
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1995 

Partitioned Data Management in Mobile Environments Partitioned Data Management in Mobile Environments 

Ahmed K. Elmagarmid 
Purdue University, ake@cs.purdue.edu 

Jin Jing 

Abdelsalam Helal 

Rafael Alonso 

Report Number: 
95-080 

Elmagarmid, Ahmed K.; Jing, Jin; Helal, Abdelsalam; and Alonso, Rafael, "Partitioned Data Management in 
Mobile Environments" (1995). Department of Computer Science Technical Reports. Paper 1252. 
https://docs.lib.purdue.edu/cstech/1252 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


PARTITIONED DATA MANAGEMENT
IN MOBn.E ENVIRONMENTS

Ahmed Elmagarmid
Jin ling

Abdelsalam Bela!
Rafael Alonso

CSD TR-95-080
Deeember 1995



Partitioned Data Management in Mobile

Environments

Ahmed Elrnagarmid, Jin Jing, Abdelsalam Helal
Department of Computer Sciences

Purdue University
We,t Lafayette, IN 47907 USA
{ake,jing,helal}@cs.purdue.edu

Abstract

Rafael Alonso
Matsushita Information Technology

Laboratory, 2 Research Way
Princeton, NJ 08540 USA

alonso@research.panasonic.com

In a mobile computing environment, a user carrymg a portable computer can execute a

mobilf transaction by submilling the operations of the transaction to distributed data servers

from different locations. As a result _9f this mobility, the operations of the transaclion may

be executed at different servers. The distribution of operations implies that the transmission

of messages (such as those involved in a two phase commit protocol) may be required among

these data servers in order to coordinate the execution of these operations, In this paper, we

will address the distribution of operations that update partitionfd data in mobile environments.

We show that, for operations pertaining to resource allocation, the message overhead (e.g., for

a 2PC protocol) introduced by the distribution of operations is undesirable and unnecessary.

We introduce a new algorithm, the Reservation Algon'thm (RA), that does not necessitate the

incurring of message overheads for the commitment of mobile transactions. We address two

issues related to the RA algorithm: a termination protocol and a protocol for non-partition

commutative operations. We perform a comparison between the proposed RA algorithm and

existing solutions that use a 2PC protocol.

Index terms: partitioned data, replicated data, distributed transaction management, mobile

computing system.

1 Introduction

Advances in wireless networking technology have engendered a new computing paradigm, called

mobile computing, in which users carrying portable devices have access to a shared infrastructure

Independent of their physkallocation.

1



Following the concepts and terms introduced in [9, 7, 5J, a mobile computing environment

consists of two distinct sets of entities: mobile hosts and fixed hosts. Some fixed hosts, called

Mobile Support Stations (MSSs), are augmented wHh a wireless interface to communicate with

mobile hosts. A mobile host can move from one cell (or radio coverage area) to another while

retaining its network connections.

The mobile computing paradigm introduces new technical issues in the area of database systems

[9, 3]. For example, techniques for traditional distributed database management have been based

on tIle assumption that the location of and connections among hosts in the distributed system do

not change. However, in mobile computing, these assumptions are no longer valid. Mobility ofhost8

engenders a new kind of locality that migrates as hosts move. A user carrying a portable computer

can submit the operations of a transaction to distributed data servers from different locations. As

a result of this mobility, the operations of the transaction may be executed at dlIIerent servers. The

distribution of operations implies that the transmission of messages (such as those involved in a two

phase commit (2PC) protocol) may be required among these data servers in order to coordinate

the execution of these operations. In this paper, we will address the distribution of operations that

update partitioned data in mobile environments.

1.1 The Problem

Conventional methods for replicated data management are expensive because more than one site

may be required to form the quorum necessary to run an update transaction. To overcome this

restriction, some approaches reported in the literature have taken into account the semantics of

applications to improve the response time and throughput of update transactions and to increase

system resiliency.

One of the application classes that has recently been extensively studied and has been used to

improve response time involves the problem of resource allocation. Consider an application where

a data item represents the number of tickets to be sold. If the item is replicated, more than one

site may be required to form the quorum necessary to perform an update. If the item resides in

a central sHe, requests for tickets originating at that site can be satisfied locally, while all other

sites in the system must exchange a series of messages with the central sHe. An alternative to

either of these approaches is to partition the "tickets" data item among all the sites. 1 Each site

is allocated a fradion of the tickets and will use them to process transactions as long as elu;mgh

lSome proposed approacllcs, including site escrow [14, 16], demarcation protocol [6, 1], and Data Va.lue Parl.itioning

protocol [19], ca.n be lIsed for dynamically partitioning data among diJferent server sites.

2



tickets are locally available. As a result, the overhead associated w1th communications is avoided for

most transactions. Therefore, by partitioning data among server sites, transactions with resource

allocation operations can be performed in a single site if the allocation updates do not violate local

resource constraints.

Problems involving resource allocation can also be found in such mobile application domains as

mobile sales and inventory applications (15] and mobile shopping applications [4] eLc. In a mobile

environment, a mobile host can query or update a database, which is distributed in multiple data

servers over a fixed network, from different locations. A mobile host is also likely to incur long

disconnection periods due to the limitations of battery energy and the mobllity of hosts. This

long-disconnection characteristic may cause mobile transactions that access data from servers to

be long-lived.

By exploiting the semantics of applications, it is possible to partHian data items into geograph

ically distributed servers and allow mobile clients to perform updates in local or nearby partHioned

copies. The partition approach, therefore, improves not only the performance and scalability, bItt

also the availability of transaction processing for update operations. However, traditional parti

tioned data management may incur extra message costs due to the mobility of hosts. The costs

run counter to the motivation for the use of partitioned data and negate some of the advantages

of this approach. The following example that uses the sHe escrow approach proposed in [14, 16]

illustrates the problem:

Example 1.1 Consider a mobile database system where X and Yare numeric objects with the

resource constraints Xmin(= 0)::::; X ::::; X max(= 100) and Ymin(= 0)::::; Y::::; Ymax(= 250), respec

tively. Initially, the vaLue of X is partitioned into locaL numeric objects Xl and Xl in servers 1 and

2, respectively, with Xl + Xl = X. Similarly, Y, X min ' X max , Ymin, or Ymax are also partitioned

into selilers J and 2 such that YI +Yl = Y, x{ower + x~ower = Xmin, X~pper+X;ppcr = X mox,

-y,'owcr + y;!owcr _ y;. and -y,upper + y;uppcr - y.
I l - mm, I l - max'

Assume that a mobile host submits a l'esource allocation transaction T with the following op

erations: [Increase X by lO}, followed by [Increase Y by JO}, and commit. Figure 1 shows the

execution procedure of the transaction in the mobile database system. The mobile transaction host

for'T submits [Increase X by to} to Server 1 from Cell 1. Server J checks the escrow variable

Xr crow_I and makes a worst-case decision to determine whether the operation can be executed. If

Xi'scrowJ + Xl + 10 ::; X~pper, then Xf"l"crow_I is increased by 10. l The transaction host then

2Adually, an uncommitted operation on object Xl may be logged in an escrow log. For simplicity, we shall lise

h . hi X~H~OU!J ( ) d X~,~~oU!..D ( ) hi' f ., . [It e escrow varia cs 1 = a an I = a to represent t e og III ormallon LOr operatIOns nerease

3



y;- _0 '(;"'"'_100 X;- _ (/ X;-_ ~O Y;-.O yi"'- I~

X;"",,"_D. O X'~-' -. y;-"--" ~ 0 y~.' -., ,
X, .~O Y, .~

(2) T· lI>=.n< X by 10 ('" s<,,~, I)

v';""'""-' _0

v~'_O

'1';-"""--" _ 0X;~J _0

X;""'_ ~

X, _10

X;- _0y;"'"'_ lOllv';-' _0

y~-"_O

S.M' 1(1. C<1l1)

I

x7"'-so I
li~~~;,;:,-iil

X,.O

(J)T"""'<JI rromC<1I1 ",c<1I2

X;- _0 I X~'.SO Y~.O '1';""'_ lOll

X;~--".O IX~-' ·W V;"',....-" _ 0 y~_' ••,
X, _ 0 y, • "0

s.:,,~, l(ln C<lll)

