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Abstract

We present a general method for worst-case limlt kinematic tolerance analysis: com­
puting the range of variation in the kinematic function of a mecnanism [rom its part
tolerance specifications. The method covers fixed and changing contact mechanisms
with parametric or geometric part tolerances. We develop a new model of kincmaLic
variation, called kinematic tolerance space, that generalizes the configuration space
representation of nominal kinematics function. Kinematic tolerance space captures
quantitative and qualitative variations in kinematic function due to variations in part
shape and part configuration. We derive properties of kinematic tolerance space that
express the relationship between the nominal kinematics of mechanisms and their kine­
matic variations. Using these properties, we develop a practical kinematic tolerance
space computation algorithm for planar pairs with two degrees of freedom and for
assemblies of such pairs with independent part tolerances.

To appear, Computer-Aided Design, September 1996.
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1 Introduction

vVe present a new method of kinematic tolerance analysis based on configuration space!>.
Kinematic tolerance analysis studies the variation in the kinematic function of mechanisms
resulting from manufacturing variation in the shapes and configurations of their parts. It
supports the synthesis of designs that reduce manufacturing cost by maintaining kinematic
function under increased part variation. It helps designers predict performance, uncover
design flaws, and optimize tolerance allocation. It complements tolcrancing for assembly
and for other design functions.

The kinematic function of a mechanism is the relationship among the motions of its parts
imposed by contacts between them. For example, the kinematic function of an ideal gear pair
is to transform an input rotation into an output rotation with a constant angular velocity
ratio. The shapes and configurations of the parts determine the kinematic fundion under
the assumption that they are rigid, hence cannot deform or overlap. Kinematic analysis
computes the kinematic function by identifying the part contacts and deriving the resulting
motion constraints. Variation in the part shapes and part configurations produces variation
in the kinematic function. For example, variation in the gear profiles and in the configurations
of the rotation axes causes backlash and transmission ratio variation. Kinematic tolerance
analysis computes the class of kinematic variations from the class of part variations.

Kinematic models for tolerancing must account for multiple, changing contacts between
irregular parts that generate complex, discontinuous kinematicfunetions. Nominal kinerncltic
models are of limited use because they assume idealized contacts between nominal parts
in permanent contact. For example, nominal linkage models a.<;sume that the links are
permanently connected by ideal joints, nominal cam models assume that the cam and the
follower have smooth profiles with a single, permanent contact, and nominal gear models
assume that the teeth have perfectly meshed involute profiles. Part tolerances invalidate the
idealized shape and contact assumptions.

vVc illustrate the errect of tolerances on the kinematic function of a Geneva mechanism
(Figure 1). The driver consists of a driving pin and a locking arc segment mounted on a
cylindrical base (not shown). The wheel consists of four locking arc segments and four slots.
The driver rotates around axis Od and the wheel rotates around axis Ow. In the nominal
model, each rotation of the driver causes a nonuniform, intermittent rotation of the wheel
with four drive periods where the driver pin engages the wheel slots and with [our dwell
periods where the driver locking segments engage the wheel locking segments. The pin fits
perfectly into the slots, thus producing positive drive without play. Tolerancing the pin
slightly smaller than the slots introduces play due 1.0 contact changes between the pin and
the sides of the slots. The analysis must account for these contacts to measure the play
and to determine the transmission ratio variation. Undercutting, interference, and jamming
provide further exampIcs o[ how part tolerances lead to changing contacts that invalidate
the idealized contact assumption.
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Figure 1: Geneva mechanism and iLs configuration space. The mechanism is displayed in
configuration () = 0, W = 0, marked by the dot at the configuration space origin.

Current kinematic tolerance analysis methods [51 are limited by intrinsic factors and by
their reliance upon predefined kinematic models, which are available only for linkages aTld
for a few higher pairs. Specialized methods are available for specific mechanisms with spe­
cific part tolerances, for example linkages whose links vary in length. The most common
general methods are statistical sampling and sensitivity analysis. Statistical sampling esti­
mates the kinematic variation by generating mechanism instances based on conjectured part
tolerance distributions and comparing their kinematic functions with the nominal function.
The method requires many instances to provide an accurate picture of the variation over the
entire kinematic function and can miss important cases. Sensitivity analysis computes the
kinematic variation under the assumption that the kinematic function is a smooth function
of some tolerance parameters. It linearizes the function around the nominal parameter val­
ues and computes the variations in the linearized function. The method is limited to small
deviations and cannot compute the effects of changing contacts because they violate the
smoothness assumption.

