The implementation of our scheme leads to algorithmic issues th.at are of independent

interest, e.g., the computation of the longest prefix of a string that almost-occurs in another

string (perhaps in an additively shifted form). The algorithms we give for the Hamming

distance case are quite different from those we give for the square error distortion.

Our general practical conclusion can be summarized as follows: The proposed non

transform scheme achieves compression ratios comparable to JPEG (UNIX implement<L

Lion), wavelet compression (implementation based on [8D, and better than fractal image

compression (implemented according to [loD. PMIC works particularly well for images

with high frequencies (e.g., containing sharp egdes, etc). The compression time is slower

than transform based methods such as JPEG and wavelet, but decompression time seems

to be the fastest possible due to the fact that our decompression scheme mostly only reads

and writes data without any processing (occasionally it performs one addition operation

between the read and the write). We believe that our compression time will become com

petitive with transform based methods once we implement the faster compression schemes

of Section 3.

There is a huge volume of knowledge on image processing (d. (12, 13, 22]) but the

majorIty of image compression techniques are based on transform methods. On the other
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nand, lossy Lempel-Ziv schemes based on approximate pattern matching were discussed

in (9, 16, 18, 19, 23, 24, 29], however, to the best of our knowledge (with a possible ex

ception of [9]) no real and successful image compression implementation was reported so

far. In fact, a literature on the probabilistic analysis of approximate pattern matching is

rather scarce, too. We should mention here the paper of Steinberg and Gutman [2-1], and

Luczak and Szpankowski [l8, 19], as well as recent results of Yang and Kieffer [29]. Arratia

and Waterman [3] also analyzed an approximate pattern matching problem in the context

of molecular biology. The reader is referred to the survey [11] and/or a recent book by

Crochemore and Rytler [6J on string matching algorithms. As will become apparent soon

(cL Section 3), most of the algorithms for approximate pattern matching proposed in the

literature so far will not be applicable to our situation of lossy image compression.

The paper is organized as follows. In the nexL section we recall some concepts and

results from Luczak and S7.pankowski [19]. Next we discuss algorithmlc issues, namely fast

algorithms to identify a longest prefix that occurs approxlmaLely in the database, and we

present several variations of image compression algorithms. Finally, we discuss our imple

mentation of the PMIC scheme, and present several results on graphic and photograpllic

Images.

2. PROBLEM FORMULATION AND THEORETICAL RESULTS

In LItis section, we describe in general terms a lossy data compression based on approx

imate pattern matching, and review and slightly generalize theoretical results of Luczak

and Szpankowski (19] (d. also [24, 29]) that constitute a foundation for the performance of

the lossy compression scheme. We formulate our results in terms of distortion rate theory

of source coding to show their generalHy and further potential applicability to multimedia

(e.g., auello compression).

2.1 Basic Definitions

Consider a stationary and ergoellc sequence {Xdk;l taking values in a finite alphabet

A. For image compression the alphabet A has size IAI = 256. We write X~ to denote

X m X m +1 ••. X n , and for simplicity X n = Xl ... X n . We also use P(X n ) for the probability

of the n-tuple Xl. We encode Xl into a compression code en, and the decoder produces

an estimate Xl of Xl. We assume that the reproduction alphabet A = A. More precisely,

a code en is a function ¢: An -+ {O, I}·, thus, Cn = ¢(:z:~), where lower-case letters

represent realizations of a stochastic process. On the decoding side, _the decoder function

1/J: {O, I}" -+ An is applied to find xr 4'(cn). Let t(en) be the length of a code
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representing Xl' Then, the comp"ession ratio is defined as r(xr) = P.( cn)/n (e.g., for image

compression T(Xr) is expressed in bits per pixel, Le., bpp), and the average compression

ralia i, E(,.(Xi'lJ = EI(en)ln.

Since we are interested in lossy compression, we need a measure of fidelity d(.,.) that

defines how far away the reproduction vector Xn (e.g., compressed/decompressed image)

is from the source vector X n. We only consider single-letter fidelity measures, that is, such

that

d(xn,xn) =.!. td(x;,Xi).
n ,=1

Furthermore, in order to use properly the rate distortion theory we impose the following

two conditions on the fidelity measure (cf. [5,14,24]):

(Fl) SUBADDI'l'!VITY. For any two integers n, m, and given vectors x n+m , yn+m we postu

late that

d(xn+m yn+m) < _n_d(xn yn) + ~d(xn+m n+m).
, -n+m' n+m n+l,Yn+I (1)

(F2) FINITENESS..For each D > 0, there exists a countable subset A l of A and a countable

measurable partition {E;} of A such that d(x,y):::; D for x E {Ed and y E Al such

that

- L P(Ei)lagP(Ei) < 00 .

Examples of fidelity measures satisfying (F1) and (F2) are: Hamming distance, where

d(Xi, Xi) equals one if Xi = xi and equals zero otherwise, and the square error distortion

where d(Xi,Xi) = (Xi - i;)2.

Our experimental work has concentrated on the square error distortion, which is natural

for image compression, and constructs, for a given D > 0, a D-semifailhful code, i.e.,

one such that d(xn,xn) :::; D. Our code will also satisfy the addltional constraint that

Ix; - xzl :::; b. where .6. is a suitably chosen value. This additional constraint, which we

call max-difference constraint, ensures that visually noticeable "spikes" are not averaged

out of existence by the smoothing effect of the square error distortion constraint. We

incorporate this max-difference constraint in the function d(·,·) by adopting the convention

that d(x;, Xi) = +00 if IXi - xi! > .6., otherwise d( Xi, Xi) is the standard distortion as defined

above (i.e., Hamming or square of difference).