~ir=====i"""'~Yc"~~~~'Yi"""'~"~':":':"'i';====='il
X~•• O Ix;""".~o y~a.O V;"""_ISO

X~~---".O IX;~·I _0 '1';-,"-".0 I:i~J:'.i.'-I{i1

'1', .jQ

S<M:,Z(I.C<IlZ)

(6)"[0 COUUO", ('" S<n.~, I)

rr=;====r====Ji"==:==r====i1"
X>;-'.O X7"'. SO I v>;-' _ 0 I y;"'"'~ lOll

X;·....-".O Ix:FJ··~ii,1 '1';0-......--".0 Iy~.1 _0

!:xi:i.iio::; .... ".:.:::::::!

xi"'" _0

X, _ JO

'1';- _ 0 Y;-. ISO

'1';-,---" _ 0 jy',---:-", ,~·id
1::r~:;;6ii::- . .'::::::1

s.:m" 1(1. C<lll) s.:"",Z(I. c<n Z)

Figure 1: A Mobile Transaction Example

4



moves to Cell 2 to submit [Increase Y by 10} to Server 2. Similarly, Server 2 increases the escrow

variable yrcrow_I by 10.

As a result oj this mobility, the two operations are actually executed in two different servers.

At commit time, a two phase commit pmtocol must be used to shift the increases Jrom the escrow

variables to the local numeric objects. That is, Xl = Xl +10, Y2 = Y2 +10, XfSCTO"d = Xf3CTOWJ 

10, and y
2
cscTow_I = y

2
cscTow_I - 10.

The distribution of operations in the above example presents two problems which arise with the

site escrow approach:

• the message transmissions involved in a 2PC protocol increase the traffic over the fixed net

works; and

• the use of a 2PC protocol will reduce site autonomy.

These problems obviously run counter to the motivation for the usc of partitioned data and

negate some of the advantages of tills approach. Of course, if the transaction host in Example

1.1 rem;:lins fixed, transaction T can be executed in either server without involving in message

transmissions.

To avoid the use of a 2PC protocol at commit time, it was suggested in [15] that the move of

a transaction host to a new cell should be accompanied by the transfer of the escrow log for the

transaction to the local server under the cell. At the end of transaction, a commit operation can

be executed at the local server without communication with other servers. However, the transfer

procedure itself requires the use of a 2PC protocol and therefore still generate high traffic over

the fixed network. When the host repeatedly moves between two cells during the execution of a

transaction, the repeated log transfers between the two servers cause particularly heavy message

overhead.

In a mobile computing system, the mobllity factor is of the utmost importance in the design of a

distributed algorithm. Because the physical distance between two points does not necessarily reflect

the network distance, the communication path can grow disproportionately to actual movement.

For example, a small movement which crosses network administrative boundaries can result in a

much longer path. In a longer network path, communications traverse more intermediaries and

consume more network capacity. The mobility of hosts can cause that even a short transaction La

involve a long communication transmission.

X by a] and [Increase X by al, respectively.

5



1.2 Contributions of the paper

In this paper, we present an approach that avoids both heavy message transmissions and the use of

a 2PC protocol. A low message overhead among servers for each operation (including commit and

abort) will improve the response time of an operation requested by a mobile host. One benefit of

fast response time is that the mobile host will not need to expend precious battery resources while

waiting for the acknowledgement of requested operation.

The approach we propose in this paper is called Reseruation Algorithm (RA). In the sHe escrow

approach, an escrow log is used for both commitment/recovery and constraint-maintaining purposes

for uncommitted transactions. In contrast, this algorithm ensures resource constraints for the

operations of uncommitted transactions by simply modifying bound (lower or upper) variables at

local server sites. For commit and recovery purposes, the algorithm stores the operations in a

reservation log. For example, for the operation [Increase X by 10] in Example 1.1, this algorithm

needs only to decrease the bound variable X~pper by 10 and to store the operation in a reservation log

;eLt Server 1. The results of operations are returned to the mobile host along with acknowledgement

messages. The mobile host stores the returned results in its reservation log for the transaction.

Conceptually, the reservation log in the mobile host is a logical copy of logs maintained in server

sites. At the commit time (after the host moves to Cell 2), the mobile host sends its logical

reservation log, along with a commit request, to the local server 2 in the current cell. Server 2 will

use the log information to perform the actual resource allocations, i.e., increasing both X;pper and

X2 by 10. This algorithm will ensure that the resource constraint, Xmin :<; Lr""rxfower ~ X :<;

L~=lX,upper :<; X ma :&" is continualy maintained.

The RA approach allows the resource reservations for the operations of uncommitted trans

actions and the actual 1'esourcc allocations to be executed at different servers without the need

for communication. The resource reservations involve the modification of bound variables and the

update of reservation logs. Modifications of bound variables ensure the maintenance of resource

constraints for the operations of uncommitted transactions. The process of resource allocation will

restore modified bound variables and allocate resources at any partitioned data site (which may be

different from the site where the reservations were performed).

Although the overall framework of the RA approach is straightforward, two interesting issues

related to this approach merit deeper investigation. The first issue is the design of a termination

p1'Olocol. In a mobile environment, an active mobile transaction may be aborted unilaterally by

a data server. Such a unilateral abortion may be triggered by an extended long disconnection by

or a total failure (destruction or loss) of the mobile host. In this case, server may decide to abort

G



the transaction to release reserved resources. Unfortunately, the server can not make this decision

on the basis only of the information in its local reservation log, since the mobile host can make a

commit decision without communication with the server. The purpose of a termination protocol

is to guarantee that the commit decision of a mobile host will not contradict with the unilateral

abort decision of a data server.

The second issue is the development of a protocol for non-partition-commutative operations on

partitioned data. Assume that a data item X is partitioned among N sites such that X = L:f;'l X;

where Xi is the partitioned copy of X in site i. We sayan operation 0 is a partition-commutative

operation (pc-operation) if O(X) = O(Xj) + L:f::l,i#jX; for any j (1 '5 j '5 N); otherwise, it is

a non-pali;ition-commutative operation (npc-operation). An example of an npc-operation can be

found in a banking application. In tills application, both withdrawal and deposit operations are

pc-operations, while an interest-posting operation is an npc-operation. It is obvious that an npc

operation on partitioned data can not be performed in any single site if the data is partitioned over

more than one site. A protocol is therefore needed to coordinate the execution of such operations.

In this paper, we explore the following problems related to our proposed reservation approach:

1. Development oftermination protocols that can be included in the reservation approach. These

protocols should ensure that an unilateral abort by a data server and a commit by a mobile

host would not be made simultaneously for a mobile transaction;

2. Determination of the effect of the proposed reservation approach on the npc-operations on

partitioned data and of a protocol to permit these operations to accommodate the reservation

approach.

3. Comparison of the message cost of a reservation algorithm that includes the required protocols

for termlnation and npc-operations with that of existing site escrow or escrow log transfer

algori thms.

The remainder of this paper is organized as follows. Section 2 introduces the system model and

relevant terminology. In Section 3, we describe the basic reservation algorithm and the required

termination protocols. Section 4 discuss a protocol for npc-operations. Section 5 presents a perfor

mance evaluation of the proposed algorithm and the traditional 2PC protocol in terms of message

costs in the fixed network. Related research is discussed in Section 6, and concluding remarks arc

offered in SecLlon 7.

7



2 The Mobile Transaction Model

...; ....>81¥f..
'.,rrn <;1"':

,mI.'"
••••• ,••• _.. l>U

W..kuCclJ

.....

~

0 •••••

.... W...... Ccll

MSS: Mohlo SonutS""...

Mnl:MotO..T,.......... 'lool

.. '

"'-""b.,c.ll

~.
o

....

......

.....
.... "

Figure 2: Mobile Database System Model

Figure 2 presents a general mobile database system model similar to those described In [9, 7, 5]

for mobile computing systems. In this model, both a database server and a database are attached

to each fixed host. 1\ database server is intended to support basic transaction operations such a..<;

resource allocation, commit, and abort.

