Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1995

Partitioned Data Management in Mobile Environments

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

Jin Jing
Abdelsalam Helal

Rafael Alonso

Report Number:
95-080

Elmagarmid, Ahmed K; Jing, Jin; Helal, Abdelsalam; and Alonso, Rafael, "Partitioned Data Management in
Mobile Environments" (1995). Department of Computer Science Technical Reports. Paper 1252.
https://docs.lib.purdue.edu/cstech/1252

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PARTITIONED DATA MANAGEMENT
IN MOBILE ENVIRONMENTS

Abhmed Elmagarmid
Jin Jing
Abdelsalam Helal
Rafael Alonso

CSD TR-95-080
December 1995

Partitioned Data Management in Mobile

Environments
Ahmed Elmagarmid, Jin Jing, Abdelsalam Helal Rafael Alonso
Department of Computer Sciences Matsushita Information Technology
Purdue University Laboratory, 2 Rescarch Way
West Lafayette, IN 47907 USA Princeton, NJ 08540 USA
{ake,jing,helal }@cs.purdue.edu alonso@research.panasonic.com
Abstract

In a mobile computing environment, a user carrying a portable computer can exccute a
mobile iransaction by submilling the operations of the transaction to distribulted data servers
from differeni locations. As a result of this mobility, the operalions of the transaclion may
be executed at different servers. The distribution of operations implies that the transmission
ol messages (such as those involved in a two phase commit protocol) may be required among
these dala servers in order to coordinate the exccution of these operations. In this paper, we
will address the distribution of operations that updale pertifioned data in tnobile environments.
We show that, for opcrations pertaining to resource allocation, the message overhead (e.g., for
a 2PC protocol) introduced by the distribution of operations is undesirable and unnecessary.
We introduce a new algorithm, the Reservation Algorithm (RA), that does not necessitate the
incurring of message overheads for the commilment of mobile transactions. We address two
issues related to the RA algorithm: a termination protocol and a proiecel for non-partition-
commaulaetive operalions. We perform a comparison between the proposed RA algorithm and

existing solutions that use a 2PC protocol.
Index terms: partitioned data, replicated data, distributed transaction management, mobile

computing system.

1 Introduction

Advances in wireless networking technology have engendered a new computing paradigm, called
mobile computing, in which users carrying portable devices have access to a shared infrastructure

independent of their physical location.

Following the concepts and terms introduced in [9, 7, 5], a mobile computing environment
consists of two distinct sets of entities: mobile hosts and fized hosts. Some fixed hosts, called
Mobile Support Stations (MSSs), are augmented with a wireless interface to communicate with
mobile hosts. A mobile host can move from one cell (or radio coverage area) to another while

retaining its network connections.

The mobile computing paradigm introduces new technical issues in the area of database systems
[9, 3]. Tor example, techniques for traditional distributed database management have been based
on the assumption that the location of and connections among liosts in the distributed system do
nol change. However, in mobile computing, these assumptions are no longer valid. Mobility of hosts
engenders a new kind of locality that migrates as hosts move. A user carrying a portable computer
can submit the operations of a transaction to distributed data servers from different locations. As
a result of this mobility, the operations of the transaction may be exccuted at dillerent servers. The
distribution of operations implies that the transmission of messages (such as those involved in a Lwo
phase commit (2PC) protocol) may be required among these data servers in order to coordinate
the execution of these operations. In this paper, we will address the distribution of operations that

update partitioned dale in mobile environments.

1.1 The Problem

Conventional methods for replicated data management arc expensive because more Lhan one site
may be required to form the quorum necessary to run an update transaction. To overcome this
restriction, some approaches reported in the literature have taken into accounl the semantics of
applications to improve the response time and throughput of update transactions and to increase

system resiliency.

One of the application classes that has recently been extensively studied and has been used to
improve response time involves the problem ol resource allocation. Consider an application where
a data item represents the number of tickets to be sold. If the item is replicated, more than one
sile may be required to form the quorum necessary to perform an update. If the item resides in
a central sile, requests for tickets originating at thal site can be satisfied locally, while all other
sites in the system must exchange a series of messages with the central site. An alternalive to
cither of these approaches is to partition the "tickets” data item among all the sites. ! Fach site

is allocated a fraction of the tickets and will use them to process transactions as long as enpugh

!Some proposed appreaches, including site escrow (14, 16], demarcation protocol [6, 1], and Data Value Partiitioning

proiocol [19], can be used for dynamically partitioning data among different server siles.

tickets are locally available. As a result, the overhead associated with communications is avoided for
most transactions. Therefore, by partitioning dala among server sites, transactions with resource
allocation operations can be performed in a single site if the allocation updates do not violate local

resource constraints.

Problems involving resource allocation can also be [ound in such mobile application domains as
mobile sales and inventory applications (15] and mobile shopping applications [4] elc. In a mobile
environment, a mobile host can query or update a database, which is distributed in multiple data
servers over a fixed network, from different locations. A mobile host is also likely to incur long
disconnection periods duc to the limitations of battery energy and the mobility of hosts. This
long-disconnection characteristic may cause mobile transactions that access data from servers to

be long-lived.

By exploiting the semantics of applications, it is possible to partition data items into geograph-
ically distributed servers and allow mobile clients 1o perform updates in local or nearby partitioned
copies. The partition approach, therefore, improves not only the performance and scalability, but
also the availability of transaction processing for update operations. However, traditional parti-
tioned data managemen! may incur extra message costs due to the mobility of hosts. The costs
run counter to the motivation for the use of partitioned data and negate some of the advantages
of this approach. The following example that uses the sile escrow approach proposed in [14, 16]

illustrates the problem:

Example 1.1 Consider a mobile database system where X and Y are numeric objects with the
resource constraints Xpin(= 0) £ X € Xpao(= 100) and Ypin(= 0) € Y < Yiez(= 250), respec-
twely. Inilially, the value of X is partitioned into local numeric objects X1 and X, in servers ! and
2, respectively, with Xy + Xo = X. Similarly, Y, Xpin, Xmaz, Ymin, 07 Ymez are also pariitioned
into servers 1 and 2 such that Y1 + Yo = Y, X[PWeT 4 Xower = X, XIPP7 4 X377 = X oz,
Yjower 4 ylower —y, . and YU 4 e

Assume that a mobile host submits a resource allocation transaction T with the following op-
erations: f[Increase X by 10, followed by [Increase Y by 10], and commit. Figure ! shows the
czeculion procedure of the lransaction in the mobile dalabase system. The mobile transaction host
Jor T submits [Increase X by 10] to Server 1 from Cell 1. Server I checks the escrow variable
Xgsmeu-l gnd makes a worst-case decision to determine whether the operailion can be executed. If
Xf“"‘"”J + X1 4+ 10 £ X7, then]i'i‘*“""""’-Jr is increased by 10. 2 The transaction hest then

2 Actually, an uncommitted operation on object X may be logged in an escrow log. For simplicity, we shall nse

the escrow variables X§**°“~' (= a) and X{**"°“? (= a) to represent the log information for operations [[ncrease

(1} Initial Seenario a2 Server 1 and Sorverd

- N
X en | xPTem Y a0 | Y100 { Xy =0 | xP™=50 Y a0 | Y™
xllu:rw‘n-o x:l:l'l!'_[=0 ‘I'Tn-‘bnﬂ le Al a0 x;W_D-D x:m_[-0 Y;‘“"jsﬂ Y?III\:'IAI =D
X, =0 Y, =0 X, 20 Y, =30

Senver 1in Cell 1} § Server 2{in Cell 2)
(2) T: Increase X by 10 {ar Server 1)

r — [—
X a0 | XFes0 Y w0 [Y™ 100 X ag [xTasp Vw0 [YT™as
b iy k‘,‘“‘J ¥y P e |y o 2P ap [x7 a0 ¥~ Pan |y oy

X, =0 Y, =40 X, =20 Y, =50
Seever 1{ln Cell 1)) ¥erver 2{ia Cell 2}
[} T moves from CeI1 L by Cell 2
/—\ £4)T: Tncrease Y iy 10 {m Server 2)
X a0 |[2A™aw YW a0 | Y. 100 X' a0 X7 as0 YyTa0 | Y7150
xSy | = a0 b Fain Y T R G xyPog | xet o yorLo o (¥
X, =0 Va4 . Xy =20 Y, a8
Senver Iin Cell 1) Server 2{in Cell 2)
{6 T- Commil (a1 Server 1}
e T T T ($) T: commirt (2l Srevee 2)
X™en (X Y™ e | Y™ =100 Xy =0 | xT a0 Yy eo
yerlag |yt Lo X ag [x5 ap yorLtap
Y, =40 Xy =10 a

Server Iin Cell 1)

Sener2iln Cell 2)

Figure 1: A Mobile Transaction Example

moues to Cell 2 to submit [Increase Y by 10] to Server 2. Similarly, Server 2 increases the escrow
variable Yysmou-1 by 10.