In this paper, we present a general method for worst-case limit kinematic tolerance anal­
ysis: computing the range of variation in kinematic function from the part tolerance specifi­
cations. The method covers all mechanisms: planar and spatial, fixed topology and varying
topology mechanisms consisting of linkages, gears, cams, and other higher pairs. It applies
to parametric and geometric part tolerance specifications. We define a new model or kine­
matic variation, called kinematic tolerance space, that generalizes our configuration space
model of nominal kinematics to cover part variations. Kinematic tolerance space encodes the
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quantitative effect of part variations on kinematic function along with possible qualitative
effects, such as changes in operating mode or unintended fundions. It generalizes kinematic
function sensitivity analysis to large scale quantitative and qualitative variations by cap­
turing the interplay between part variations and multiple, changing contacts. We derive
the basic properties of kinematic tolerance space and describe an implemented kinematic
tolerance space computation algorithm for planar pairs with two degrees of freedom aTld [or
assemblies of such pairs with independent part tolerances. We conclude with a discussion of
applications and of future work.

2 Nominal kinematics

We set the stage for kinematic tolerance analysis with a brief review of the configuration
space method for nominal kinematic analysis. Configuration space provides a uniform ge­
ometrical model of kinematic function that is concise, complete, and explicit. It simplifies
and systematizes kinematic analysis by reducing it to computational geometry.

2.1 Configuration space

The configuration space of a mechanism is the space of configurations (positions aTld orienta­
tions) of its parts. The dimension of the configuration space equals the number of degrees of
freedom of the parts. For example, a nominal gear pair has a two-dimensional configuration
space because each gear has one rotational degree of freedom. The gear orientations provide
a natural coordinate system. Configuration space partitions into free space where the parts
do not touch and into blocked space where some parts overlap. The common bouTldary,
called contact space, contains the configuratioTls where some parts touch without overlap
and the rest do not touch. Only free space and contact space are physically realizable.

We illustrate these concepts on the Geneva mechanism (Figure 1). The configuration
space is two-dimensional because each part has OTle degree of freedom. Its coordinates are
the orientations 0 and w of the driver and the wheel. The shaded region is the blocked space
where the driver and the wheel overlap. The white region is the free space. It forms a single
channel that wraps around the horizontal and vertical boundaries, since the configurations
at ±7i' coincide. The width of the channel shows backlash. The curves that bound the free
and blocked regions form the contact space. They encode the contact relations betweeTl
the wheel and the driver. The horizontal segments represent contacts between the locking
arc segments, which hold the wheel stationary. The diagonal segments represent contacts
between the pin and the slots, which rotate the wheel.

The configuration space topology reflects the semantics of rigid body kinematics. Free
space is an open set because free parts remain free under small motions. Blocked space is
open because overlapping parts remain overlapping under small motions. Contact space is
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closed because it is the complement of the union of free space and blocked space. It forms
the common boundary of free space and blocked space because touching parts overlap when
they move closer and become free when they move farther apart. Contact space partitions
configuration space into connected components.

The configuration space encodes the space of kinematic functions under all driving mo­
tions. It represents the motion constraints induced by part contacts and the configurations
where contacts change. The kinematic functions under specific driving motions are paths in
configuration space that consist of contact and free segments separated by contact change
configurations. For example, clockwise rotation of the driver produces a path that follows
the bottom of the free space from right to left. The kinematic function consists of [our
horizontal segments alternating with four diagonal segments. The pin makes contact with
the slot at the start of the diagonal segments and breaks contact at the end.

Another important property, called compositionality, is that the configuration space of a
mechanism is dclermined by the configuration spaces of its pairs of parts [9]. vVe embed the
pairwise configuration spaces in the mechanism configuration space by inverse projection.
Each pairwise configuration (a, b) maps to the set of configurations (a, b, x) where x varies
over all values of the other coordinates. The mechanism free space equals the intersection
of the embedded pairwise free spaces because a mechanism configuration is free when every
pair of parts is free. The blocked space equals the union of the embedded pairwise blocked
spaces because a mechanism configuration is blocked when at least two parts overlap.

Configuration space computation can be formulated in terms of algebraic geometry. The
formulation requires that part shapes be specified as algebraic curves and surfaces. The
kinematic condition that the parts cannot overlap is expressed by multivariate polynomial
inequalities in the configuration space coordinates. The configurations that satisfy t.he con­
straints are the free and contact spaces. Computing this set takes time polynomial in the
geometric complexity of the parts and exponential in the number of degrees of freedom with
large constant factors [12].