Each MSS has a coordinator which receives transaction operations from mobile hosts and mon

itors their execution in database servers wlthin the fixed networks. Transaction operations are

submitted by a mobile host to the coordinator in its MSS, which in turn sends them to the dis

tributed database servers wil.hin the fixed networks for execul.ion. For example, the coordlnator

will send a resource allocation operation to a local server if a partitioned copy is in the local site.

A mobile host may submit transactions in one of two ways:

1. An entire transaction may be submitted in a single request message; the whole transaction

thus becomes one submission unit. The mobile host also delivers execution control to its

coordinator and awaits the return of the results of the transaction execution.

2. In contrast, the operations of a transaction may be submitted in multiple request messages.

A submission un.it thus consists of one operation or a group of operations; the mobile host

interactively submits the operations of a transaction to its coordinator. A subsequent opcra-

8



tion can be submitted only after those previous have been executed and the results returned

from the coordinator.

While the first approach involves a single coordinator for all the operations of a transaction,

the second approach may involve multiple coorrunators because of the mobility of the host. For

example, a mobile host may move into a new cell after it obtains the results of previously sub

mitted operations. In the new cell, it will submit the remainder of the transaction operations to

the coordinator in the appropriate new MSS. The first approach is described in [20] and related

issues regarding the interface between the mobile host and the coordinator are discussed. Our

proposed model employs the second approach to transaction submissions. This approach supports

the interactive execution of transactions and therefore olfers increased flexibility in transaction

computations.

We assume that a mobile host may move at any time. It may move away from its current cell

after submitting an operation and before receiving a reply from the coordinator. The new coordi

nator will determine whether the host needs to obtain acknowledgement messages from previous

coordinator after registering in the new cell. In this case, additional procedures are needed to locate

the mobile host and convey to it the results of submitted operations. For the simplicity, in this

paper, we assume that each service area supported be a server covers only a single cell. In reality,

one service area may support more than one cell [10, 11].

We also assume that only one transaction may be initialized by a mobile host at any time. That

is, a mobile host can initialize a transaction only after the previous transaction has finished. The

transaction submitted from the mobile host is termed a mobile transaction and the host is called a

mobile transaction host. A mobile transaction consists of a set of pc-operations and npc-operations

which are bracketed by a BEGIN.:FRANSACTION statement and an EN DJ'RANBACTION

statement.

3 Reservation Algorithm For Mobile Transactions

3.1 Basic Structure of the Reservation Algorithm

Suppose that the value of.x is partitioned into local numeric objects Xi in server i (1 ~ i ::::: N) such

that X = 2:~l.xi' Similarly, the bound value X min (or Xm"x) is initially partitioned into x,!ower

(Xrpper
) in every server i (1 ~ i ::::: N) such that Xmin = 2:~1 x[ower (or Xm"x = 2:~1 xtpper

).

A reservation action for [Increase X by a] (or [Decrease X by aJ) in server i involves the operation

Xiflx = Xi":C- a when Xi+a::::: Xi":C (or .xr;n = Xiin+a when Xiin ::::: XI-a). A release action

9



for [Increase X by aJ (or [Decrease X by a]) in server i involves the operation x["ax = x["ax + a

(or X["in = x["in - a). A allocation action for (Increase X by aJ (or [Decrease X by a]) in server i

performs the operations Xi = Xi+a and Xiax = Xiax +a (or X; = Xi -a and X["in = .-Y"F in -a).

An operation 0 in server i is safe if Xrin ::; O(X;) ::; ximax. An operation 0 in server i is unsafe

but resolvable if Xi,n ::; O(Xi ) ::; Xiax does not hold but x min ::; O(X) ::; xmax holds.

Each reservation action (release, or allocation action) should be implemented as an atomic unit.

Conventional database techniques can be used at each server to ensure that the actions that change

the bound and resource variables will be atomic and persistent. When an action is completed, any

locks on bound and resource variables will be released. Each server will record all the executions

of these actions in a reservation log.

Assuming that no abortion is invoked by the servers, the reservation algorithm follows this

general format:

1. The mobile host sends each pc-operation of a mobile transaction to the coordinator in the

current cell, which will forward it to a local or nearby server where a partitioned data copy

resides.

2. If an pc-operation at a server is safe, the server then executes a local reservation action

for the pc-operation. Otherwise, the server invokes a resource repartition procedure (such

as the point-to-point demarcation protocol [6J or a dynamic quorum-based protocol [14])

to requisition additional partitioned data resources from other servers. Upon the successful

completion of the resource repartition procedure, the reservation action can be executed at the

local server. The result of the reservation action is returned to the mobile host that Sll bmitted

this pc-operation through its coordinator. If the operation is neither safe nor resolvable, it

failure message will be returned.

3. The mobile host records the results of the reservation action of each pc-operation and the

pc-operation itself in a reservation log. If all pc-operations of a mobile transaction succeed

from the execution of reservation actions, the mobile host sends a COMMIT message along

with the reservation log of the transaction to the coordinator in the current cell. Otherwise, it

sends an ABORT message along with the reservation log to the coordinator. The coordinator

then submits an allocation action (for COMMIT) or release action (for ABORT) for each

pc-operation in the log to the local or nearby server.

Note that, due to mobility, the server at which the allocation actions are executed may not

be the same as that [rom which the mobile host reserved these resources for the transaction (see

10



.' .....
.....

Transoclion HOSl CoordinlUor I Server I

~ Cllll I

Operation\l Rescrv:uion Action I
----------~-------> ------------------>

Acknowledgemenl Acknowlcdgcmcm
<-- --- ----~------_. <- - -- -- - - - - - - -- -- --

'.' '.-:
.•... -'. '"

Trnnsoction Host Coordinolor 2 Server 2

Opcnlljon'~;! Reservotion Action 2
----------~-------> ------------------>

Cell 2

COMMIT!
----------~------->

Acknowledgement<------------------
Allocation Acl.ions

------------------>
Acknow~dgemenl Acknowilldgement<--------.-------- - - <-- - -- -- -- ---------

.'

..........

Figure 3: An Example of Basic Reservation Algorithm Execution

11



Figure 3).

In the escrow approach, the escrow log serves both to check local resource constraints and to

commit or recover transactions. In contrast, the reservation log in the reservation approach serves

only the latter purposes. In the escrow approach, for example, when an uncommitted transaction

attempts to perform an pc-operation such as [Increase X by a], the server will use the escrow

variable XeS{:TOW in the escrow log to ascertain whether a given local resource constraint will be

satisfied for the pc-operation; Le., whether X + xeS{:TOW + a S xupper holds. In the reservation

algorithm, on the other hand, the maintenance of the constraint will not involve the usc of the

escrow variable xescrow. Any eITect of uncommitted transactions on resource constraints has been

addressed by modifying the values of the bound variables by the reservation actions.

A mobile host may move from one cell to another at any time. In tills paper, we assume that each

service area supported by a server covers only a single cell. If the host has left a cell before receiving

the acknowledgement message for last submitted pc-operation, this message will be forwarded by

the coordinator in the new cell. After the host registers in the new cell, the coordinator will

determine whether any acknowledgement messages are still outstanding from previous coordinator.

To handle host mobility, each coordinator runs the following handoff algorithm:

1. If a recently arrived host has received acknowledgement messages for all submitted pc

operations, the coordinator in the new cell will require only a request of pc-operations from

the host. Otherwise, before accepting new pc-operations, it will send an acknowledgement

request to the coordinator in the previolls cell and then forward these acknowledgements (if

any) to the host.

2. If a coordinator receives an acknowledgement request from another coordinator for the pc

operations submitted by a host that has left its cell, it will forward the acknowledgement

message to the requesting coordinator.

It is clear that such an approach will maintain resource integrity constraints, provided that no

data server is allowed to abort a mobile transaction. Any reservation action for a pc-operation

can be performed only if the pc-operation is safe locally or resolvable globally. Tills safety or

resolvability property implies that the bound variable updates by the reservation action always

maintain resource constraints. A release action is actually the reversal of of a reservation action

and is invoked only if the reservation action has been executed. An allocation action will also

reverse the bound variable change made by a reservation action and will update the corresponding

resource variable. The increased or decreased value for the resource variable always matches that

12



for the bound variable. Therefore, the basic reservation algorithm maintains resource constraints.