As a result of this mobility, the lwo operations are aclually erecuted in two different servers.
At commit time, a two phase commil protocol must be used to shift the increases from the escrow
variables to the local numeric objects. That is, X1 = X1+10, Yo = Yo +10, X§crow-l = xgsorow-{ _
10, and Yzescrow_f _ Y;scraw-f —10

! -_ .

The distribution of operations in the above example presents two problems which arise with the

sile escrow approach:

e Lhc message transmissions involved in a 2PC protocol increase the traffic over the fixed net-

works; and

o the use of a 2PC protocol will reduce site autonomy.

These problems obviously run counter to the motivation for the use of partitioned data and
negale some ol the advantages of this approach. Of course, if the transaction host in Example
1.1 remains fixed, transaction 7' can be executed in either server without involving in message

transmissions.

To avoid the use of a 2PC protocol at commit time, it was suggested in [15] that the move of
a transaction host to a new cell should be accompanied by the transfer of the escrow log for the
transaclion to the local server under the cell. At the end of transaction, a commit operation can
be executed at the local server without communication with other servers. However, the transfer
procedure itsell requires the use of a 2PC protocol and therefore still gencrate high traffic over
the fixed network. When the host repeatedly moves between two cells during the execution of a
transaction, the repeated log transfers between the two servers cause particularly heavy message

overhead.

In a mobile computing system, the mobility factor is of the utmost importance in the design of a
distributed algorithm. Because the physical distance between two points does not necessarily reflect
the network distance, the communication path can grow disproportionately Lo actual movement.
For example, a small movement which crosses network administrative boundaries can result in a
much longer path. In a longer network path, communications traverse more intermediaries and
consume more network capacity. The mobility of hosts can cause that even a short transaction Lo

involve a long communication transmission.

X by a] and [Increase X by a], respectively,

1.2 Contributions of the paper

In this paper, we present an approach that avoids both heavy message Lransmissions and the use of
a 2PC protocol. A low message overhead among scrvers for each operation (including commit and
abort) will improve the response time of an operation requested by a mobile host. One benefit of
fast response time is that the mobile host will not need to expend precious battery resources while

waiting for the acknowledgement of requested operation.

The approach we propose in this paper is called Reservation Algorithm (RA). In the site escrow
approach, an escrow log is used for both commitment/recovery and constraint-maintaining purposes
for uncommitled transactions. In contrast, this algorithm cnsures resource constraints for Lhe
operations of uncommitted transactions by simply modifying bound (lower or upper) variables at
local server sites. For commit and recovery purposes, the algorithm stores the operations in a
reservation log. For example, for the operation [Increase X by 10] in Example 1.1, this algorithm
needs only to decrease the bound variable X,””" by 10 and to store the operation in a reservation log
at Server 1. The results of operations are relurned to the mobile host along with acknowledgement
messages. The mobile host stores the returned results in its reservation log for the transaction.
Conceptually, the reservation log in the mobile host is a logical copy of logs maintained in server
sites. At the commit ¢time (after the host moves to Cell 2), the mobile host sends its logical
reservalion log, along with a commit request, to the local server 2 in the current cell. Server 2 will
usc the log information to perform the actual resource allocations, i.e., increasing both X;77¢" and
X3 by 10. This algorithm will ensure that the resource constraint, X, < ZL[X{"“’” <X <
Y2 X'PPET < X ooz, is continualy maintained.

The RA approach allows the resource reservations lor Lthe operations of uncommitted trans-
actions and the actual resource allocations to be executed at different servers without the need
for communication. The resource reservations involve the modification of bound variables and the
update of reservation logs. Modifications of bound variables ensure the maintenance ol resource
constraints for the operations of uncommitted transactions. The process of resource allocation will
restore modified bound variables and allocate resources at any partilioned data site (which may be

different [rom the site where the reservations were performed).

Although the overall framework of the RA approach is straightforward, two interesting issues
related lo this approach merit deeper investigation. The first issue is the design of a termination
protocol. In a mobile environment, an active mobile transaction may be aborted unilaterally by
a data server. Such a unilaleral abortion may Dbe triggered by an extended long disconnection by

or a total failure (destruction or loss) of the mobile host. In this case, server may decide to abort

the transaction to release reserved resources. Unfortunately, the server can not make tlis decision
on the basis only of the information in its local reservation log, since the mobile host can make a
commit decision without communication with the server. The purpose of a termination protocol
is to guarantee that the commit decision of a mobile host will not contradict with the unilateral

abort decision of a data server.

The second issue is the development of a protocol for non-partition-commutative operations on
partitioned data. Assume that a data item X is partilioned among N sites such that X = ¥¥ X;
where X; is the partitioned copy of X in site . We say an operation O is a partifion-commulalive
operation (pec-operation) if O(X) = O(X;) + Zfil,l-# X; for any j (1 £ j £ N); otherwise, it is
a non-partition-commutalive operation (npc-operation). An example of an npc-operation can be
found in a banking application. In this application, both withdrawal and deposil operations are
pc-operations, while an interesi-posting operation is an npc-operation. It is obvious that an npec-
operation on partitioned data can not be performed in any single site if the data is partitioned over

more than one site. A protocol is therelore needed to coordinate the execution of such operations.

In this paper, we explore the following problems related to our proposed reservation approach:

1. Development of termination protocols that can be included in the reservation approach. These
protocols should ensure that an unilateral abort by a data server and a commit by a mobile

host would not be made simultancously for a mobile transaction;

2. Determination of the effect of the proposed reservation approach on the npc-operations on
partitioned data and of a protocol Lo permit these operations to accommodate the reservation

approach.

3. Comparison of the message cost of a reservation algorithm that includes the required protocols
for termination and npc-operations with that of existing site escrow or escrow log transfer

algorithms.

The remainder of this paper is organized as follows. Section 2 introduces the system model and
relevant terminology. In Section 3, we describe the basic reservation algorithm and the required
termination protocols. Section 4 discuss a protocol for npc-operations. Section 5 presents a perfor-
mance evaluation of the proposed algerithm and the traditional 2PC protocol in terms of message
cosls in the fixed network. Related research is discussed in Section 6, and concluding remarks are

offered in Seclion 7.

2 The Mobile Transaction Model

M5S: Mobvke Soppaort Stz

MTH: Mobike Tranaction 1kt

Figure 2: Mobile Database System Model

Figure 2 presents a general mobile database system model similar to those described in [9, 7, 5]
for mobile computing systems. In this model, both a database server and a database are attached
to each fixed host. A database server is inlended to support basic transaction operations such as

resource allocation, commit, and abort.

Each MSS has a coordinator which receives transaction operations from mobile hosts and mon-
itors their execution in database servers within the fixed networks. Transaction operations are
submitted by a mobile host to the coordinator in its MSS, which in turn sends them to the dis-
tributed database servers within the fixed networks for execution. For example, the coordinator

will send a resource allocation operation to a local server if a partitioned copy is in the local site.

A mobile host may submit transactions in one of two ways:

1. An entire transaction may be submitted in a single request message; the whole transaction
thus becomes one submission unit. The mobile host also delivers execution control to ils

coordinator and awails the return of the results of the transaction execution.