We are now in a position to describe an approximate pattern matching that constitutes

a basis for a lossy compression scheme. We assume that {Xd~I is a file to be compressed

(e.g., M = N 2 for an N x N image). Let X n = Xl .. ,XII be a database or training sequence
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(which is sent to a decoder without compression). One can think of x n as the first few rows

in an N X N image. Our goal is to find a code that represents the rest of the file, X~1' in

as few biLs as possible, and to assure that the construction of the code is computationally

efficient.

As in Luczak and Szpankowski [18, 19J we define the depth L n as the lengt.h of the

longest prefix of X~l that approximately occurs in the database. More precisely:

Let L n be the length k of the longest prefix of X~1 for which there exists t,

1 < i < n - k + 1 such that d(X!-l+k X n+k) < D.- - , " 71+1 -

A variable-length compression code can be designed based on Ln. The code is a pair

(pointer to a position i, length of L n ), if a sufficiently long L n is found. Otherwise we

leave the next L" symbols uncompressed. We clearly need log n + log L n bits for the above

code. Once x:::tf" is coded, we append the next L n symbols to t.he database, and repeat

the procedure with X~Ln+l. Such a scheme can be called the enlarged-database scheme.

In another implementation one can keep the database fixed so that the longest prefix is not

added to the database. The latter is called fixed-database scheme 9cf. [27]) .. Finally, in a

sliding window implementation one adds L n symbols to the database and simultaneously

the first L" symbols of the database arc deleted keeping the size ofthe databased constant.

In our implementation (cf. Section 3) we keep the database unchanged while compnlsslng

the next row of an image, and after processing a whole row we add it to the database

deleting the first row from the previous database.

In the enlarged-database scheme discussed in this section, the compression ratio 1" can

be approximated by

length of the overhead information
T=

length of repeated subword
log n +10gLn

L n
(2)

However, Kieffer in a private correspondence [15J pointed out that a precise estimation of

the compression ratio is more complicated. Indeed, let X(k) be the database after the kth

application of the above procedure. Observe that

where * denotes concatenation. Then, the compression ratio r should be computed as

loglx(1)1 + [ogIX(2)1 + ... +log IXI')1
T = --"''----'--'---''-7IX=(,ci+"")"-1-'---=--'

In this paper, we adopt (2) to simplify the presentation.
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Finally, we should mention in passing that one can design a block codlng (i.e., fixed

length code) for lossy data compression based on another parameter, namely the waiting

time Nt (cf. [24,26,29,27]), defined as the smallest N ~ 2e such that d(Xi, Xj~_t+l) ~ D.

In this paper, we focus on L 71 and variable length compression codes.

2.2 Main Theoretical Results

We review and slightly generalize results of Luczak and Szpankowski [19] to demonstrate

the quality of the lossy data compression outlined in the previous subsection. In order to

formulate the results we must adopt a suitable probabilistic model. This turns out to bc a

mixing stationary model, to be defined below.

(M) MIXING MODEL

Let F~ be a a-field generated by {Xdk=m [or m ~ n. There exists a function 0:(-)

of g such that: (i) limg .....oo o:(g) = 0, (ii) 0:(1) < 1, and (iii) for any m, and two events

A E F~oo and B E F;:+g the following holds

(1 - a(g))P(A)P(B) S P(AB) S (1 +a(g))P(A)P(B) . (5)

Tile probabilistic behavior of Ln (as well as Nt) depends on a generalized entropy. To

define it, we must first introduce aD-ball BD(Wk) with center Wk E A k , which represents

all strings of length k that are within distance D from the center Wk; that is, for Wk E A~',

BD{W~.) = {xt: d{Wk,X~-).$D}. We simple write P{BD{Xi l
)) for the probability measure

of the set of all sequences of length n within distance D from a random sequence Xl'

Definition. (GENERALIZED RENYI ENTROPY) For a fixed D > 0 let

'o(D) = lim -ElogP(Bv(XfJ)
k.....oo k

provided the above limit exist. 0

The following lemma provides a condition under which To{D) exists.

(6)

Lemma 1. Under assumption (M) regarding the mixing stationary model, the genemlized

entropy To(D) exists for any slJbadditive distortion measure satisfying conditions (F1)-{F2),

and, furthermore

To(D) = lim -logP(Bv(Xf)) (a.s.).
k_oo k
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Proof. Result (7) follows directly from the subaddHivHy of the distortion measure (Fl)

and mixing model assumption (M) by an application of the Subadditive Ergodic The07"em

along the lines of arguments presented in [19J.•

We finally can present our main theoretical results that provides a basis for the image

compression discussed in the next section.

Theorem 1. Under assumption (M) and condition (Fl) regarding the distortion measure l

the following holds

(8)

(9)

(pr. )lim L n = _1_
n ..... OO logn ro(D)

provided O'(g) --+ 0 as g --+ 00, and the rate of convergence of log P(BD(Xf))/n in Lemma 1

is at least as good as O(I/n l +6) for some 6 > O. Under the same assumptions, we have

li logN, (D) ()
ill --=ro pro ,

t .....oo f.

however, Ln/ log n does not conve'"[]e almost surely to any limit while log Nt!£ ...... ro(D)

(a.s.) provided Lg~l 0'(9) < 00.