The algorithm also ensures a serializable execution of committed transactions with pc-operations

without requiring locks to be held until the commit time (a lock may be needed during the execution

of each action), since all pc-operations a.re mutually commutative.

In <:t mobile environment, however, a mobile host may be unreliable or may suffer a total failure

such as destruction or loss. In this case, a server may take an abort action [or an uncommitted

mobile transaction. We will address this issue and related problems in the rest of this section.

3.2 Unilateral Abortion Anomaly

In a mobile database environment, a server may decide to abort a transaction if the mobile trans

action host has disconnected from any server for an extended period. Such an abortion allows the

system to release resources reserved by the host. A mobile host may be somewhat unreliable, and

an unexpected long disconnection period may be caused by a total failure of the device through

destruction or loss. Abortion of a transaction avoids the indefinite holdings of reserved resources.

An abortion of this sort may result in an anomaly, called a Unilateral Abortion Anomaly, if

the mobile host attempts to commit a mobile transaction through its current coordinator witllout

following certain protocols.

Example 3.1 Considel" a mobile database system consisting of servers 1 and 2 with a resow"ce

constmint X '5; 20. Suppose that a mobile host had submitted the operation [increase X by 1O} /01'
tmnsaction l' to server 1 bef01"e it was disconnected from the system. The host then moves and

establishes a connection to server 2 after server 1 has decided to abort the transaction during its

disconnect period. Because server 1 made the abort decision without following certain protocols,

the mobile host, which has no knowledge of the abort, may commit the transaction at server 2.

While the abort will actually release reserved resources by increasing X:pper by 10, the commit will

consume the reserved resources by increasing X2 and X;pper by 10 in server 2. As a consequence,

the total upper bound of X becomes 30 rather than 20,- i.e. X:
pper + X;pper = 30 > 20 = Xmll;l;'

which violates the 1'esource constraint E?=\ xtpper
'5; Xm<l:l;'

This anomaly arises because both the commlt and abort actions are performed independently at

different servers without any coordination. Recall that the coordinator allocates reserved resources

at any local server site without communication with other servers from which these resources were

gathered.

It is also possible that both a server and a mobile host may simultaneously decide to abort

13



a transaction. Recall that a release action on behalf of a mobile host can be executed at any

partitioned copy server. The protocols must guarantee that these reserved resources will not be

released redundantly by both abortions. That is, each reserved resource can be released only once,

even though these releases invoked by a mobile host can be performed at servers other than those

where these resources were originally reserved.

Therefore, a protocol to avoid the unilateral abortion anomaly should ensure the following two

conditions:

L a transaction cannot he simultaneously committed by a mobile host and aborted by a d<:Lta

server; and

2. each reserved resource in a transaction can be released only once if a given transaction is

aborted by a server and a mobile host.

3.3 Termination Protocols

In the proposed reservation algorithm, the allocation actions for the commitment of a transaction do

not take the responsibility of writing the commit status into logs in other servers where reservation

actions were executed. A termination protocol should therefore be applied so that an abort decision

made by a server will not coincide with a commit decision made by the mobile hosl.

We assume that, when a server makes an abort decision, it can release the resources on x only

if they were reserved by the transadion from the server. In other words, the server cannot release

the resources on y if they were reserved from other servers. Two termination protocols which are

candidates for inclusion in our reservation algorithm are:

l. All-Copy Voting Protocol: Let N(x) be the set of partitioned copy sites for a data item x and

D(t) be the set of data items that transaction t has reserved. We assume that each item in

D(t) is only reserved once by transaction t. The server can abort an uncommitted transaction

t and release the resources reserved on x in the server only if it receives an abort vote from

each site in N(x) for data item x in D(t).

A two phase protocol should be used to ensure that an abort decision and released resources

will be recorded in reservation logs at all sites which have voted for the abort. In the first

phase, the server sends an abort request to aU the sites in N(x) for reserved item x in D(t).

After all the sites return their votes, the server enters the second phase. If all the sites vote

for the abort and the reserved item has not been released in any of these sites (by a mobile

14



host), the server sends the abort decision to those sites and locally releases the resources

reserved on x. Once a site voting for the abort receives the abort decision, the abort status

for the transaction l will be recorded in its reservation log along with the names of released

items. If any site has voted for commit or the reserved item has heen released, the server will

do nothing except recording the status into its local reservation log.

2. Transaction-Proxy Voting protocol: When a mobile transaction is inHialized, the system can

specify a server as the proxy for the transaction. If a server wishes to abort the uncommit

ted transaction and release resources reserved in the server, it must obtain a vote from the

transaction proxy.

The proxy will vote for abort only if it has not voted for commit or the reserved item has

not been released. Once the transaction proxy votes for the abort, the abort status will be

recorded in its reservation log along with the names of released items.

To integrate the all-copy voting protocol into our proposed reservation algorithm, each alloc;:ttion

action for a partitioned data item x should involve a determination of whether any partHioned

copy server has voted for an abort decision. If not, the action can be executed at any local or

nearby server and a commit nag (vote) can be recorded in the reservation log of the server without

communication with other servers.

When a mobile host requests a commit operation for a transaction, its coordinator should

execute all the allocation actions for the transaction in an atomic unit. If all the allocation actions

can be executed at a single sHe (i.e., there is a local partitioned copy for each reserved resource),

the commit operation can be performed locally. Otherwise, a 2PC protocol is needed to ensure the

atomic execution of these actions. The procedure is required because each server may uilllaterally

ahort a transaction and release reserved resources at any time. If the commit operation is not

executed in a atomic unit, a server may unilaterally abort the transaction and execute a release

action between two allocation actions, resulting in an undesired inconsistent termination decision.

When a mobile host requests an abort operation for a transaction, the coordinator can execute the

release actions for the transaction individually, without requiring atomic execution. However, each

release action must ensure that the resource in question has not been previously released by an

unilateral abort action by another server. This can be determined by examining the log information

at the local server.

To incorporate the second termination protocol discussed above, the reservation algorithm

should be modified in the following manner. Defore a coordinator executes any allocation ac

tion, the server should get a commit vote from the transaction proxy. Once it obtains this vote, the

15



allocation actions for a transaction can be executed individually; For a release action, the server

should obtain an abort vote from the proxy. Furthermore, each server should inform the proxy

which reserved resources to be allocated or released. Whenever other servers require a vote from

the proxy, this information regarding released items should be supplied to them to prevent the

redundant release of a reserved item by different servers.

/\. reservation algorithm that integrates either an all-copy voting or transaction-proxy voting

termination protocol will be free from the unilateral abortion anomaly. Either protocol will require

that the sites (or copies) voting for an abort always intersect with the sites (or copies) voting for

commitment. By recording the released resources in the logs of voting sites, any reserved resource

will not be released more than once by different servers.

3.4 Discussion

The two termination protocols described above could be subject to blocking even in the case of

site failure. In the all-copy voting protocol, when a site which holds a copy of a reserved item

fails, other servers can not execute the termination protocol to release the reserved item. In the

transaction-proxy voting protocol, the potential for blocking is even higher. If the transaction proxy

fails, no server can execute the termination protocol until it recovers.

Counterbalancing these blocking problems, the all-copy voting protocol offers low message over

head and supports a high degree of site autonomy for the commitment of transactions because all

allocation actions can be executed locally or at nearby sites. The transaction-proxy voting protocol

also offers low message overhead for the commitment or abortion of all transactions but does not

support high site autonomy because both commit and abort decisions depend on the vote of <:L

server designated prior to the execution of the transaction.

It has been generally held that non-blocking termination and efficient commitment are two

incompatible goals in a distributed system. Our reservation algorithm illustrates the validity of

this observation. While a reservation algorithm which incorporates either termination protocol

permits a low-cost and efficient commitment of transactions, it imposes some restrictions on the

execution of the termination protocol. The 3PC protocol, in contrast, involves no blocking in the

event of site failure but has high message overheads for the commitment of transactions.