2. In contrast, the operations of a transaction may be submitted in multiple request messages.
A submission unit thus consists of one operation or a group of operations; the mobile host

interactively submits the operations of a transaction to its coordinator. A subsequent opera-

tion can be submitted only after those previous have been executed and the results returned

{rom the coordinator.

While the first approach involves a single coordinator for all the operations of a transaction,
the second approach may involve multiple coordinators because of the mobility of the host. For
example, a mobile host may move into a new cell after it obtains the results of previously sub-
mitted operations. In the new cell, it will submit the remainder of the transaction operations to
the coordinator in the appropriate new MSS. The first approach is described in [20] and related
issues regarding the interface between the mobile host and the coordinator are discussed. Our
proposed model employs the second approach to transaction submissions. This approach supporls
the interactive execution of transactions and therefore ollers increased flexibility in transaction

computations.

We assume that a mobile host may move al any time. It may move away from its current cell
after submitting an operation and before receiving a reply from the coordinator. The new coordi-
nator will determine whether the host needs to obtain acknowledgement messages from previous
coordinator after registering in the new cell. In this case, additional procedures are needed to locate
the mobile host and convey to it the results of submitted operations. For the simplicity, in this
paper, we assume thal each service area supported be a server covers only a single ccll. In reality,

one service area may support more than one cell [10, 11].

We also assume thal only one transaction may be initialized by a mobile host at any time. That
is, a mobile host can initialize a transaction only after the previous transaction has finished. The
transaction submitted from the mobile host is termed a mobile transaction and the host is called a
mobile transaction host. A mobile transaction consists of a set of pc-operations and npc-operations
which are bracketed by a BEGIN TRANSACTION statement and an END TRANSACTION

stalement.

3 Reservation Algorithm For Mobile Transactions

3.1 Basic Structure of the Reservation Algorithm

Suppose Lhat the value of X is partitioned into local numeric objects X; in server i (1<i< N)such
that X = Zfil X;. Similarly, the bound value Xy, (0r Xpmqz) is initially partitioned into Xf"we"
(X;TP*"} in every server i (1 < i < N') such that X,.;, = ¥ Xlewer (or Xpuw = ToN, X[PPeny,
A reservation action for [Increase X by a] (or [Decrease X by a)) in server 4 involves the operation
Xr® = X% —g when Xi+e € X (or X" = X™"4 g when X" < Xi;—a). A release action

for [Increase X by a] (or [Decrease X by «]) in server ¢ involves the operation X%% = Xmez 4
(or X/Mn = X™" — q). A allocation action for [Increase X by a] (or [Decreasc X by) in server i
performs the operations X; = X;4e and X" = X" 4 g (or X; = X;—a and X" = X" —gq).
An operation O in server 7 is safe if X™" < O(X;) < X™**. An operation O in server i is unsafe
but resolvable if X™" < O(X;) < X™** does not hold but X™" < O(X) £ X™ holds.

Each reservation action (release, or allocation action) should be implemented as an atomic unit.
Conventional database techniques can be used at each server to ensure that the actions that change
the bound and resource variables will be atomic and persistent. When an action is completed, any
locks on bound and resource variables will be released. Each server will record all the executions

of these actions in a reservation log.

Assuming that no abortion is invoked by the servers, the reservation algorithm follows this

general format:

1. The mobile host sends each pc-operation of a mobile transaction to the coordinator in the
current cell, which will forward it to a local or nearby server where a partitioned data copy

resides.

2. If an pc-operation al a server is safe, the server then executes a local reservation action
for the pc-operation. Otherwise, the server invokes a resource repartition procedure (such
as the point-to-point demarcation protocol [6] or a dynamic quorum-based protocol [14])
to requisition additional partitioned data resources from other servers. Upon the successful
completion of the resource repartition procedure, the reservation action can be executed at Lhe
local server. The result of the reservation action is returned to the mobile Lost that submitted
this pc-operation through its coordinator. If the operation is neither safc nor resolvable, a

failure message will be returned.

3. The mobile host records the results of the reservation action of each pc-operation and the
pc-operation itself in a reservation log. If all pc-operations of a mobile transaclion succeed
from the execution of reservation actions, the mobile host sends a COMMIT message along
with the reservation log of the transaction to the coordinator in the current cell. Otherwise, it
sends an ABORT message along with the reservation log to the coordinator. The coordinator
then submits an allocation action (for COMMIT) or release action (for ABORT) for each

pc-operation in the log to the local or nearby server.

Note that, due to mobility, the server at which the allocation actions are executed may not

be the same as that [rom which the mobile host reserved these resources for the transaction (sec

10

Transaction Host ™. Coordinator 1 Server 1

Operation’} - Rescrvation Action |
PColll |- Acknowledgement | Acknowledgemem |
Transaction Host Coordinalor 2 Scrver 2
Opcr:lli_m_l-'ﬂ _______ ol Reservation Action 2
: » Acknowlccigemcm - Acknowledgement
L Cell2
i COMMIT: Allocation Aclions
---------- e e o e it)
- ﬁc_linnw!-édgemenl - Acknowledgement

Figure 3: An Example of Basic Reservation Algorithm Execution

11

Figure 3).

In the escrow approach, the escrow log serves hoth Lo check local resource constraints and to
commit or recover transactions. In contrast, the reservation log in the reservation approach serves
only the latter purposes. In the escrow approach, for example, when an uncommitted transaction
attempts to perform an pc-operation such as [Increase X by a], the server will use the escrow
variable X®7°% in the escrow log to ascertain whether a given local resource comstraint will be
salisfied for the pc-operation; i.e., whether X 4 X5 L g < X%“P*" Liolds. In the reservation
algorithm, on the other hand, the maintenance of the constraint will not involve the use of the
escrow variable X%, Any eflect of uncommitted transactions on resource constraints hias been

addressed by modifying the values of the bound variables by the reservation actions.

A mobile host may move from one cell to another at any time. In this paper, we assume that each
scrvice area supported by a server covers only a single cell. If the host has left a cell belore receiving
the acknowledgement message for last submitted pc-operation, this message will be forwarded by
the coordinator in the new cell. After the host registers in the new cell, the coordinator will
determine whether any acknowledgement messages are still oulslanding from previous coordinator.

To handle host mobility, each coordinator runs the following handoff algorithm:

1. If a recently arrived host has received acknowledgement messages for all submitted pe-
operations, the coordinator in the new cell will require only a request of pc-operations from
the host. Otherwise, before accepling new pc-operations, it will send an acknowledgement
request to the coordinator in the previous cell and then forward these acknowledgements (if

any) to the host.

2. If a coordinator receives an acknowledgement request [rom another coordinator for the pec-
opcrations submitted by a host that has left its cell, it will forward the acknowledgement

message to the requesting coordinator.

It is clear that such an approach will maintain resource integrity constrainls, provided that no
data server is allowed to abort a mobile transaction. Any reservation action for a pc-operation
can be performed only if the pc-operation is safe locally or resolvable globally. This safety or
resolvability property implies that the bound variable updates by the reservation action always
maintain resource constraints. A relcase action is actually the reversal of of a reservation aclion
and is invoked only if the reservation action has been executed. An allocation aclion will also
reverse the bound variable change made by a reservation action and will update the corresponding

resource variable. The increased or decreased value for the resource variable always matches that

12

for the bound variable. Therelore, the basic reservation algorithm maintains resource constraints.
The algorithm also ensures a serializable execution of committed transactions with pc-operations
without requiring locks to be held until the commit time (a lock may e needed during the execution

of each action), since all pc-operations are mutually commutative.

In a mobile environment, however, a mobile host may be unreliable or may suffer a total failure
such as destruction or loss. In this case, a server may take an abort action for an uncommitted

mobile Lransaction. We will address this issue and related problems in the rest of this section,

3.2 Unilateral Abortion Anomaly

In a mobile databasc environment, a server may decide to abort a transaction if the mobile trans-
action host has disconnecied from any server [or an extended period. Such an abortion allows the
syslem Lo release resources reserved by the host. A mobile host may be somewhat unreliable, and
an unexpected long disconnection period may be caused by a total failure of the device through

destruction or loss. Abortion of a transaction avoids the indefinite holdings of reserved resources.