Furlherm01'e, the comp"ession ratio as defined in (2) becomes

T ~ ro(D) (pr.). (10)

Proof. The results (8) and (9) follow directly from Lemma 1 and the first and second

moment methods along the lines of arguments used in [19]. The almost sure convergence of

log Nt!eis proved in [29], while the lack of almost sure convergence Df L n / logn is established

in [19J. Finally, (10) is a simple consequence of (2) and (8). We conjecture after Kieffer [15]

Lhat the compression ratio as denned in (4) a1SD converges almost surely to ro(D) .•

In [18, 19J the Renyi entrDpy To(D) was computed for memoryless sources and Hamming

distance. In Figure 1 we compared it to the optimal rate distortion R(D) = h +Dlog {) +
(1 - D)log(1 - D), where h is the source entropy rate. One should observe that 7'o(D) is

very close to the optimal R(D) for smaU and medium values of D. We expect this to be

Lrue for Markov sources as well as mlxing SDurces satisfying the conditions Df (M).

Finally, in a practical implementation Df lossy data compression for images one must

vary the maximum distortiDn measure D in order to avoid visual errDrs for low frequency

compDnents of an image. Let us assume only two distortion levels D I and D?" Dl < D?"

and let the level D l be used on a large area of, say Al pixels, while D?, is applied tD an area

Df A?, = N 2
- Al pixels, where an image of N x N pixels is analyzed. Then, one easily sees

that

(11)
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Figure 1: Comparing optimal rate distortion R(D) and Renyi entropy To(D) for p = 0.3

where ro(Dd and ro(D2 ) are computed according to (6) provided one can adopt assumption

(M) on the areas Al and A2 • The above formula is valid asymptotically when n becomes

large. We should also observe that in fact r = ro(D)(l + O(loglognflogn)), thus one

expects the redundancy to be of order O(log log n/ log n).

3. ALGORITHMIC RESULTS

In this section we address the computational challenge, that is, how to compress effi

ciently an image. The pivotal problem is to find an efficient algorithm that searches [or

the longest prefix approximately appearing in the database. We discuss several algorithms

to accomplish it, and we use them to present general compression algorithms. Detailed

implementation, with crucial enhancements, is discussed in the next section.

Throughout the rest of the paper we consider an N x N pixels image. We onen assume

that n= f x N where 1 .:::; f .:::; 8. As before, we write xf as the database, and yj = x~:::i"

as the yet uncompressed file. In other words, we number all M = N 2 pixels consecutively

from i = 1 to i = M, and consider a linear string xff . In some cases, it is more convenient

for us to use double-index, so we write {Xi,j}!J=l. Finally, we observe that to compress an

image of N x N pixels one musllook at least once at every pixel, thus Q(N 2 ) is an obvious

lower bound for the compression time complexity.

3.1 Brute-Force Algorithm
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As mentioned above, the main algorithmic problem is that of nnding an efficient way of

computing the longest prefIx of yi that approximately occurs in a database xf.
We start with a judicious implementation of the brute force idea that computes the

longest prefix in O(mn) steps in the WaIst case. As before, we write d(x;, Yj) for a distortion

measure between two symbols, where d(·, .) is understood to incorporate the max-difference

criterion discussed earlier.

Algorithm PREFIX

Input: xf and yi
Output: Largest integer k such that, for some index t (1 ~ t ::; n - m), d(X~+k-l,Vn -:; D.

The algorithm outputs both k and t.

Method: We compute, for all i,j Sij :::: total distortion measure between x;+j-r and yf.

begin

Initialize all Sij ;= o.
fori:::: 1 ton-mdo

forj::::1tomdo

Compute S;j:= Si,j-1 +d(x;+j_I,Vj)

doend

doend

Let k be the largest j such that Sij ::; jD, and let l be the corresponding i

Output k and t

end

The above can easily be modified to incorporate the enhancements discussed later (additive

shift, etc) and to use 0(1) variables rather than the Sij array. We avoided doing so here in

order not to unnecessarily clutter the exposition.

Of course the above algorithm is used within a compression routine whose goal is to

compress all of vT' rather than just the prefix yf. More specifically, in an image of size

N X N, the database xf consists of the last J rows (we typically use 1 ~ f::; 8) encountered

prior to the current row (Le., n:::: f N), and the string Yi to be compressed is the current

row (i.e., m :::: N). Such an algorithm for compressing a row would use PREFIX repeatedly,

as follows:

Algorithm COMPRESS_ROW

Input: x~ where n :::: f Nand V"{' where m:::: N.

Output: A compressed version of Yi, in the form of (pointer, length) pairs.

10



Method: We use PREFIX to "peel off" a prefix of the row being compressed, and repeat

on the remaining portion of that row until we use it all up.

begin

Initialize i := 0

Repeat the following until i = m;

Call PREFIX on xf and V~l.

Let k and t be returned by this call to PREFIX:

If k is small (say, ::; 4)

then y:tf is stored explicitly,

else v:tf is stored as a (pointer, length) pair.