Finally, we note that, when a transaction is committed, this decision is not broadcast imme

diately to all log sites where reservation actions for the transaction were executed. In this case,

some logs will still contain the pending reservation information about the transaction, potentially

resulting the invocation of an abort request by the server. Although this will not create inconsis-

16



tencies if all servers follow one of the termination protocols, it cause some unnecessary messages

to be sent over the network. The pending reservation and other log information for a committed

transaction can be removed if the system can periodically circulate the commit decision to other

servers or piggyback the decision on other messages sent to servers.

4 Protocol for Non-Partition-Commutative Operations

In this section, we will examine the effect of our proposed reservation algorithm on npc-operations

with partitioned data and discuss the design of a protocol to accommodate the reservation algo

rithm with such operations. We assume that serializability is used as the correctness criterion for

the execution of transactions. We fIrst review the execution of an npc-operation in a traditional

distributed environment in which the host is ftxed during the execution of a transaction and each

reservation action and its allocation action (or release action) are performed in the same site.

4.1 The Problem

Assume that a data item X is partitioned among n servers such that Li=l Xi = X. An npe

operation npeO on the partitioned data X can be performed by the coordinator of a transaction in

two different ways. In the first approach, the coordinator collects all the values of partitioned copies

from all n servers and executes the operation over the sum of these values; i.e., npcO(Li=l X;).

At commit time, the coordinator will repartition the result of the operation and write these repar

titioned copies back to the n servers_ In the second method, the coordinator sends the operation

directly to all n partitioned copy servers. Each server i will perform the operation over the value

of the partitioned copy; i_c., npcO(Xi). An operation npeO on X is successful (i.e., each server can

write the results back to a database) if and only if the operation npeO(Xi ) succeeds at every server

i (1 ~ i ~ n). The discussions in the rest of this section will be suitable to either approach.

To ensure a serializable execution, a lock protocol could be followed to coordinate the execution

of pc-operations and npc-operations. If a pc·operation is to be executed on a partitioned copy Xi,

a Partition-Comm1ltative Lock (PC-LOCK) must be obtained from the partitioned copy Xi. If

an nrc-operation is to be executed, a Non-Partition-Commutative Lock (N PC-LOCK) should be

obtained from all partitioned copies of X. A PC-LOCIC is compatible with other PC-LOC j{ s

but conflicts with another N PC-LOCK. Two N PC_LOCHs conffict with each other.

In a traditional distributed environment where the host is fixed during the execution of a

transaction, all the actions of a pc-operation on X will be executed in a single partitioned copy

17



server. A PC-LOCK should be set on the partitioned copy before these actions can executed.

For an npc-operation on X, the coordinator of the transaction will send an N PC-LOCK request

to all partitioned copy servers. Each server then determines whether the N PC-LOCJ( can be

granted. If no pending PC-LOCK is set on the copy, the server grants the request and sends a

reply message to the coordinator. Otherwise, the request is blocked at the server. The coordinator

collects reply messages from these sites. Once all sites reply to the request, it concludes that there

is no pending PC-LOCK at any server and the NPC-LOC]( is granted. Thus, only one round

of message exchanges is needed between tIle coordinator and any partitioned copy server for an

NPC-LOCK request. At commit or abort time, these PC-LOCKs and NPC-LOCJ(s will be

released.

If the transaction host may move among different cells during the execution, a reservation action

and a allocation action for a pc-operation in the reservation algorithm may be executed at different

servers. In this case, an interesting question is how a PC-LOCJ( that was set when the reservation

action was requested can be released after the allocation action completes.

At the simplest level, a server executing the allocation action can immediately forward a

PC_UNLOCK to the server where the PC-LOCJ( was set. If the transaction host moves fre

quently, however, this method will generate heavy message traffic. If there are m such pc-operations

with reservation actions and allocation (or release) actions on different servers, m messages will

be needed. The method obviously runs counter to the motivation of the use of the reservation

algorithm.

A second method is to delay the forwarding of the PC_UNLOCJ(s until an NPC-LOC!(

request arrives. Each server then sends to other servers a single message containing a batch of

PC_UNLOCKs that were executed since last npc-operation on the copy was completed. The

method will release a PC-LOCJ( on a copy until an N PC-LOCK request arrives on the copy. If

each partitioned copy server for a partitioned data item must forward the PC _U N LOC J( messages

to all other servers, then, in the worst case, the message overhead will be approximately n2, where

n is the number of partitioned copies.

In this paper, we suggest a method that requires each copy server to send all granted PC-LOC Ii."s

and delayed PC_U N LOCI(s to the coordinator wlJlch is requesting a N PC-LOC!( on that copy.

The coordinator collects these PC-LOCJ(s and PC_UNLOC!(s and then attempts to match a

pending granted PC_LOCI( with a delayed PC_UNLOC!(. The message overhead will be 2n.

If the m PC_U N LOCJ(s for granted PC-LOCK between two npc-operations are uniformly dis

tributed and m is greatly larger than the number n of the partitioned copies (i.e., m » n), this

method will prove to be more efficient than the first approach described above. If n >> 2, then

18



the method is also superior to the second approach above because n2 > 2n.

4.2 The Protocol

For a pc-operation, the PC-LOCK and PC_UNLOCI( operations can be executed at different

servers. A PC_LOCK is always executed at the server at which a reservation action is executed,

while a PC_U N LaCK is always executed at the server at which an allocation action is executed.

The granted PC_LOCI( will actually be released until an N PC-LaCI( request arrives.

To request an N PC-LOCK for an npc-operation 1 the coordinator can execute a protocol with

two rounds of message exchanges. In the first phase, the coordinator collects the PC _LOCI( / PC_Ul'ol LaCIi."

information from all copy servers. The coordinator cannot enter inlo the second phase until all

servers reply and each PC-LOCI( is matched by one PC_UNLOCK on the item to be accessed

by the npc-operation. In the second phase, the coordinator sends a confirmation message to every

copy server and the server releases the PC_LaCJ( and sets the N PC-LOCI( on the partitioned

copy.

To guarantee that no other PC-LOCI( will be set after the first pha.<:;e of the protocol, a

new lock mode, called NPCJN1'END, must be used. This lock mode locks the copy at all

the partitioned copy servers before these servers reply to the N PC-LaCI( request in the first

phase. If this step were bypassed, the copy server would be unable to force the setting of the

N PC-LOCK in the second phase if other PC-LOCKs arc granted on the copy after the first

phase. A requested NPCJNTEND is compatible with a granted PC_LOCI( but not wilh a

granted N PCJNTEND or N PC..LOCK. A granted N PCJNTEND is, however 1 incompatible

with a requested PC-LOCI( or a requested N PCJNTENDar N PC -LOCK.

When the first phase of an N PC-LOCI( request arrives at a copy server, an N PCJNTEN D

is set on the copy if no other N PCJ NTEN D or N PC-LaCI( applies to that copy. Otherwise,

the first phase of the N PCJJOC J( request is blocked at the server. This scenario implies that lwo

different npc-operations are requesting the N PC_LOCI(. If there is a PC-LOCK on the copy,

the first phase of the N PC _LOCI( request will immediately set the N PCJ NTEN D on the copy.

On the other hand, a granted N PCJNTEND will prevent any other new requested PC-LOCli."

or N PC-LOCI(.

If the PC-LOGI(s and PC_U N LOCJ(s collected in the first phase are not matched, it can be

concluded that some partitioned copies are locked by other pc-operations. In this case, the coordi

nator will wait for further PC_UN LOCI( messages from partitioned copy servers. A partitioned

copy server will forward any newly executed PC_UNLOCK to a coordinator if an N PCJNTEN D

19



requested by the coordinator has been set on the copy. Once the coordinator collects matched

PC_UNLOCKs, an N PC.LOCI( confirmation message is sent to all the partitioned copy servers.

After the copy server receives a confirmation message from the coordinator in the second phase,

all PC_LOCKs that have been matched by PC_UNLOCKs at the coordinator are removed and

the N PCJ NTEND is upgraded to an N PC.LOCI(. The lock compatibility matrix appears in

Figure 4.