2.2 The HIPAIR mechanism configuration space computation
program

We [9, 10, 16, 17] have developed an efficient configuration space computation program, called
I-IIPAIR, for planar mechanisms composed o[ linkages and of higher pairs with two degrees of
freedom, such as gears and cams. HIPAIR covers 80% of higher pairs and most mechanisms
based on a survey of 2500 mechanisms in Artobolevsky's [2J encyclopedia of mechanisms
and on an informal survey of modern mechanisms, such as VCR's and photocopiers. Other
researchers have developed algorithms [or some higher pairs that HIPAIR does not cover,
including planar polygonal pairs with three degrees of freedom [3, 4J and a polyhedral body
with six degrees of freedom amidst polyhedral obstacles [6, 11].

HIPAIR computes the configuration space of a mechanism by composing the configuration
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Figure 2: Detail of configuration space computation for the Geneva mechanism: (a) contacL
curves and intersection points; (b) connected components and realizable space; (c) final
configuration spacc.

spaces of its higher pairs and linkages. The correctness of this procedure follows from the
compositionality of configuration space.

HIPAIR computes the configuration space of a higher pair from the con Lads between
the part features (vertices and curves on its boundary). The configuration space is two di­
mensional because the pair has two degrees of freedom, each of which is translation along
a. planar axis or rotation around an orthogonal axis. The contacts occur along curves in
configuration space. The contact curves partition configuration space into connected com­
ponents that form the free and blocked spaces. The component boundaries are sequences of
contact curve segments that meet at curve intersection points where multiple feature con­
tacts occur. The component that contains the initial configuration is the realizable space.
HIPAIR enumerates the feature pairs, generates the contact curves, computes the planar
pat'Lition with a line sweep, and retrieves the realizable component. The curves come from
a table with entries for all combinations of part features and degrees of freedom. Figure 2
shows the contact curves, intersection points, and components in a portion of the Geneva
mechanism configuration space where the driver locking segment disengages from a wheel
locking segment and the driver pin engages in the adjacent wheel slot.

HIPAIR computes linkage configuration spaces by homotopy continuation. It composes
the pairwise and linkage configuration spaces by linearizing the contact zone boundaries and
intersecting them with the simplex algorithm. The result is a partition of the mechanism
configuration space into free and blocked regions defined by linear inequalities in the mo­
tion coordinates. We visualize the configuration space, which can have any dimension, by
projecting it onto the pairwise configuration spaces.

HIPAIR simulates the kinematic function of a mechanism by propagating driving mo­
tions through part contacts. The result is a configuration space path. HIPAIR constructs
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the mechanism region that contains the initial configuration, computes the segment of the
motion path that lies in the region, replaces the initial configuration with the endpoint of the
segment, and repeats the process. It computes the motion path in a region by combining the
input motion with the contact constraints. In free con~gurations, the motion path is a line
tangent to the input motion. In contact configurations, the motion path is the projection of
the input motion onto the tangent space of the contact surface (in 2D, onto the tangent to
the contact curve).

HIPAIR is written in Common Lisp with a C graphics interface and runs on Unix work­
stations. It has been tested on over 1,000 parametric variations of 50 higher pairs with up
to 10,000 contacts, and on a dozen mechanisms with up to ten moving parts. It computes
the higher pair configuration spaces in under one second and the mechanism configuration
spaces in under ten seconds. All the figures in this paper are annotated HIPAIR output.

3 Tolerance specifications

Tolerance specifications define the allowable variation in the shapes and configurations of
the parts of mechanisms. The most common are parametric and geometric tolerance speci­
fications [18]. Parametric specifications restrict shape and configuration parameters of part
models to intervals of values. For example, a tolerance of l' = 1±0.1 restricts the radius l' of a
disk to the interval [0.9,1.1]. Geometric specifications restrict part features to zones around
the nominal features, typically to fixed-width bands, called uniform profile tolerance zones,
whose boundaries are the geometric inset and offset of the nominal features. For example,
a uniform geometric profile tolerance of 0.1 on a disk of radius 1 constrains its surface to lie
inside an annulus with outer radius 1.1 and inner radius 0.9.

We define the variational class of a mechanism relative to some tolerance specifications
as the set of mechanisms whose parts satisfy the tolerance specifications. This definition
generalizes the standard definition of the variational class of a single part [15]. We define the
kinematic variational class of a mechanism as the set of kinematic functions of the mecha­
nisms in its variational class. The properties of the variational class of a mechanism determine
its kinematic variational class. We define two properties, monotonicity and independence,
that we will use in computing kinematic variational classes.