Set i ;= i + k

end

Since COMPRESS_ROW uses PREFIX O(N) times its time complexity is O(N3 ). (An

other version of COMPRESS_ROW would append the already compressed portion of Vr to

the database within the main loop, Le., would subsequently call PREFIX on xf *vi and Y~l;

we expect only a minor performance improvement due to such a change).

The algorithm for compressing an NxN image by N applications of the above COMPRESS_ROW

is called COMPRESS_LONG_DATABASE (in short: CLD) in contrast to another algorithm called

COMPRESS_SHORT-DATABASE (in short: CSD), in which n = O(logN) and is which discussed

hLler.

Algorithm COMPRESS_LONG_DATABASE (CLD)

Method: We use a "sliding window'" of the j previous rows as the database for compressing
the current row.

1. begin

2. for i = 1 to N do

3. Use COMPRESS_ROW on xf = concatenation of rows i - j, ... ,i - 1, and with Vr' =
row i.

4. endo

5. end

The worst case time complexity of COMPRESS_LONG_DATABASE is O(N4
) because it calis

COMPRESS_ROW N times, each time at a cost of O(N 3
). The corresponding decompression

algorithm mostly copies and reads, and thus is very fast. Its concrete implementation (e.g.,

how the pointers are stored, how it improves on the above, etc) will be discussed in lhe
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(a) (b)

Figure 2: Comparison of compression quality and computational time for similar compres

sion ratios of the "San Francisco" image by: (a) COMPRESS_SHORT_DATABASE PMIC scheme

(56 seconds compression time); (b) COMPRESS_LONG_DATABASE PMIC scheme (1380 seconds

compression time)

next sectIon. The worst case complexity of the above eLD algorithm is too expensive for

some applications (e.g., in a real-time system). To improve this we either must design a

faster algorithm searching for the longest prefix (given later) and/or decrease the database

length. The latter solution turns out to be very attractive and we discuss it below.

We next sketch the COMPRESS_SHORLDATABASE algorithm, which imitates eLD except

that it makes use of two observations to reduce the compression time. The first is that

Theorem 1 of Section 2 shows that the length L n of the preHx we seek 1s, with high proba

bility, O(log N). This suggests that it is reasonable to restrict the search to a prefix of length

O(log N) (although there is a chance we may be missing the best possible L n by only looking

for an Ln which is O(logN)). The second observation is that, in an image, most simllarities

occur within close proximity, which suggests that only a fixed number of positions at the

f previous rows be checked for the almost-occurrence of the length-Ln preflx: Namely, if

we are at column j of the current row i (the row currently being compressed), then the

positions we check arc positions (i', j') where i' E [i - t, i - 1J and j' E [j - cl ,j+ e'J, and e'

is a constant. TIllS implies that the prefix computat10n now takes O(log N) time because

we are now checking only 2Jc' (= 0(1)) positions in the f previous rows rather than all fN

12



positions in these rows, and each position takes time O(log N) since we are looking only for

a prefix of length O(log N). Thus the total worst-cru:;e complexity is 0(N2 10g N), only a

factor of 10gN away from the lower hound. The average case complexity is O(N2 ) since,

on average, we do O(NI log N) prefix computations per row, at a cost of O(log N) time

each, and there are N rows. (We will henceforth write 0(·) for the worst case complexity,

and V(·) for the average case complexity.) This is an attractive compression speed which

makes the PMIC scheme competitive with other transform based schemes such as JPEG.

But, shortening the database and using "locality" lead to a deterioration of the compression

ratio. How much do we pay for this? Fortunately, our experiments indicate that for most

images the deterioration is slight. Figure 2 is but one of the figures supporting this claim.

However, the next sub-sections show that it is possible to obtain faster compression

times even without resorting to the use of COMPRESS_SHORI-DATABASE. They do so by

giving algorithms for faster (but approximate) implementations of the PREFIX procedure.

Two of these approximation schemes arc based on the Fast Fourier 1'mnsform (cf. [17], pp.

290-294), and are discussed in the sequeL

3.2 Faster Algorithm for Square Error

This sub-section deals with a fru:;t approximate implementation of PREFIX for the square

error, without the max-difference enhancement but with the additive-shift enhancement

described earlier (we later explain how to handle max-difference).

The Hrst building block we need is an algorithm which tests whether one specific prefix

yf of Yi almost-occurs in the database x~, i.e., whether there is a position i in x~ for which

the following holds:

where

,
d( i+'-1 ') 1 "'( 6)'Xi 'Y1 = k~ Xi+j_l - Yj -

)=1

< D,

,
- 1 '"0= k L..,,(Xi+j-1 - Yj) .

j=l
Before giving the algorithm for detecting the above situation, let us recall that, in such a

case, data compression is possible by avoiding storing yf explicitly, and instead storing the

additive shift 6 together with a (pointcT,length) pair = (i, k) (so that, at decompression,

one would approximate each Yj by Xi+j_1 - 6, 1 .s; j .s k).