Tj(Iock) NPCINTEND PC_LOCK NPC_LOCK

Ti(reque5l)

NPC_INTEND No y~ No

PC_LOCK No y~, No

NPC_LOCK No No No

Figure 4: Lock Compatibility Matrix

We h,we shown that the granted PC.LOCI( can be removed when another transaction prepares

to perform an npc-operation on the copy. The pending period of a PC.LOCf( may last until the

first N PC_LOCI( by another transaction. It is obvious that the pending PC_LOCI( docs nol

block either other PC_LOCI( requests or NPC.LOCI( requests. Thus, no blocking is incurred

by a pending PC.LOCJ( on a copy of an item until the copy is accessed by an npc-operation.

Merging the locking protocol into the reservation algorithm is a straightforward procedure. A

coordinator can send a PC.LOCK request with the corresponding reservation action to a parti

tioned copy server. The server sta.:rts to execute the reservation action only if the PC_LOCK is set

on the copy. The PC_UN LOCI( is set at any copy server after the completion of the aHocation

or release action. For an npc-operation, a coordinator sends an N PC.LOCI( request to all parti

tioned copy servers. The coordinator can send any action of the npc-operation to copy servers only

afler the first phase of the locking protocol ends. Therefore, the npc-operation (or related actions)

can be sent to copy servers with the N PC.LOCI( confirmation message. At commit time, these

N PC.LOCI(s are released; note that a 2PC protocol is required to commit the npc-operation

transaction.

20



5 Comparison of RES, ELT, and 2SE

As discussed in the introduction, one advantage offered by the reservation algorithm is the incrCa.'ied

autonomy made possible by avoiding the use of a 2PC protocol. The algorithm also results in

improved performance during normal execution, as no communication between server sites is needed

for the commitment of some transactions. In this section, we present a comparative analysis

of message costs incurred by the execution of the reservation algorithm (RES), the Escrow Log

Transfering algorithm (ELT), and the 2PC-Site-Escrow algorithm (28£) over fixed networks. The

2SB algorithm is the direct application of the site escrow method presented in [14, 16] in a mobile

environment (as shown in Example 1). The ELT algorithm is a modificaL1on of a site escrow method

which always transfers the escrow log for a mobile transaction to the local server in the current cell

of the transaction host. This algorithm was described in [15]. Through this comparison, we wish

to demonstrate the effect of the parameters of mobility and data partition on the message costs

of these algorithms and to discover those circumstances in which the RES algorithm offers lower

message costs than others.

5.1 An Analytical Model

We shall first describe a general equation that models the message costs incurred by the execution

of various algorithms in accessing partitioned data. Let ealg be the average number of messages

per second required by the execution of a given algorithm alg. Then, ealg can be expressed as:

ealg = ealg +ealg +ealg +eaIg +ealg
pc npc rpp com hd

where e;~9 is the expected number of messages per second for the execution of pc-operations; e~~

is the expected number of messages per second for the execution of npc-operations; e~~~ is the

expected number of messages per second for the execution of the repartition protocol (e.g., the site

escrow protocol or the demarcation protocol); e;~ih is the expected number of messages pcr second

for the execution of commlt operations; and e~~9 is the expected number of messages per second

for the execution of the handoff protocol.

ealg is obviously a function of such parameters as data partition, transaction host mobility,

transaction rate, and transaction access pattern. To present a detail message cost equation for

each algorithm, we shall now define these parameters and specify some assumptions.

Without loss of generality, we assume that there are N data servers, with each server attached

to an MSS. In fact, some servers may be attached to fixed hosts which have no wireless cOIl"!rnu

nication interface. Our model can be generalized to include this case by assigning each of these

21



servers to its closest MSS. Partition-commutative transactions (pc-transactions), which contain

only pc-operations, and non-partition-commutative transactions (npc-transactions), which contain

only npc-operations, arrive in Poisson distributions with an average arrival rate of Apc and A npc ,

respectively. The dala are randomly accessed by a transaction. The average number of partitioned

data items accessed by a pc-transaction is n pc . The average number of partitioned data items

accessed by an npc-transaction is nnpc.

The average number of partitioned copies per partitioned data item is represented as p (;::: 2).

The probability that a pc-operation hits a partitioned copy at the local server is piN. Let N"pc

be the average number of server sites where the npc-operations of an npc-transaction are executed.

The number will be between p and N.

We assume that a mobile transaction host can move away from the current cell (or server) only

after each operation request submitted from the cell has been acknowledged by the coordinator in

the same cell. In other words, we ignore the case in which the host moves to a new cell before it

receives an acknowledgement for previously submitted operations. The probability of the mobility

of each transaction host is m.

We now derive the basic expressions that describe the message costs for the RES, 2SE, and ELT

algorithms. In these expressions, we ignore the message costs for aborted transactions and Msume

that no conflict exists between an npc-transaction and a pc-operation at any server. We also assume

that a transaction host always submits a commit or abort operation to the local server which has

all partitioned copies for the execution of the aUocation or release actions. Our analytical model

will not treat the message costs between mobile hosts and MSSs and consider only the message

costs among data servers over MSSs.

c;~g: For each pc-operation in each of the three algorithms, if there is a partitioned copy at local

site, then no communication is needed. Otherwise, the operalion will be sent to a nearby

partitioned copy site. The expected number of messages per second for pc-operations in these

algorithms is:

e
RES CELT e'SE , (1 IN)pc = pc = pc = 2 ....pcn pc - P

C~~c: For each npc-transaction in the ELT and 2SE algorithms, only one round of messages is

needed to obtain N PC-LOCJ(s, while, in the RES algorithm, two rounds of messages are

needed. The operation is piggybacked along with the NPC-LOC]( request messages. Be

cause we assume that no conflict exists between an npc-transaction and a pc-operation at

any server, the exact two rounds of messages will be sufficient for an N PC-LOCf( request in

22



the RES algorithm. The expected number of messages per second [or pc-operations in these

algorithms is:

C
RES , d CELT C 2SE ,
npc = 4 ....npcnnpcP' an npc = pc = 2 ....npcnnpcP

C~~¥n.: When the commit operation (the EN n:rRANSAC1'JON operation) is requested, a 2PC

protocol will be executed for all npc-transactions in each algorithm. The number of messages

involved in the 2PC protocol, which is dependent upon the number of update transactions and

the average number of servers updated by each transaction, can be expressed as 4AnpcNnpc.

For the 2SE algorithm, a 2PC protocol will be executed for all distributed pc-transactions.

Let N pc btl the average number of server sites where the pc-operations of a pc-transaction are

executed and B be a parameter such thaI. N pc = npcmB. Because npcm is the average number

of movements per pc-transaction among different servers, it is obvious that N pc < npcm and

o < B ::; L The number of messages per second involved in the commitment of distributed

pc-transactions can therefore be expressed as 4>'pcnpcmB. Thus, we arrive at the expected

number of messages per second for the commit operation for each algorithm as follows:

C~~~: For any of the RES, ELT, and 2SE algorithms, a repartitIon protocol RP (e.g., the s·lte escrow

protocol or the demarcation protocol) shall be used to dynamically reallocate or repartition

resources so that each pc-operation is safe. The message overhead for the execution of the

repartition protocol are in general independent of the algorithm used. Instead, the overhead

is a function FRP of database parameters, transaction parameters, and repartition protocol

parameters. The expected number of messages per second for the execution of partition

protocol can be expressed as:

C
RES _ CELT _ C 2SE - F
rpp - rpp - rpp - RP

C~J: We assume that the mobile host moves to a new cell only after it has received acknowledge

ments for all operations submitted from the old cell. Therefore, in both the RES and 2SE

algorithms, the current server does not need to contact the remote server for acknowledge

ment messages after the host moves to a new cell. However, in the ELS algorithm, a handoff

protocol must be executed to transfer the context information from the previous server to the

current server. The expected number of messages per second for the execution of the handoff

protocol can be expressed as:

23



C RES C2SE 0 d CELT 4'hd = hd = , an hd = Apc-npc-ill

Totally, the expected number of messages transmitted per second for each algorithm can be

given by the expressions:

2,),pcnpc(1- piN) + 4).npcnnpc]J + 4AnpcNnpc + F RP

Co +2>'npcnnpcP

2>'pcnpc(l- piN) + 2AnpcnnpcP + 4>'npcNnpc + 4>"pcnpcm + FRP

Co + 4,),pcnpcm

2>'pcnpc(1- piN) + 2>'npcnnpcP + 4AnpcNnpc + 4>'pcnpcm(J + FRP

Co +4>'pcnpcmB

(1)

(2)

(3)

5.2 The Comparison

e2SE is never larger than CELT, because 0 < () :$ 1. From equations (1)-(3), we observe that,

to make eRES smaller than both e2SE and CELT (l.e., eRES < e2SE and eRES < CELT) , the

following inequality should apply:

0} E. < 2mB(p" 2m(p (4 )

The inequality in (4) illustrates the following relationships among the RES, ELT, and 2SE

algorithms:

1. When m = 0, message costs for the RES algorithm are no better than for either the ELT and

2SB algorithms. In other words, when all transaction hosts do not move, the RES algorithm

24



offers no advantage over the ELT and 2SE algorithms. In fact, in this case, no additional

messages are needed for pc-operations if there is a partitioned copy at the local site, while

more messages are required by the RES algorithm than by the ELT and 2SE algorithms fOJ"

npc-operations.

2. When ~ = 0, the RES algorithm always performs at least as well as the ELT and 2SI~

algorithms in terms of message cost. In this case, no npc-operations arc to be executed.

3. When ~ > 1, message costs for the RES algorithm are no better than for either the ELT

and 2SE algorithms. In fact, when data has been partitioned, p is always equal to or la.rger

than 2 and 2m(J/p or 2m/p is no larger than 1. The observation indicates that the number

of npe-transactions should not be larger than the number of pc-operations. Note that, when

~ > 1, no partitioned-data algorithm offers lower message costs than does the algorithm for

non-partitioned data. In this instance, the message costs of npe-transactions (in two or more

partitioned copy sites) may offset the message savings made by pc-operations in a partitioned

copy site. Non-partitioned data may actually require fewer message exchanges, because any

npc-transaction or pc-operation needs at most one round of messages between the remote

no-partitioned data server and the transaction server.

o m

Figure 5: The relation of parameters ~, m, and p

Figure 5 shows the relation among the parameters m, p, and ~ expressed in inequality (4) as

the mobility parameter rises from 0 to 1. The shaded area in the figure indicates all the possible

values of parameters ~ and m for a given p for which the the RES algorithm performs better than

both ELT and 2SE algorithms in terms of message cost.

25



5.3 Satisfiability

Assume that CCEN is a message cost function for non-partitioned and centralized algorithm in

which no data is partitioned and all pc-operations or npc-operations are sent to a central site Lhat

stores data copies. The cost equation can be expressed as:

CCEN + CCEN +CCENpc npc com

where 2A pcnpc((N - 1)/N) is the expected number of messages per second [or pc-operations,

2Anpcnnpc((N -l)/N) for npc-operations and 2(Apc + Anpc)((N - 1)/N) for commit operations.

We now examine the satisfiability of C RES with respect to CCEN under the condition of in

equality (4). Let eX be a cost function for the algorithm X with parameter vedor V. We say CA

is satisfiable with respect to C B if there is a vector value v' in the domain of the parameter V such

that CA < CB with the vector value Vi for the parameter V.

The satisfiability of C RES with respect to CCEN implies that in some situations Lhe RES

algorithm will involve lower message overhead than the CEN algorithm. However, if CRES is NOT

satisfiable with respect lo CCEN under inequality (4), the algorithm RES may nol be valuable

because it will involve higher message overhead than the CEN algorithm. In other words, in this

case, C RES < CCEN can not be satisfied even though C RES < C 2SE < CELT with'; < 2m8/p::;

2m/p. Our expedation would be that the RES algorithm would not only offer lower message

costs than the ELT or 2SE algorithms but would also prove superior to the CEN algorithm in

non-partitioned data environments.

Let now examine a scenario in which C RES < CCEN under condition (4). Consider a database

consisting of a fully partitioned data item X with no resource constraint over two servers (Le., the

constraint can be expressed as -00 < X < 00, P = N = 2, and each server has a partitioned copy).

Assume that each pc-transaction has two pc-operations, Le., npc = 2, and each npc-transaction

has only one npc-operation, i.e. nnpc = 1. In this database, for any transaction accessing data

item X, the message cost for repartition protocol is zero; i.e., C:':'~S = 0, as any pc-operation is

always safe. Cf;c.ES is also equal to zero, as p/N;::: 1. When.; = 0 (i.e., there is no npc-operation),

C RES = 0 but C CEN f. O. That is, C RES < C CEN . Assume'; > O. We compute the inequality

(Le., C RES < CCEN) from equations (1) and (5) as follows:

26



2,1,on,0((N -l}/N} + 2,1.,on.po((N - l)/N) + 2(."0 + ,I.,o)((N -l}/N}

=> 4~p + 4E,Nnpcjnnpc < 1 + t + l/npc + f,/nnpc

=> t < 3/28

From this computation, we have the inequality E, < 3/28. That is, when 0 < E, < 3/28,

C RES < eGEN can be satisfied. So, when 0 < f, < min(3j28,2m()jp), C RES < CRl!:S and

eRgS < C2SE < CELT. Therefore, we have the following theorem:

Theorem 5.1 C RES is saUsfiable with respect to eCEN with either E, = 0 or 0 < E, < 2mO/p.

6 Related Work

Some of the problems involved in supporting transaction services and distributed data management

in a mobile environment have been identified recently in [9,3]. The management of distributed data

has been identified in [9J as a research area on which the mobility of host has a large impact. In

[3], it is predicted that future applications of mobile computing will demand various transactional

and transaction-like services.

A prototype of transaction service for mobile hosts is currently being implemented on the Code

file system [13, 18] to support continued services in a disconnection mode. This prototype uses

the optimistic concurrency contml method presented in [17] to enforce the serializable execution of

transactions submitted from mobile hosts. The optimistic concurrency control method is generally

suitable for applications, such as those in a file system environment, of low data contention. The

prototype, however, did not address the issue of the mobility of transacl.ion hosts and its effect on

the management of d.lstributed data.

The impact of mobility on distributed algorithms has recently been investigated in [5]. Th.is

research also emphasizes the reduction of the message costs in networks in which a mobile host

involved in the execution of distributed algorithms moves across different cells. Unlike the work

presented here, that research did not utilize the semantics of data to minimize the message overhe<Ld

caused by the mobility of hosts.

As stated previously, the notion of using partitioned data to reduce message overhead and

increase system throughput in distributed database environments hM been investigated in the

literature [2, 6, 14, 16, 19, 1]. These efforts address principally the efficient repartition or recon

figuration of a partitioned data item among different sites so that an operation on the data item

can be performed at a local site. The research presented here, in contrast, utilizes the partitioned

27



data to efficiently deal with the distribution of operations caused by the mobility of a transaction

host. Tlus problem did not arise in a traditional distributed environment with a fixed location of

transaction host.

SOfie commonalities are present between previous work on repartition protocols and our efforts

toward a reservation algorithm. The execution of a mobile transaction in the reservation algorithm

can be thought of as involving a series of repartition procedures. A reservation action is a repartition

procedure that moves a portion of the partitioned data from a local server to a moblle host, and the

allocation (or release) action involves a repartition procedure that moves a portion of partitioned

dat;:L from a mobile host to a local server. Specifically, like the demarcation protocol presented in

[fi], these repartition procedures are performed by updating the bound variables of a partitioned

data item. However, the requirements for reliability procedures are quite different. In the previous

approach, a repartition procedure is performed only among relatively reliable distributed servers

in lixed networks. The procedure can be executed as a atomic unit. In our work, a repartition

procedure is performed between a data server and a mobile host, and the series of repartition

procedures for a mobile transaction is executed as an atomic unit. Guaranteeing the atomicity ofthe

series of repartiLion procedures therefore poses an additional issue, particularly in the development

of an atomic protocol which can handle the problems introduced by the failure and extended long

disconnections of the mobile host.