An abortion of this sort may result in an anomaly, called a Unilateral Abortion Anomaly, if
the mobile host attempts to commit a mobile transactlion through its current coordinator without

following certain protocols.

Example 3.1 Consider a mobile database system consisting of servers 1 and 2 with @ resource
constraint X < 20. Suppose that a mobile host had submitted the operation fincrease X by 10} for
transaction T to server ! before it was disconnected from the system. The host then moves and
establishes a conneclion lo server 2 afler server 1 has decided to abort the iransaclion during its
disconnect period. Because server I made the abort decision withoul following cerlain protocols,
the mobile host, which has no knowledge of the aborl, may commil the transaction at server 2.
While the abort will actually release reserved resources by increasing X{"P°" by 10, the commil will
consume the reserved resources by increasing Xo and X%"" by 10 in server 2. As a consequence,
the total upper bound of X becomes 30 rather than 20; i.e. X7 + X577 = 30 > 20 = Xynas,

which violates the resource constraint ¥ | X' < X,n0z.

This anomaly arises because botl the commit and abort actions are performed independently at
different servers without any coordination. Recall that the coordinator allocates reserved resources
al any local server site without communication with other servers from which these resources were

galhered.

It is also possible that both a server and a mobile host may simultaneously decide to abort

13

a transaction. Recall that a release action on behall of a mobile host can be executed at any
partitioned copy server. The protocols must guarantee that these reserved resources will not be
released redundantly by both abortions. That is, each reserved resource can be released only once,
even though these releases invoked by a mobile host can be perforined at servers other than those

where these resources were originally reserved.

Therefore, a protocol to avoid the unilateral abortion anomaly should ensure the following two

conditions:

1. a transaction cannot be simultancously committed by a mobile host and aborted by a data

server; and

2. each reserved resource in a transaction can be relcased only once if a given transaction is

aborted by a server and a mobile host.

3.3 Termination Protocols

In Lthe proposed reservation algorithm, the allocation actions for the commitment of a transaction do
not take the responsibility of writing the commit status into logs in other servers where reservation
actions were executed. A lermination protocol should therefore be applied so that an abort decision

made by a server will not coincide with a commitl decision made by the mobile host.

We assume that, when a server makes an abort decision, it can rclease Lhe resources on z only
if they were reserved by the transaction from the server. In other words, the server cannot release
the resources on y if they were reserved from other servers. Two termination protocols which are

candidates for inclusion in our reservation algorithm are:

1. All-Copy Voting Protocol: Let N(z) be the set of partitioned copy sites for a data item = and
D(2) be the set of data items that transaction ¢ has reserved. We assume that each item in
D(2) is only reserved once by transaction ¢. The server can abort an uncommitted transaction
t and release the resources reserved on z in the server only if it receives an abort vote from

each site in N (z) for data item z in D(2).

A two phase protocol should be used to ensure that an abort decision and relcased resources
will be recorded in reservation logs at all sites which have voted for the abort. In the first

phase, the server sends an abort request to all the sites in N(z) for reserved item = in D(2).

Aller all the sites return their votes, the server enters the second phase. If all the sites vote

for the abort and the reserved item has not been released in any of these sites (by a mobile

14

host), the server sends the abort decision to those sites and locally relcases the resources
reserved on z. Once a site voting for the abort receives the abort decision, the abort status
for the transaction { will be recorded in its reservation log along with the names of released
items. II any site has voted for commit or the reserved item has been released, the server will

do nothing except recording Lhe status into its local reservation log.

2. Transaction-Proxy Voting protocol: When a mobile transaction is initialized, the system can
specify a server as the proxy for the transaction. If a server wishes to abort the uncommit-
ted transaction and release resources reserved in the server, it musi obtain a vole [rom the

transaction proxy.

The proxy will vote for aborl only if it has not voted for commit or the reserved item has
not been released. Once the transaction proxy votes for the abort, the abort status will be

recorded in its reservation log along with the names of released items.

"o integrate the all-copy voting protocol into our proposed reservation algorithm, each allocalion
action for a partitioned data item z should involve a determination of whether any partitioned
copy server has voted [or an abort decision. If not, the action can be executed at any local or
nearby server and a commit {lag (vote) can be recorded in the reservation log of the server withoul

communication with other servers.

When a mobile host requests a commit operation for a transaction, its coordinator should
execute all the allocation actions for the transaction in an atomic unit. If all the allocalion actions
can he executed at a single sile (i.e., there is a local partitioned copy for cach reserved resource),
the commit operation can be performed locally. Otherwise, a 2PC protocol is needed to ensure the
atomic exccution of these actions. The procedure is required because each server may unilaterally
abort a transaction and release reserved resources at any time. If the commil operation is nol
executed in a atomic unit, a server may unilaterally abort the transaction and execute a relcase
action between two allocation actions, resulting in an undesired inconsistent termination decision.
When a mobile host requests an abort operation for a transaction, the coordinator can execute the
release actions for the transaction individually, without requiring atomic execution. However, each
release action must ensure that the resource in question has not been previously released by an
unilateral abort action by another server. This can be determined by examining the log information

at the local server.

To incorporate the second termination protocol discussed above, the reservation algorithm
should be modified in the following manner. Before a coordinator executes any allocation ac-

tion, the server should get a commit vote from the transaction proxy. Once it obtains this vote, the

15

allocation actions for a transaction can be executed individually; For a release action, the server
should obtain an abort vote from the proxy. Iurthermore, each server should inform the proxy
which reserved resources to be allocated or released. Whenever other servers require a vote from
the proxy, this information regarding released items should be supplied to them to prevent the

redundant release of a reserved item by different servers.

A reservation algorithm that integrates either an all-copy voting or transaction-proxy voting
termination prolocol will be free from the unilateral abortion anomaly. Either protocol will require
that the sites (or copies} voting for an abort always intersect with the sites (or copies) voting for
commitment. By recording the released resources in the logs of voting sites, any reserved resource

will not be released more than once by different servers.

3.4 Discussion

The two termination prolocols described above could be subjecl to blocking even in the case of
site failure. In the all-copy voting protocol, when a site which holds a copy of a reserved item
[ails, other servers can not execute the termination protocol to release the reserved ilem. In the
transaction-proxy voting protocol, the potential for blocking is even higher. If the transaction proxy

fails, no server can execute the terminalion protocol until it recovers.

Counterbalancing these blocking problems, the all-copy voting protocol offers low message over-
head and supports a high degree of sile autonomy for the commitment of transactions because all
allocation actions can be executed locally or at nearby sites. The transaction-proxy voting protocol
also offers low message overhead for the commitment or abortion of all transactions but does not
support high site autonomy because both commit and abort decisions depend on the vote of a

server designated prior to the execution of the transaction.

It has been generally held that non-blocking termination and efficient commitment are two
incompalible goals in a distributed system. Our reservation algorithm illustrates the validity of
this observation. While a reservation algorithm which incorporates either termination protocol
permils a low-cost and efficient commitment of transactions, it imposes some restrictions on the
execution of the termination protocol. The 3PC protocol, in contrast, involves no blocking in the

event of site failure but has high message overheads for the commitment of transactions.

Finally, we note that, when a transaction is committed, this decision is not broadcast imme-
diately to all log sites where reservation actions for the transaction were executed. In this case,
some logs will still contain the pending reservation information about the transaclion, potentially

resulting the invocation of an abort request by the server. Although this will not create inconsis-

16

tencies if all servers follow one of the lermination protocols, it cause some unnecessary messages
to be sent over the network. The pending reservation and other log information for a committed
{ransaction can be removed if the system can periodically circulate the commit decision to other

servers or piggyback the decision on other messages sent 1o servers.

4 Protocol for Non-Partition-Commutative Operations

In this section, we will examine the effect of our proposed reservation algorithm on npc-operations
with partitioned data and discuss the design of a protocol to accommodate the reservation algo-
rithm with such operations. We assume that serializability is used as the correctness criterion for
the execution of transactions. We [irst review the execution of an npc-operation in a traditional
distributed environment in which the hosi is fixed during the execution of a transaction and each

reservation action and its allocation action (or release action) are performed in the same site.