It clearly suffices to compute a score vectorC(l), ... , C(n-k) where C(i) = :Z=J=l (Xi+j_1

Yj - 6)2. Once one has such a vector it is a simple matter to check whether any of its entries

is.s kD. We next sketch an algorithm for computing the C(i)'sin time O(nlogk). In what
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follows, let Si = k-1 E~;,7-1 Xj, and let fj = k-1 EJ=1 Yj. We. expand the equation defining

C(i) into 10 terms:

cei) = C..(i)+C,,( i)+C••(i)+C,,( i)+2Cx'( i)+2C,,(i)-2Cx ,(i)-2C",(i)-2C.ii)-2Cx ,(i) ,

where

C., (i) = kS;y

k

C,,(i) = L (ti)'
j=l

Cxx ( i)
k

L (x;+i-,)'
j=l

k

SiL x i+i-1

i=l

k

C,,,( i) = L (Yi)'
i=l

k

Cyy(i) = iiLYi
i=l

k

C.,(i) = S; LYi
j=l

k

C••(i) = L(S;)'
i=l

k

C",y{i) = LXi+i-1Yi
j=l

k

Cxy(i) = iiLxi+i-1
i=l

The algorithm below computes the C(i)'s by computing each of the above 10 component

vectors.

Algorithm TEST
Input: x~ and Y~.
Output: The score vector C(I),···, C(n - k), and an answer YES if any of the C(i)'s is
< kD.

1. begin

2. Compute C",x(i), 1 ~ i ~ n - k_ This is easy to do in O(n) time.

3. Compute Cyy(i), which is independent of i, in O(k) time.

4. Compute Czz(i) = k(Si)2, 1 ~ i ~ n-k. This takes O(n) time, by the observation
that once we have Si, obtaining from it Si+l takes constant time.

5. Compute. Cyy(i) = k(y)2, which is independent of i, in O(k) time.

6. Compute Cx;:(i) = S, EJ=1 xi+i-l = (Si)2, 1 ::; i ~ n - k. We have. already
observed that computing the S,'s can be done in O(n) total time.

7. Compute Cyy(i) = yEJ=1 Yj = fj2. This is independent of i and can be compute.d
in constant time since we h<Lve already computed y.

8. Compute Cxy{i) = EJ=1 Xi+j_1Yj, 1 ~ i ~ n - k. This is done as follows: Par-
tition xr into nlk chunks of size k each, call these chunks (in left to right order)
aI, a2,"', arn/kl' Let f3 consist of the vector of length 2k obtained by first reversing
Y~ and then padding with k zeroes. The convolution product of f3 with a1 *a2 can be
done in O(k log k) and contains the values of Cxy(i) for all i E {l, 2, ... , k}. Similarly,
the convolution product of f3 with 0'2*0:3 contains Cxy(i) for all i E {k+ 1, k+2, ... , 2k}.
And so on: We do a total of nlk such convolutions in order to obtain all the CXy ( i)'s.
Since each such convolution takes O(klogk) time, the total time for this step is
O((klogk)(n/k)) = O(nlogk).
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9. Compute Cxy(i) = kSifJ, 1 ~ i:S: n - k. Time: O(n).

10. Compute Cxii) = S, I:j:=:t Yi = SiY, 1 ~ i :::; n - k. Time: O(n).

11. Compute Cxy(i) = YI:j:=:l xi+i-t = ykSj • Time: O(n).

12. Compute the C(i),s from the 10 component vectors computed above, and check
whether any of them is :s: D. Time: O(n).

13. end

The time complexity of TEST is dominated by the convolution computations, and is

O(nlogk). Notice that TEST is an exact algorithm and involves no approximations. It is in

the way we use TEST that the approximation comes in the picture: We use it log k times,

in a forward binary search for the value k defined as the largest k for wh.ich TEST returns

YES when given xl and yf as inputs. In other words we use TEST for k = 2,4,8 ... until

we hit a value of k (say, k') for which TEST fails: LFIOm then on TEST is used as in the

standard binary search over the interval [k' /2, k'] (recursive halving of the search interval).

It is strictly speaking inaccurate to use binary search, because TEST might faj[ for k and yet

that does not preclude that TEST would succeed for a bigger value than k. This fortunately

does not occur often, and can easily be accounled for in the implementation by checking a

few additional matchings in the modified binary search. This approach turned out to be a

reasonable approximation, and we adopted it in our implementation discussed in the next

section.

What about the max-difference criterion, which is not accounted for in the above? As

a practical matter, we use that criterion as an additional ftlter (on line 12) to the output

of the above convolution-based computation, which actuaHy returns more than just a Yr--S

since it also gives all the candidate locations which correspond to the YES. Therefore we

can eliminate, by using the max-difference criterion, the candidate locations that fail that

criterion (if all of them are eliminated by that criterion then the YES actually becomes

a NO). The time taken by this max-difference screening is O(n) so long as the candidate

locations being screened correspond to nonoverlapping sections of xi, but even in the worst

case is guaranteed to be no more than O(nh).

Note that the above is not meant as a substitute for CLD (or CSD) but rather as a faster

way of performing the PREFIX computation. It could indeed be used, e.g. within CLD, as

a substitute for the old, brute force PREFIX (in that case we would have n = 0(N) and

h = G(log N)). We have not yet implemented the above way of performing the prefix

computation.
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3.3 Faster Algorithm for Hamming Distance with Additive Shifts

We show now how to compute the longest prefix when Hamming distance with additive

shifts is used. Observe that one can use Fast Fourier Transform (FFT) to find the "compare

add" convolution of two strings (thls is similar to the usual convolution of two sequences,

except that the "product" of two symbols is 1 if they are equal and zero otherwise) in

time O()Alnlogn) (cf. [1]) where IAI is the size of the alphabet. This was llsed in [1] to

obtain an O(n1.5po/ylog(n)) time algorithm for the case when IAI :::: n. Here we seek to

achieve O(n. poLylog(n)) time irrespective of the si7.e of the alphabet, so we propose below

an approximate algorithm.