In [15], the problem of using the site escrow method (2SE) for mobile transactions was discussed.

To cLVoid the use of a 2PC protocol at commit time, the authors in [15] suggested the Escrow Log

Tr<Lnsfering (ELT) method. The method executes a handoff protocol to move the escrow log of

a transaction from the server in previous cell to the new server in the current cell before the

transaction can continue its execution. This method carries with it a heavy message overhead

when a mobile host moves frequently across cells.

OUf approach to a pending partition-commutative lock is similar to that explored in (12] for

a pending read lock in a replicated database for mobile transactions. In [12], the commutative

semantics of read locks are utilized to reduce message overhead for the distributed read operations

of a mobile transaction. The partition-commutative lock is applied to prevent a conflicting non

partition-commutative operation from accessing a partitioned copy, while a read lock is used to

prevent a write operation from updating a replicated copy.

The issue of termination for a 2PC or 3PC protocol has been well studied (see [8] for details).

A server will execute a termination protocol only after it enters the first phase of a 2PC or 3PC

protocol but before it receives the commit decision from the coordinator. In our algorithm, a server

is always required to execute a termination protocol before it can make an abort decision. The

28



termination protocol in our algorithm, like a 2PC protocol, may be blocked if there is a lin k failure

or a site failure.

7 Conclusions

In a mobile computing system, the mobility factor is of the utmost importance in the design of a

distributed algorithm. Because the physical distance between two points does not necessarily rellect

the network distance, the communication path can grow disproportionately to actual movement. A

small movement which crosses network administrative boundaries can result in a much longer path.

In a longer network path, communications traverse more intermediaries and consume more network

capacity. The mobility of hosts can cause even a short transaction to involve a long communication

transmission.

A low message overhead among servers for each operation (including commit and abort) will

improve the response time of an operation requested by a mobile host. One benefit of fast response

time is that the host will not need to expend precious battery resources while waiting for the

acknowledgement of the requested operation.

In this paper, we have addressed the issue of the distribution of operations that update par

titione.d data in mobile environments. We have shown that, for operations pertaining to resource

allocation, the message overhead (e.g., fOT a 2PC protocol) introduced by the distribution of oper

ations is undesirable and unnecessary.

We have introduced a new algorithm, the Reservation Algorithm (RA), that does not necessi

tate the incurring of message overhead for the commitment of mobile transactions. We have dis

cussed two issues related to the RA algorithm: termination protocoL and protocoL/or non-partilion

commutative operations. The algorithm ensures a serializable execution of transactions. We have

performed a comparison between the proposed RA algorithm and existing solutions that usc a 2PC

protocol.

The algorithm proposed in this paper requires the transmission of reservation log information

from a mobile host to its current coordinator through a wireless channel when the host decides to

commit a transaction. These transmissions do not usually involve add.ltional message exchanges,

as they are piggybacked on the commit request message of the transaction. These transmissions

can be structured to consume only mlnimal bandwidth on wireless channels by representing the

reservation log by logical operations rather than physical pages.

Although the algorithm discussed in this paper applies directly only to operations over parti-

29



Lioned data, it can be merged into other locking algorithms to support operations on non-partitioned

data. For example, in [12], we have shown that, if non-partitioned data are replicated among dif

ferent servers, then a read unlock for an non-partitioned data item can be executed at any copy

site, including sites other than that on which the read lock is set. The locking schema utilizes

the replicated copies of data items to reduce the message costs incurred by the mobility of the

transaction host. Therefore, the reservation algorithm can be augmented with the locking schema

to support operations on both partitioned and non-partitioned data. Such an augmented algorithm

can improve the efficiency of concurrency control protocols in a mobile environment if the number

of read operations on non-partitioned data and pc-operations on partitioned data dominates that

of write operations on non-partitioned data and npc-operations on partitioned data.

Finally, we note that the algorithm presented in this paper is a pessimistic concurrency control

protocol. Each pc-operation obtains reserved resources when it is invoked by a mobile host. The

message overhead which arises from the mobility of hosts can obviously be avoided through a more

optimistic approach which defers reservation actions until commit time. Increasingly optimistic

approaches, however, carry with them increasingly high transaction abort rates, offering a tradeoff

between the message overhead and the ahort rate. The choice of a pessimistic or an optimistic

approach therefore depends on the requirements of specific applications and the parameters of

system environments.

References

[lJ G. Alonsa and A. E. Abbadi. Partitioned data objects in distributed databases. the Interna
tional Journal on Distributed and Parallel Databases, 3(1), 1995.

[2] R. Alonso, D. Barbara, and H. Garcia-Molina. Data caching issues in an information retrieval
system. ACM Transactions on Database Systems, 15(3):359-384, September 1990.

(3] R. Alonso and H. Korth. Database issues in nomadic computing. In Proceedings of the ACM
SIGMOD Conference on Management of Data, pages 388-392, 1993.

[4] A. Asthana, M. Cravatts, and P. Krzyzanowski. An indoor wireless system [or personalized
shopping assistance. In 1994 Workshop on Mobile Computing Systems and Applications, 1994.

[5] B. R. Badrinath, A. Acharya, and T. Imlelinski. Structuring distributed algorithms for mo
bile hosts. In Proc. of the 14th International Conference on Distributed Computing Systems,
Poznan, Poland, June 1991.

[6] D. Barbara, , and H. Garcia-Molina. The demarcation protocol: A technique for maintaining
constraints in distributed database systems. The VLDB Journal, 3(3):325-354, 1994.

30



[7] D. Barbara and T. Imielinksi. Sleepers and workaholics: Caching strategies for mobile envi
ronments. In Proceedings of the ACM SIGMOD Conference on Management of Data, pages
1-12,1994.

[8] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Databases
Systems. Addison-Wesley Publishing Co., 1987.

[9] T. Imielinski and B. R. Badrinath. Wireless mobile computing: Challenges in data manage
menlo Communication of ACM, 37(10), 1994.

[10] R. Jain and N. Krishnakumar_ Network support for personal information services to pcs Ilsers.
In Pmceedings of the IEEE conference on Networks for Personal Communications (NPC '9.{),
Long Branch, NJ, Mar. 1994.

[11] R. Jain and N. Krishnakumar. Service handoffs and virtual mobility for delivery of personal
information services to mobile users. Technical Report TM-24696, Bellcore, Dec. 1994.

[12] J. Jing, O. Bukhres, and A. Elmagarmid. Distributed lock management for mobile transactions.
In Proc. of the 15th International Confe1'ence on Distributed Computing Systems, VanCOllver,
Canada, June 1995.

[13] J. Kistler and M. Satyanaranyanan. Disconnected Operation in the Coda File System. ACM
Transactions on Computer Systems, 10(1), February 1992.

[14J N. Krishnakumar and A. J. Bernstein. High throughput escrow algorithm for replicated
databases. In Proceedings of the Eighteenth International Conference on Ve'T'lJ Large Dala
Bases, 1992.

[15] N. Krishnakumar and R. Jain. Protocols for maintaining inventory databases and user ser
vice profiles in mobile sales applications. In Proceedings of the Mobidata Workshop, Rutgers
University, Nov. 1994.

[16] A. Kumar and M. Stonebraker. Semantics-based transaction management techniques for repli
cated data. In Proceedings of the ACM SIGMOD Conference on Management of Data, 1988.

[17J n. Kung and J. Robinson. On optimistic methods for concurrency control. ;lCM Trans.
Database Syst' l 6(2):213-226, June 1981.

[18] Q. Lu and M. Satyanaranyanan. Isolation-only transactions for mobile computing. AClvI
Operating Systems Review, 28(3), 1994.

[19] N. Soparkar and A. Siberschatz. Data-value partitioning and virtual messages. In Proceedings
of the Conference on Principles of Database Systems, 1990.

[20] L. Yeo and A. Zaslavsky. Submission of transactions from mobile workstations in a coopera
tive multidatabase processing environment. In Pmc. of the l.{th Inlernational Conference on
Dist7ibllted Computing Systems, Poznan, Poland, June 1994.

31


	Partitioned Data Management in Mobile Environments
	Report Number:
	

	tmp.1307986960.pdf.VA_FQ