4,1 The Problem

Assume that a data item X is partitioned among n servers such that 3°%, X; = X. An npec
operation npcQ on ile partitioned data X can be performed by the coordinator of a transaction in
two different ways. In the first approach, the coordinator collects all the values of partitioned copies
from all n servers and executes the operation over the sum of these values; i.e., npeO(3_7, X;).
At commit time, the coordinator will repartition the resull of the operation and write these repar-
titioned copies back to the n servers. In the second method, the coordinator sends the operation
directly to all n partitioned copy servers. Each server 7 will perform the operation over the value
of the partitioned copy; i-c., npeO(X;). An operation npcQO on X is successful (i.e., each server can
write the results back to a database) if and only if the operation npeO(X;) succeeds at every server

i (1 € ¢ < n). The discussions in the rest of this section will be suitable Lo either approach.

To ensure a serializable execution, a lock protocol could be followed to coordinate the execution
of pc-operations and npc-operations. If a pc-operation is to be executed on a partilioned copy X,
a Partition-Commutative Lock (PC_LOCK) must be obtained from the partitioned copy X;. II
an npc-operation is to be executed, a Non-Partition-Commutative Lock (N PC_LOCK') should be
oblained [rom all partitioned copies of X. A PC_LOCK is compatible with other PC_LOC K's
but conflicts with another ¥ PC_LOCK. Two NPC _LOCKs conllict with each other.

In a traditional distributed environment where the host is fixed during the cxecution of a

transaction, all the actions of a pc-operation on X will be executed in a single partitioned copy

17

server. A PC_LOCK should be sel on the partitioned copy before these actions can executed.
Tor an npc-operation on X, the coordinator of the transaction will send an N PC_LOC K request
to all partitioned copy servers. Lach server then determines whether the NPC_LOCK can be
granled. If no pending PC_LOCK is sel on the copy, the server grants the request and sends a
reply message to the coordinator. Otherwise, the request is blocked at the server. The coordinator
collects reply messages [rom these sites. Once all sites reply to the request, it concludes thal there
15 1o pelidjng PC_LOCK at any server and the N PC_LOCK is granted. Thus, only one round
of message exchanges is needed between the coordinator and any partitioned copy server for an

NPC_LOCK request. Al commit or abort time, these PC_LOCKs and NPC_LOCKs will be

released.

If the transaction host may move among different cells during the execution, a reservation action
and a allocation action for 2 pc-operation in the reservation algorithm may be executed at different
servers. In this case, an interesting question is how a PC'_LOC K that was set when the reservation

action was requested can be released after the allocation action completes.

At the simplest level, a server executing the allocation action can immediately [orward a
PCUNLOCK to (le server where the PC_LOCK was set. I the transaction host moves fre-
quently, however, this method will generate heavy message traffic. If there are m such pc-operations
with reservation actions and allocation (or release) actions on different servers, m messages will
be needed. The method obviously runs counter to the motivalion ol the use of the reservation

algorithm.
A second method is lo delay the forwarding ol the PC.UNLOCKSs until an NPC_LOCK

request arrives. Fach server then sends to other servers a single message containing a batch of
PC.UNLOCKs thal were executed since last npc-operation on the copy was completed. The
method will release a PC_LOCK on a copy until an N PC_LOCK request arrives on Lhe copy. H
cach partitioned copy server for a partitioned data item must forward the PC_.UN LOC K messages
to all other servers, then, in the worst case, the message overhead will be approximately n?, wlhere

n is the number of partilioned copies.

In this paper, we suggest a method that requires each copy server to send all granted PC_LOC K's
and delayed PC_UNLOCK's to the coordinator which is requesting a N PC_LOCK on Lhat copy.
The coordinator collects these PC_LOCIKs and PC_.UNLOCKSs and Lhen attempts to match a
pending granted PC.LOCK with a delayed PC.UNLOCK. The message overhead will be 2n.
H the m PC_UNLOCKs for granted PC_LOCK belween two npc-operations are uniformly dis-
tributed and m is greatly larger than the number n of the partitioned copies (i.e., m >> n), this

method will prove to be more efficient than the first approach described above. If = >> 2, then

18

the method is also superior to the second approach above because n? > 2n.

4.2 'The Protocol

For a pc-operalion, the PC_LOCK and PC_UNLOCK operations can be executed at different
servers. A PC_LOCK is always cxecuted at the server at which a reservation action is executed,
while a PC_UNLOCK is always exccuted at the server at which an allocalion action is executed.
The granted PC_LOCK will actually be released until an N PC_LOC K request arrives.

To request an N PC_LOCK {or an npc-operation, the coordinator can execute a prolocol with
two rounds of message exchanges. In the first phase, the coordinator collects the PC_LOCK /PC.UNLOCK
information from all copy servers. The coordinator cannot enter inlo the second phase until all
servers reply and each PC_LOCK is matched by one PC_.UNLOCK on the item to be accessed
by the npc-operation. In the second phase, the coordinator sends a confirmation message to every
copy server and the server releases the PC_LOCK and sets the NPC_LOCK on the partitioned

copy.

To guarantee that no other PC_LOCK will be set after the first phase of the protocol, a
new lock mode, called NPCINTEND, must be used. This lock mode locks the copy at all
the partitioned copy servers before these servers reply to the N PC_LOCK reques! in the first
phase. If this step were bypassed, the copy server would be unable to force the setting of the
NPC_LOCK in the second phase if other PC_LOCKSs are granted on the copy after the first
phase. A requested NPC_INTEND is compatible with a granted PC_LOCK but not with a
granted NPC_ INTEND or NPC_LOCK. A granted N PC_INTEN D is, however, incompatible
with a requested PC_LOCK or a requested NPC_INTEND or NPC_LOCK.

When the first phase of an ¥ PC_LOC K request arrives at a copy server, an NPC_INTEND
is set on the copy if no other NPC INTEND or NPC_LOCK applies to that copy. Otherwise,
the first phase of the ¥ PC'_LOC K request is blocked at the server. This scenario implies that Lwo
different npc-operations are requesting the NPC_LOCK. I there is a PC_LOCK on the copy,
the first phase of the N PC _LOCK request will immediately set the NPC_INTEN D on Lhe copy.
On the other hanrd, a granted ¥ PC_INTFEN D will prevent any other new requested PC_LOCK
or NPC_LOCK.

If the PC_LOCKs and PC_.UN LOC Ks collected in the first phase are not matched, it can be
concluded that some partitioned copies are locked by other pc-operations. In this case, the coordi-

nator will wait for further PC_UNLOCK messages from partitioned copy servers. A partitioned
copy server will forward any newly executed PC_UN LOC K to a coordinator if an NPC_INTEND

19

requested by the coordinator has been set on the copy. Once the coordinator collects matched
PCUNLOCKs,an NPC_LOCK confirmation message is sent o all the partitioned copy servers.

After the copy server receives a confirmation message from the coordinator in the second phase,
all PC_LOCKs that have been matched by PC_UNLOCK's at the coordinator are removed and
the N PC INTEND is upgraded to an N PC_LOCK. The lock compatibility matrix appears in
Figure 4.

Tj(lock) NPC_INTEND PC_LOCK NPC_LOCK
Ti(request)
NPC_INTEND No Yes No
PC_LQOCK No Yes No
NPC_LOCK No No No

I'igure 4: Lock Compatibility Matrix

We have shown that the granted PC_LOCK can be removed when another transaction prepares
to perform an npc-operation on the copy. The pending period of a PC_LOCK may last until the
lirst NPC_LOCK by another transaction. It is obvious that the pending PC_LOCK docs nol
block either other PC_LOCK requests or NPC_LOCK requests. Thus, no blocking is incurred
by a pending PC_LOCK on a copy of an item until the copy is accessed by an npc-operation.