We start with the general idea behind our approach. Let x n :::: Xl .•. X n be a text string

and yrn :::: Yl ... Yrn be a pattern string (m ::; n), both over the alphabet A :::: {I, 2, ... , V}.

Recall that our goal is to find: (i) the largest k such that YI ... Yk almost occurs as a substring

of x" (here and in the following analysis the notion of "almost occur" is understood to

incorporate the additive shiH idea, that is, some additively shifted version of YI ... Yk is

close, in the Hamming distance sense, to x n); and (ii) the position i in x" at which it

,almost occurs, as well as the corresponding amount of additive shift. For given k and i,

the almost occurrence of YI" 'Yk at position i in x n will be determined by computing the

modulus of the following function

k

Fk(i):::: I>211"V-1
,;=Id(Xi - 1+i ,Yi)

j=l

(12)

where d(·, .) is the distortion measure function. For computational reasons, we usc d( a, b) ::::

a - b, that is,
k

Fk(i):::: Le21rV-l,;=T(Xi-l+rYJ) (13)
j=l

We claim that YI .. 'Yk almost occurs in x n if the modulus IFk(i)1 is close to k. This is based

on the following observations:

(i) The special case of Yj :::: xi-1+i for all j E {I, .. " k} implies an Fk( i) :::: k.

(11) The special case of Yj + C :::: Xi-Hj for all j E {I,· .. , k}, where c is a constant (the

additive shift), also results in the above sum having a modulus of k and au angle of 21fcjV,

that is, Fi.:(i):::: ke2;rv-1P.

(ill) Let Yj + C:::: x,-l+i for all j E {I, .. ',k}, where C is random noise with a symmetric

distribution function. :For example, for C uniformly distributed over an interval [c - 0, C+6]

where c and 6 are constant and 6 ::; c, extensive experimentation has shown that when x
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and yare random and 6 is "small" compared to V then the modulus of the above sum is

close to k. Indeed, observe that

k

L (CO,(2Ky- IC) + v'=I'in(2Ky- IC))
j:=:1

k

L (1 - 2K'Y-'C' +... +v'=I(2rr y-IC - ~rr3y-3C3 +.. -))
]:=:1

Thus, EFk(i) ~ k since EC2j+I = 0 (j ~ 0) by symmetry of the distribution, and EC2 j ~ 0

for j 2. 1 by the above assumptions.

(iv) When the modulus of the above sum is close to k, we observed through an extensive

experimentation that the angle of Fk( i), that is, arg Fk( i) =dej e, is approximately equal

to 27rV-1 I:j:=:1(X;_I+j - Yj), thus Yj ~ Xi_l+j - eV(2w)-I. This is not surprising since,

when IFk(i) I ~ k, we have (Jj =dcf arg (e2:rv-1vCT(:p:'_I+r Y)») ~ O. Since sin((Ji) ~ 0 and

cos((J,-) ~ 1, we have arg(FJ.:(i)) ~ 2"V-1 I:J=l(Xi-l+j - Yj), as observed.

The above implies that, for a given k, determining whether YI ... Yk almost occurs in

x" can be done by computing the Fk (·) vector and checking whether the modulus of n(i)

is within a factor Q of k for some i, where the parameter Q is close to 1 (say, Q = 0.95).

The problem of computing the FJ.:(·) vector is easily seen to be a convolution computation:

The convolution of the two n-Iength vector A = at .. -an and B = b1 , •.. , bJ.:, 0, .. ·,0 where

Uj = e2;r.;=JV-
1
x), and bj = e-2;r.;=lv-

1
Yj if j ~ k and = 0 if j > k. Doing this convolution

directly takes time O(nlogn), but this time can be reduced to O(nlogk) by doing instead

njk convolutions of (2k )-length vectors each (partitioing x" as in Step 8 of algorithm TEST

of the previous subsection, etc).

The algorithm called APPROXIMATE PREFIX replaces the brute force PREFIX algorithm:

start with a small value for k (say, k = 4) and binary search upwards for the largest value

of k (call it k) for which the largest modulus among the entries of the Fk (-) vector is ~ o.k.

The worst case complexity of APPROXIMATE PREFIX is O(n(logk?) since the computa

tion of each Fk (-) vector takes O(n log k) time, and an additional O(log k) factor comes from

the binary search (see end of Sec. 3.2 for a comment on the approximate nature of such a

binary search).

3.4 Suffix Tree Algorithm

Finally, we briefly mention an O(N 2
) approximate algorithm based on a suffix tree (cf.

[2,20]).
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The main idea is quite simple. We first build a SUfTlX tree of the whole image N x N

(either using McCreight's algorithm in O(N2 ) time [20J or by a brute force approach in

O(N2 10gN) time [2]}. Once the suffix tree is constructed, one can find exact longest prefix

in a row starting at any position in O(N) steps or with high probability in O(logN) steps.

Searching for an approximate prefix it much more complicated and usually leads to an

explosion in the search time. To circumvent this problem, we explore from every node of

the suffix tree only a fLXed number, say g, of paths (cf. [9]). Our preliminary experimental

results indicate that such a restriction does not lead to significant deterioration of the

compression ratio and quality of the image.