Merging the locking protocol into the reservation algorithm is Ia, straightforward procedure. A
coordinator can send a PC_LOCK request with the corresponding reservation action to a parti-
tioned copy server. The server slarts to execute the reservation action only if the PC_LOCK is sct
on the copy. The PCUNLOCK is set at any copy server after the completion of the allocation
or release action. For an npc-operation, a coordinator sends an N PC_LOCK request to all parti-
tioned copy servers. The coordinator can send any action of the npc-operation to copy servers only
aller the first phase of the locking protocol ends. Therefore, the npc-operation (or related actions)
can be sent to copy servers with the NPC_LOCK confirmation message. At commit time, these
NPC_LOCKs are rcleased; note that a 2PC protocol is required to commit the npc-operation

transaction.

20

5 Comparison of RES, ELT, and 2SE

As discussed in the introduction, one advantage offered by the reservation algorithm is the increased
auntonomy made possible by avoiding the use of a 2PC protocol. The algorithm also resulls in
improved performance during normal execution, as no communication between server sites is needed
for the commitment of some transactions. In this section, we present a comparative analysis
of message costs incurred by the execution of the reservation algorithm (RES), the Escrow Log
Transfering algorithm (ELT), and the 2PC-Site-Escrow algorithm (25) over fixed networks. The
25F algorithm is the direct application of the site escrow method presented in [14, 16] in a mobile
environmen! {(as shown in Example 1). The ELT algorithm is a modification of a site escrow method
which always transfers the escrow log for a mobile transaction to the local server in the current cell
of the transaction host. This algorithm was described in [15). Through this comparison, we wish
to demonstrate the effect of the parameters of mobility and data partition on the message costs
of these algorithms and to discover those circumstances in which the RIES algorithm offers lower

message costs than others.

5.1 An Analytical Model

We shall firsl describe a general equation that models the message costs incurred by the execution
of various algorithms in accessing partitioned data. Let C°/ be the average number of messages
per second required by the execution of a given algorithm alg. Then, C*® can be expressed as:

alg _ vl af. alg alg alg
¢ - Cpcg + Cnp?: + Crpp + Ccom + Chd

where C;ig is the expected number of messages per second for the execution of pc-operations; C,‘:L{

is the expected number of messages per second for the execution of npc-operations; C;‘I’,}", is Lhe
expected number of messages per second for the execution of the repartition protocol (e.g., Lhe site
escrow protocol or the demarcation protocol); C2/8, is the expected number of messages per second
for the execution of commit operations; and Cfl:f is the expecled number of messages per second

for the execution of ithe handoff protocol.

(!9 is obviously a function of such parameters as data partition, transaction host mobility,
transaction rate, and transaction access pattern. To present a detail message cost equation for
each algorithm, we shall now define these parameters and specify some assumptions.

Without loss of generality, we assume that there are N data servers, with each server attached
to an MSS. In fact, some servers may be attached to fixed hosts which have no wireless commu-

nication interface. Our model can be generalized to include this case by assigning each of these

21

servers Lo its closest MSS. Partition-commutalive fransactions (pc-transactions), which contain
only pc-operations, and non-partition-commulative transactions (npc-transactions), which contain
only npc-operations, arrive in Poisson distributions with an average arrival rate of Ay and Ayye,
respectively. The dala are randomly accessed by a transaction. The average number of partitioned
data items accessed by a pc-iransaction is n,.. The average number of partitioned data items
accessed by an npc-transaction is Z,pc.

The average number of partitioned copies per partitioned data item is represented as p (> 2).
The probability that a pc-operation hits a partitioned copy at the local server is p/N. Let Ny, p.
be the average number of server sites where the npc-operations of an npc-transaction are executed.

‘The number will be between p and N,

We assume that a mobile transaction host car move away from the current cell (or server) only
after each operation requesl submitted from the cell has heen acknowledged by the coordinator in
the same cell. In other words, we ignore the case in which the host moves to a new cell before it
receives an acknowledgement for previously submitted operations. The probability of the mobilily

of each transaction host is m.

We now derive the basic expressions that describe the message costs for the RES, 25E, and BLT
algorithms. In these expressions, we ignore the message costs for aborted transactions and assume
that no conflict exists between an npc-transaction and a pc-operation atl any server. We also assume
thal a transaction host always submits a commil or abort operation to the local server which has
all partitioned copies for the execution of the allocation or release actions. Our analytical model
will not treat the message costs between mobile hosts and MSSs and consider only the message

cosls among data servers over MSSs.

C';‘ég : For each pc-operation in each of the three algorithms, if there is a partitioned copy at local
site, then no communication is needed. Otherwise, the operalion will be sent to a nearby
partitioned copy site. The expccted number of messages per second for pc-operations in these

algorithms is:
ColS = CHIT = C25E = 92X, n,(1 - p/N)

C,‘:;;?,: For cach npe-transaction in the ELT and 25E algorithms, only one round of messages is
necded to obtain N PC_LOCKs, while, in the RES algorithm, two rounds of messages are
needed. The operation is piggybacked along with the ¥ PC_LOCK request messages. Be-
cause we assume that no conflict exists between an npc-transaction and a pc-operation at

any server, the exact two rounds of messages will be sufficient for an N PC_LOCK request. in

22

Cm‘g .

com*

oelg.

C

PP

alg,
hd *

the RES algorithm. The expecled number of messages per second for pc-operations in these
algorithms is:

RES ELT 25E
Cnpc = 4Aﬂpﬂnnpcp1 and Cnpc = Cpc = 2’\npcnnpcp

When the commit operation (the EN D TRANSACTION operation) is requested, a 2PC
prolocol will be executed for all npc-transactions in each algorithm. The number of messages
involved in the 2PC protocol, which is dependent upon the number of updale transactions and
the average number of servers updated by each transaction, can be expressed as AAnpeNrpe-
For the 25K algorithm, a 2PC protocol will be executed for all distributed pe-transactions.
Let Ny, be the average number of server sites where the pc-operations of a pc-transaction are
executed and & be a parameter such that N,. = n,.mb. Because npcm 1s the average number
of movements per pe-transaction among different servers, it is obvious that Ny < npem and
0 < # £ 1. The number of messages per second involved in the commitment of distributed
pc-iransactions can therefore be expressed as 4A,.np.mf. Thus, we arrive at the expected
number of messages per second [or the commit operation for each algorithm as follows:

CRES _ oELT _ dAnpeNppe, and C25E AAnpe Nppe + 4Apcnp.mb

COTIR COT comnt

For any of the RES, ELT, and 2SE algorithms, a repartition protocol RP (e.g., the site escrow
protocol or the demarcation protocol) shall be used to dynamically reallocate or repartition
resources so that each pc-operation is sale. The message overhead for the execution of the
repartition protocol are in general independent of the algorithm uscd. Instead, the overhead
is a function Frp of database parameters, transaction parameters, and repartition protocol
parameters. The expected number of messages per second for the execution of partition
protocol can be expressed as:

GHES — CELT — CZSE

rpp ToP e = LRP

We assume that the mobile host moves to a new cell only after it has received acknowledge-
ments for all operations submitted from the old cell. Therefore, in both the RES and 25E
algorithms, the current server does not need to contact the remote server for acknowledge-
ment messages after the host moves to a new cell. However, in the ELS algorithm, a handoff
protocol must be executed to transfer the context information from the previous server to the
current server. The expected number of messages per second for the execution of the handoff

protocol can be expressed as:

23

CRFS =CHE =0, and CFIT = Az cnpcm

Totally, the expected number of messages transmitted per second for each algorithm can be

given by the expressions:

cRES — 2I\pcnpc(1_p/N) + 4Anpcnnpcp + 4/\nchnpc + Frp
= CD+2Anpcnnpcp (1)

CELT _ 22pcn5c(l — p/N) + 2hppefinge? + 4AnpelNnpe + 4Apcn,em 4 Frp
= Co+4Apcnpem . (2)

CzSE = 2Apcnpc(]_—p/N) + 2/\npcnnpcp + 4}\nchﬂp: + “'1/\r)c:"'3;:.|r:'”16I + Fpp
Co + 4Apcnipemb (3)

il

where Cp = 2A,cnpc(1 — p/N) + 2Apcnped + 4AnpcNnpe + Frp.

5.2 The Comparison

C?%E is never larger than CFLT, because 0 < # < 1. From equations (1)-(3), we observe that,
to make C'¥S smaller than both C?5F and CPLT (ie., CRES < C25F and CRES < CELT) | the

following inequality should apply:

CRES . 02SE . ELT
= 2AnpelingeP < 4Apenpeml < 4Apcnpcm

= £<2m8/p <2m/fp (4)

where € = Aqpcninpe/ Apctipe.
The inequality in (4) illustrates the following relationships among the RES, ELT, and 2SE

algorithms:

1. When m = 0, message costs for the RES algorithm are no better than for either the ELT and

25F algorithms. In other words, when all transaction hosts do not move, the RES algorithm

24

offers no advantage over the ELT and 2SE algorithms. In fact, in this case, no additional
messages are needed for pc-operations if there is a partitioned copy al the local site, while
more messages are required by the RES algorithm than by the ELT and 25E algorithms for

npc-operations.

2. When £ = 0, the RES algorithm always performs at least as well as the ELT and 2SE

algorithms in terms of message cost. In this case, no npc-operalions are to be execuled.

3. When £ > 1, message costs for the RES algorithm are no better than for either the B[
and 25 algorithms. In fact, when data has been partitioned, p is always equal to or larger
than 2 and 2mf/p or 2m/p is no larger than 1. The observation indicates that the number
of npc-transactions should not be larger than the number of pc-operations. Note that, when
£ > 1, no partitioned-data algorithm offers lower message costs than does the algorithm for
non-partitioned data. In this instance, the message costs of npc-transactions (in two or more
partitioned copy sites) may offset the message savings made by pc-operations in a partitioned
copy site. Non-partitioned dala may actually require [ewer message exchanges, because any
npec-transaction or pc-operation needs at most one round of messages between the remote

no-partitioned dala server and the transaction server.

Figure 5: The relation of parameters £, m, and p

Figure 5 shows the relation among the parameters m, p, and £ expressed in incquality (4) as
the mobility parameter rises from 0 to 1. The shaded area in the figure indicates all the possible
values of parameters £ and m for a given p for which the the RES algorithm performs better than

both ELT and 2SE algorithms in terms of message cost.

25

5.3 Satisfiability

Assume that CYEV js a message cost function for non-partitioned and centralized algorithm in
which no data is partitioned and all pc-operations or npc-operations are sent to a central site that

stores data copies. The cost equation can be expressed as:

CC’EN — CC’EN+CC'EN+CCEN
pc

npc com

= el (V= 1)/N) + Dongertnge((N =~ /N + 2050+ Aag)((¥ ~ 1)/N)(5)

where 2Apcitpc((V — 1)/N) is the expected number of messages per second [or pc-operations,
2Anpetinpc((N — 1)/N) for npc-operations and 2{A,; + Appe)((N — 1}/N) for commit operations.
We now examine the satisfiability of CR%5 with respect to CCEN under the condition of in-
equality (4). Let C¥ be a cost function for the algorithm X with parameter veclor V. We say ¢4
is satisfiable with respect to CP if there is a vector value v in the domain of the parameter V such

that C* < C'B with the vector value v' for the parameter V.

The satisfiability of C®S with respect to CYE¥ implies that in some situations the RES
algoritlm will involve lower message overhead than the CEN algorithm. However, if CTES is NOT
satisfiable with tespect Lo C“#¥ under inequality (4), the algorithm RES may nol be valuable
because it will involve higher message overhead than the CEN algorithm. In other words, in this
case, CBS <« COEN can not be satisfied even though CRES « C255 « CFLT with £ < 2mb/p <
2m/p. Qur expeclalion would be that the RES algorithm would not only offer lower message
costs than the ELT or 2SE algorithms but would also prove superior to the CEN algorithm in

non-partitioned data environments.

Lel now examine a scenario in which C*¥5 « CPEN ynder condition (4). Consider a database
consisting of a fully partitioned data item X with no resource constraint over two servers (i.e., the
constraint can be expressed as —oco < X < o0, p = N = 2, and each server has a partitioned copy).
Assume that each pc-transaction has two pc-operations, i.e., n,. = 2, and each npe-transaction
has only one npc-operation, i.e. 7., = 1. In this databasec, for any transaclion accessing data

item X, the message cost for repartition protocol is zero; i.e., CRES

pp_ = 0, as any pc-operation is
RES +
Cre

always sale. is also equal to zero, as p/N = 1. When £ = 0 (i.e., there is no npc-operation),
CRES = 0 but CYBN £ 0. That is, CES <« COBN | Assume € > 0. We compute the inequality

(i.c., CRES <« CYEN) from equations (1) and (5) as follows:

2hpctpc(1 = p/N) + 4Ahppetnpep + 4AnpelNnpe <

26

petipe((N = 1)/N) 4 2Anpetinpe{(N ~ 1)/N) + 2(pe + Anpe) (N — 1)/N)
= 4fp + 4‘5an0/“an < 1 4+ £ + 1/npc + é_/nnpc
= £<3/28

From this computation, we have the inequality £ < 3/28. That is, when 0 < £ < 3/28,
CRES < CCEN can be satisfied. So, when 0 < £ < min(3/28,2mf/p), CRES « CRES apq
CHRES « C?3E « CELT | Therefore, we have the following theorem:

Theorem 5.1 CT8S is satisfiable with respect to CCEN with either £ =0 or 0 < £ < 2mb/p.

6 Related Work

Some of the problems involved in supporting transaction services and distributed data management
in 2 mobile environment have been identified recently in [9, 3]. The management of distributed data
ltas been identified in [9) as a research area on which the mobility of host has a large impact. In
(3], it is predicted thal [ulure applications of mobile computing will demand various traunsactional

and transaction-like services.

A prototype of Lransaction service for mobile hosts is currently being implemented on the Code
file system {13, 18] to support continued services in a disconnection mede. This prototype uses
the opiimistic concurrency control method presented in [17] to enforce the serializabie execution of
transactions submitted from mobile hosts. The optimistic concurrency control method is generally
suitable for applications, such as those in a file system environment, of low data contention. ‘I'he
prototype, however, did not address the issue of the mobility of transaction hosts and its eflect on

the management of distributed data.

The impact of mobility on distributed algorithms has recently been investigated in [5]. This
research also emphasizes the reduction of the message costs in networks in which a mobile host
involved in the execution of distributed algorithms moves across different cells. Unlike the work
presented here, that research did not utilize the semantics of data to minimize the message overhead
caused by the mobility of hosts.

As stated previously, the notion of using partitioned data to reduce message overhead and
increase system throughput in distributed database environments has been investigated in the
literature [2, 6, 14, 16, 19, 1]. These efforts address principally the efficient repartition or recon-
figuration of a partitioned data item among different sites so that an operation on the data item

can be performed at a local site. The research presented here, in contrast, utilizes the partitioned

27

data to efficiently deal with the distribution of operations caused by the mobility of a transaction
host. This problem did not arise in a traditional distribuled environment with a fixed location of

transaction host.

Some commonalities are present between previous work on repartition protocols and our cfforts
toward a reservation algorithm. The execution of a mobile transaction in the reservation algorithm
can be thought of as involving a series ol repartition procedures. A reservation action is a repartition
procedure that moves a portion of the partitioned data from a local server to a mobile host, and the
allocation (or release) action involves a repartition procedure that moves a portion of partitioned
data from a mobile host to a local server. Specifically, like the demarcation protocol presented in
[6], these repartition procedures are performed by updating the bound variables of a parlitioned
data item. However, the requircments for reliability procedures are quite different. In the previous
approach, a repartition procedure is performed only among relatively reliable distributed servers
in fixed networks. The procedure can be cxecuted as a atomic unit. In our work, a repartition
procedure is performed between a data server and a mobile host, and the series of repartition
procedures for a mobile transaction is executed as an atomic unit. Guaranteeing the atomicity of the
scries of repartilion procedures therefore poses an additional issue, particularly in the development
of an atomic protocol which can handie the problems introduced by the [ailure and extended long

disconnections of the mobile host.