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS

This section describes in details the currently implemented version of Paltern Matching

Image Compression that is based on the ideas discussed above. As we shall see several

enhancements to this main idea were implemented. Results of our experimental studies of

PMIC are also discussed. We conclude with a discussion of the advantages and disadvan

tages of PMIC method.

4.1 Implementation

The main idea of our scheme was already described in the previous sections. In short,

after selecting a database - which consists of few last rows in in image - we search for the

longest prefix in the uncompress image that approximately occurs in the database. In our

implementation we chose quadratic distortion measure with the max"diIference criterion, as

already discllssed in Section 3.2. Recall that this distortion between strings xt and yf is:

1 'k 2)x; - y;)
,=]

d(x',y') =
,

1", -,k L.Jx ; - y; - oj .
;=1

This main idea is modified with several enhancements that make PMIC attractive. We

describe them in the sequel:

Additive Shift. As mentioned in the previous section, it is reasonable to expect that in an

image there are several substrings, say x m , yrn, that differ only by almost constant pattern,

that is, Yi = Xi + c for 1 SiS m where c is not necessary a constant, but whose variation

is rather small. Storing c a."i well as a (pointer, length) pair enables us to recover Yi from

Xi, instead of storing Yi explicitly. In general, we determine the additive shift c by checking
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whether the following condition is fulfilled or not

where D' is a constant. If the above holds, we compute the shift c as

1 m

c = - LCx; - y;) .
m ;=1

The reader can easily verify that for Xi = Yi + c, and c a constant, the above procedure

returns c.

Reverse Prefix. It turns out that in an image there are substantial similarities between a

substring in the uncompressed file and reverse substring in the database. That is, we search

for the largest prefix of yn that occurs approximately in x; (scanned backward).

Variable Maximum Distortion. It is well known that human eyes can easily distinguish

an "undeslred" pattern in a low frequency (constant) background while the same pattern

might be almost invisible to human eyes in high frequency (quickly varying) background (cf.

[7, 13]). Therefore, we used a low value of maximum distortion, say Db for slowly varying

background, and a high value, say D z, for quickly varying background. To recognize these

two different situations, we review the notion of the derivative V of an image I. It is defined

in a natural way as the average difference between a pixel and its down and right pixels.

More precisely, the derivative Vii of pixel Xii at position (i,j) is a scalar computed as

V .. _ (xi+l,i - Xij) + (Xi,i+l - Xii)
I} - 2 .

In our implementation, we used the lower value of D whenever Vij ::; 3 and the higher value

of D otherwise. In Figure 3 we compared the quality of the compression for constant D

and variable D (with two values of D). In Figure 3(a) a constant D was used, and one can

easily recognize the distortion around the cloud on the slowly varying sky. This problem

disappears in Figure 3(b) where a variable D is used.

Small Prefix. It docs not make too much sense to store a (pointer,position) when the

longest prefix is small. In this case, we store the original pixels of the image.

Run-Length Coding. For those parts of the picture that do not vary at all, or vary little,

we used run-length coding: if the next pixels vary little, we store a pixel value and the

Dumber of repetitions.

We are finally able to describe the compression code which is also presented in Figure

4. It consists of:
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(b)

Figure 3: Comparison of the "San Francisco" image compressed by PMIC: (a) with constant

D and compression ratio 7.5; (b) variable D and compression ratio 8.3.

• 1 bit (elF) to indicate whether the next 4 bytes are copied from the image or a

(position, length) pointer pair,

• 1 bit (FIR) to indicate whether we store forward or reverse prefix,

• variable length pointer to the position in the database or copy from the database

dcpendlng whether C / F = 1 or 0,

• variable length of the longest prefix,

• additive shift c described above.

Optionally, we can also store the following information if the run-length code is used

• 1 bits (Rn) whether run length code is used or not,

• repealed pixd,

• number of repetltions.

From the above description, one can easily see that the decompression algorithm is very

simple and amounts most of the time to reading a value and writing it elsewhere (with,

occasionally, an additive shift c). No inverse transforms, no multiplications - it is indeed a

very simple decompression algorithm.
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Figure 1\: Structure of the compression code

4.2 Experimental Results

In order to assess the quality of our PMIC scheme, we performed a series of experiments,

and compared PMIC with the standard JPEG (UNIX implementation), wavelet compression

(cL [8]), and also fractal compression (implemented as described in [10]).

Before presenting our experimental results, one must decide about metrics of compari

son. It is natural to use (real) compression (scale) = (size of the original file)/(size of the

compressed me) as one metric. We also use the compression ratio T in bpp (bits per pixel),

as defined in Section 2.

There is, however, more controversy on how to measure the quality of compression (d.

[13,22]). In Section 2 we discussed a measure of distortion d(.,.) which usually for image

compression becomes square-root measure or root·mean-sql.l.ared-error (RMSE) defined as

RMSE=

where x represents the compressed/decompressed image. In fact, traditionally tills measure

is redefined as

(
255 )

PSN R = 20log1o RMSE .

One also observes that another possible measure is simply the avcmge-gray-levcl-erro,·

(AGLE), that is
1 N

AGLE = N2 .~ IXij - Xiii
1,]=1

It is well known (cL [13]), and cofirmed by our experiments, that either all the above

measures were doing well or none of them was good. For example, in our experimental study,

the latter situation occured when comparing "variable-D" versus "constant-D" methods. In

Figure 3 both images scored almost the same RMSE/PSNR/AGLE while visual comparison

clearly indlcates that "variable-D" method is much better. In such a situation, we either

must resort to sophisticated visual tests such as Contrast Sensitivity Function (CSF) (cf.
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[7]) or use another measure of comparison. We choose the latter, which is basically a

weighted f} norm for some b > 0 (cr. [13]).