In [15], the problem of using the site escrow method (2SE) for mobile transactions was discussed.
To avoid the use of a 2PC protocol at commit time, the authors in [15] suggested the Escrow Log
Translering (ELT) method. The method executes a Landoff protocol to move the escrow log of
a transaction from the server in previous cell to the new server in the currenl cell before Lhe
transaction can conlinue its execution. This method carries with it a heavy message overhead

when a mobile host moves frequently across cells.

Our approach to a pending partition-commutative lock is similar to that explored in {12] for
a pending read lock in a replicated database for mobile transactions. In [12], the commutative
semantics of read locks are utilized to reduce message overhead for the distributed read operations
of a mobile transaction. The partition-commutative lock is applied to prevent a conflicting non-
partition-commutative operation from accessing a partitioned copy, while a read lock is used to

prevent a write operation from updating a replicated copy.

The issuc of termination for a 2PC or 3PC protocol has been well studied (see [8] for details).
A server will execule a termination protocol only after it enters the first phase of a 2PC or 3PC
protocol but before it receives the commit decision from the coordinator. In our algorithm, a server

is always required to execute a termination protocol before it can make an abort decision. The

28

termination protocol in our algorithm, like 2 2PC protocol, may be blocked if there is a link failure

or a site failure.

7 Conclusions

In a mobile computing system, the mobility factor is of the utmost importance in the design of a
distributed algorithm. Because the physical distance belween two points does not necessarily reflect
Lhe network distance, the communication path can grow disproportionately to actual movemens. A
small movement which crosses network adminisirative boundaries can result in 2 much longer path.
In a longer network path, communications traverse more intermediaries and consume more network
capacity. The mobility of hosts can cause cven a short transaction to involve a long communication

transmission.

A low message overhead among servers for each operation (including commit and abort) will
improve the response time of an operation requested by a mobile host. One benefit of fast response
time is that the host will not need to expend precious battery resources while waiting for the

acknowledgement of the requested operation.

In this paper, we have addressed the issue of the distribution of operations that update par-
titioned data in mobile environments. We have shown that, for operations pertaining to resource
allocation, the message overhead (e.g., for a 2PC protocol) introduced by the distribution of oper-

alions is undesirable and unnecessary.

We have introduced a new algorithm, the Reservaiion Algorithm (RA), that does not necessi-
tate the incurring of message overhead for the commitment of mobhile transactions. We have dis-
cussed two issues related to the RA algorithm: fermination protocol and protocol for non-pariition-
commutaiive operalions. The algorithm ensures a serializable exccution of transactions. We have
performed a comparison between the proposed RA algorithm and existing solutions that use a 2PC
protocol.

The algorithm proposed in this paper requires the transmission of reservalion log information
from a mobile hosl Lo its current coordinator through a wireless channel when the host decides to
commit a transaction. These transmissions do not usually involve additional message exchanges,
as they are piggybacked on the commit request message of the Lransaction. These transmissions
can be structured to consume only minimal bandwidth on wireless channels by representing the

reservation log by logical operations rather than physical pages.

Although the algorithm discussed in Lhis paper applies directly only Lo operations over parti-

29

lioned data, it can be merged into other locking algorithms to support operations on non-partitioned
data. I'or example, in [12], we have shown that, if non-partitioned data are replicated among dil-
ferent servers, then a read unlock for an non-partitioned data item can be executed at any copy
site, including sites other than that on which the read lock is set. The locking schema utilizes
the replicated copies of data items to reduce the message costs incurred by the mobility of the
transaction host. Therelore, the reservation algorithm can be augmented with the locking schema
Lo support operations on both partitioned and non-partitioned data. Such an augmented algorithm
can improve the efficiency of concurrency control protocols in a mobile environment if the number
of read operations on non-partitioned data and pc-operations on partitioned data dominates that

of write operations on non-partitioned dala and npc-operations on partitioned data.

Finally, we notc that the algorithm presented in this paper is a pessimistic concurrency control
protocol. Each pc-operation obtains reserved resources when it is invoked by a mobile host. The
message overhead which arises from the mobility of hosts can obviously be avoided through a more
optimistic approach which defers reservation actions until commit time. Increasingly optimistic
approaches, however, carry with them increasingly high transaction abort rates, offering a tradeoff
between the message overhead and the abort rate. The choice of a pessimistic or an optimistic
approach therefore depends on the requirements of specific applications and the parameters of

syslem environments.

References

(1] G. Alonsa and A. E. Abbadi. Partitioned data objects in distributed databases. the Inlerna-
tional Journal on Distribuled and Parallel Databases, 3(1), 1995.

[2] R. Alonso, D. Barbard, and II. Garcia-Molina. Data caching issucs in an information retrieval
system. ACM Transactions on Database Systems, 15(3):359-384, September 1990.

(3] R. Alonso and H. Korth. Database issues in nomadic computing. In Proceedings of the ACM
SIGMOD Conference on Management of Dala, pages 388-392, 1993.

[4] A. Asthana, M. Cravatts, and P. Krzyzanowski. An indoor wireless system [or personalized
shopping assistance. In 1994 Workshop on Mobile Computing Systems and Applications, 1994.

(5] B. R. Badrinath, A. Acharya, and T. Imielinski. Structuring distributed algorithms for mo-
bile hosts. In Proc. of the 14th Inlernational Conference on Distributed Computing Systems,
Poznan, Poland, June 1994,

[6] D. Barbard, , and H. Garcia-Molina. The demarcation protocol: A technique for maintaining
constraints in distributed database systems. The VLDB Journal, 3(3):325-354, 1994,

30

[7] D. Barbard and T. Imielinksi. Sleepers and workaholics: Caching strategies for mobile envi-
ronments. In Proceedings of the ACM SIGMOD Conference on Management of Dala, pages
1-12, 1994,

(8] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Databases
Systems. Addison-Wesley Publishing Co., 1987.

[9] T. Imielinski and B. R. Badrinath. Wireless mobile computing : Challenges in data manage-
ment. Communication of ACM, 37(10), 1994.

[10] R. Jain and N. Krishnakumar. Network support for personal information services to pcs users.
In Proceedings of the IEEE conference on Networks for Personal Communications (NPC ’94),
Long Branch, NJ, Mar. 1994.

[11] R. Jain and N. Krishnakumar. Service handoffs and virtual mobility for delivery of personal
information services to mobile users. Technical Report TM-24696, Bellcore, Dec. 1994.

[12] J. Jing, O. Buklres, and A. Elmagarmid. Distributed lock management for mobile transactions.
In Proe. of the 15th International Conference on Distributed Compuling Sysiems, Vancouver,
Canada, June 1995,

[13] J. Kistler and M. Satyanaranyanan. Disconnected Operation in the Coda File System. ACM
Transactions on Computer Sysiems, 10(1), February 1992.

(14) N. Krishnakumar and A. J. Bernstein. High throughput escrow algorithm for replicated
databases. In Proceedings of the Fightecenth International Conference on Very Large Dala
Buases, 1992,

[15] N. Krishnakumar and R. Jain. Protocols for maintaining inventory databases and user ser-
vice profiles in mobile sales applications. In Proceedings of the Mobidata Workshop, Rutgers
University, Nov. 1994.

[16] A. Kumar and M. Stonebraker. Semantics-based transaction management techniques for repli-
cated data. In Proceedings of the ACM SIGMOD Conference on Management of Data, 1988.

[17] H. Kung and J. Robinson. On optimistic methods for concurrency control. ACM Trans.
Database Sysi., 6(2):213-226, June 1981.

[18] Q. Lu and M. Satyanaranyanan. Isolation-only transactions for mobile computing. ACM
Operating Sysiems Review, 28(3), 1994.

[19] N. Soparkar and A. Siberschatz. Data-value partitioning and virtual messages. In Proceedings
of the Conference on Principles of Dalabase Systems, 1990.

[20] L. Yeo and A. Zaslavsky. Submission of transactions from mobile workstations in a coopera-
tive multidatabase processing environment. In Proc. of the 14th International Conference on
Distributed Computing Systems, Poznan, Poland, June 1994.

31

	Partitioned Data Management in Mobile Environments
	Report Number:
	

	tmp.1307986960.pdf.VA_FQ