We first observe that visual distortion is most visible for low frequency (slowly varying)

background. This suggests the introduction of weights that arc inversely proportional to

the derivative Vij at pixel (i,j). Let

{

vel
Wij = 'J

Z

where Z is a large number such that Z::}> maxviJ#O{Vijl}. Then, for a parameter b we

define

where
~..

w .. - IJ
IJ - N

Li,j=t Wij

Observe that for b _ 00 we obtain

In most of our comparisons, we use the simIllest "average grey level error" AGLE.

Now, we are in position to present some of our images and compare them with other

methods of compression. Since PMIC compression systematically was superior to a fractal

compression (cf. Figure 7) we concentrate here on comparing PMIC with JPEG and wavelet

compression. In Figure 5 the "San Francisco" image is shown. It has two features interesting

to us: First, the sky has almost constant (low frequency) background. Secondly, buildings

have sharp edges (high frequency). In Figure 3 we already investigated the former problem,

and concluded that. for such images adaptive level of distortion (i.e., variable-D) is needed

to obtain high quality picture. The latter problem is better shown in Figure 6 where a

magnified fragment of the "San Francisco" image is presented.

From these three pictures (Figures 3, 5 and 6) we conclude the following. While Figure

5 suggests that the overall quality of JPEG, wavelet compression and PMIC is almost the

same, Figure 6 indicates that PMIC is quite superior for images containing substantial

amounts of high frequencies. On the other hand, we observe that one has to use adaptive

level of maX-"lmum distortion to obtain a good quality image. Finally, from Figure 2 we

conclude by a visual test that COMPRESS_SHORLDATABASE does not deteriorate significantly

the quality of lhe picture, while decreasing by a factor of 25 the compression time.
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(a)

(e)

(b)

(d)

Figure 5: Comparison of "San Francisco" image compression: (a) Original picture; (b)

JPEG with the average gray-level error (AGLE) equal to 4.6 and compression ratio equal

to 8.5 ("'" 1 bpp); (c) Wavelet based compression with AGLE=3.56 and compression equal

to 6.82 (1.2 bpp); (d) PMIC with AGLE equal to 6.4 and compression ratio equal to 8.3 (""'

1 bpp).
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(a) (b)

Figure 6: Compa.rison of a fragment of the "San Francisco" image: (a) JPEG; (b) Pattern

Matching Image Compression (PMIC).

So far, we discussed only "photographic" images. It turns out that PMIC works partic

ularly well for "graphic" images like Figure 7, which are well suited for run-length encoding.

In addition, in Figure 8 we plotted a more extensive comparison graph where compression

ratio r (in bpp) versus average gray-level error AGLE is presented and compared with JPEG

and the wavelet compression approach. Our conclusion is that PMIC is competitive with

JPEG and wavelet based compression, and on many instances superior.

5. CONCLUDING REMARKS

In this paper we described an experimental image compression called Pattern Matching

Image Compression (PMIC) that is non-transform technique for processing images. It is

based on an approximate pattern matching and lossy extension of the Lempel-Ziv scheme.

To the best of our knowledge, it is the first image compression method for which one

can prove guaranteed performance metrics, that Is, theoretical compression ratio versus

maximum measure of distortion. In Section 2 we indicated that for the basic scheme the

compression ratio achieves the rate of the generalized Renyl entropy ro(D) introduced in

[19]. WIllie ro(D) is greater than the optimal rate-distortion fundion R(D), numerical

evaluation (cf. Flgure 1) indicates that the difference is not too big for small values of
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Figure 7: Comparison of image compression of the "Basselope": Ca) Fractal compression

with an average gray-level error AGLE=2 and compression 5.5 (1.45 bpp); (b) Wavelet based

compression with AGLE=2.66 and compression 6.14 (1.3 bpp); (e) ,JPEG with AGLE=4.3

and compression 7.8 (1 bpp); Cd) Pattern Matching Image Compression (PMIC) with

AGLE=2.9 and compression 7.8 (1 bpp).
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Figure 8: Compression ratio T [bpp] versus the average greay-Ievel error (AGLE) for JPEG

(0), wavelet transform (.), and PMIC (0) of the "llasselope" image

D. More importantly, such a suboptirnallossy compression is computal.ionally efficient. In

Section 3 we presented several algorithms for image compression.

Finally, the actual implementation of PMIC with several enhancements was discussed

in Section 4. Experimental image compressions shown in that section suggest that:

• PMIC is slower in the compression time but the fastest possible in the decompression

time,

• Overall quality of compression is good and competitive with JPEG and wavelet based

compression; PMIC compression works better when high frequency components dom

inate the image,

• PMIC is systematically better than fractal compression in the compression time and

quality,

• PMIC is an automatic image compression, in the sense that its parameters adjust

adaptively during the compression.
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While so far results are promising, more research in this area is needed. In fact, com

pression based on exact and approximate pattern matching is not restricted to image com

pression. Il is obviously good for text compression, but we believe we have identified a

scheme for audio compression. This will be reported in a forthcoming paper.
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