The variational class of a mechanism is monotone if it contains a maximal and a minimal
instance. In every instance, each part is a subset of the corresponding maximal part and
is a superset of the corresponding minimat part. Most geometric tolerance specifications
generate monotone variational classes, including profile offsets, sweeps, and tolerance zones
[1]. Parametric tolerance specifications rarely produce monotone variational classes because
the values that maximize some features need not maximize others. In particular, position
tolerances neVer lead to monotone instances because every instance has the same shape.
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The variational class of a mechanism is independent if each part tolerance is speci ned with
respect to its own reference datum. It is equal to the cross product of the part variational
classes. Independent tolerance specifications facilitate the engineering goal of designing parts
that can be manufactured and gauged independently [1]. Assembly tolerance specifications,
which express functional relations between parts, are sometimes dependent. Position toler­
ances are independent when they refer to a common external datum or a single refercTlce
part. They are dependent when they refer to multiple parts or external datums. Tolerance
specifications for pairs of parts are always independent, as one of the parts serves as the
reference object. One-dimensional chains of parametric tolerances and vectorial tolerances
are also independent.

4 Kinematic tolerance space

Vve now describe a new method for kinematic tolerance analysis. The method generalizes
our nominal kinematic analysis method based configuration space to variational classes of
mechanisms. It is based on kinematic tolerance space, a uniform geometrical model of
kinematic variation that is concise, complete, and explicit. It simplifies and systematizes
kinematic tolerance analysis by reducing it to computational geometry.

We model the kinematic variational class of a mechanism with a kinematic tolerance
space. The kinematic tolerance space is a partition of configuration space into free, blocked,
and contact zones that model the range of variation from the free, blocked, and contact
spaces of the nominal mechanism. The free zone, defined as the intersection of the free
spaces of the variational class, is the set of configurations for which part instances in the
variational class are free. It is the portion of the nominal free space that is guaranteed to
persist. The blocked zone, defined as the intersection of the blocked spaces, is the set of
configurations for which part instances in the variational class are blocked. It is the pOl'tion
of the nominal blocked space that is guaranteed to persist. The contact zone, defined as
the union of the nominal contact spaces, bounds the deviation from the nominal kinematic
function.

Figure 3 shows a detail of the kinematic tolerance space of the Geneva mechanism with
a uniform geometric profile tolerance of 0.05 units (0.5% of the diameter of the pair). The
figure shows the region where the driver locking segment disengages from the wheel locking
segment and the driver pin engages the slot of the wheel. In the detail of the pair, the dashed
lines mark the nominal part shapes and the shaded bands represent their variational classes.
In the kinematic tolerance space, the free zone is white, the contact zone is light grey, and the
blocked zone is dark grey. The dashed curves mark the nominal contact space. Its outside
boundary corresponds to the kinematic function of the maximal part shapes, while its inside
boundary corresponds to the kinematic function of the minimal part shapes.

The structure of the kinematic tolerance space of a mechanism depends on the structure
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Figure 3: Detail of the Geneva mechanism with uniform geometric profile tolerance of 0.05
units and a detail of its kinematic tolerance space.

of its variational class, which is determined by the tolerance specifications. For example,
Figure 4 shows the kinematic tolerance space for a parametric tolerance of 0.05 uni ts on the
hori'ilontal and vertical distances between the centers of rotation of the wheel and the driver
(parameters a and b). Comparing it with Figure 3, we see that the uniform geometric profile
tolerance produces a narrow, uniform-width free zone with a smooth boundary, whercas the
parametric tolerance produces a broader, irregular free zone with a jagged boundary that
marks changes in sensitivity due to contact changes.

The topology of the kinematic tolerance space reflects the semantics of kinematic toler­
ances. The free and blocked zones are subsets of the free and blocked spaces of the nominal
mechanism because configurations that are free or blocked for the entire variational class
are free or blocked for every instance. They are open sets because configurations that are
frce or blocked for the class remain so under small motions. The contact zone equals the
complement of the union of the free and blocked zones, hence is closed. (The proofs of the
following facts appear in the Appendix.) The contact zone is a superset of the nominal
contact space because nominal contact configurations do not belong to the free or blocked
zones. The contact zone boundary bounds the free zone, the blocked zone, and the (possibly
empty) interior of the contact zone. It partitions kinematic tolerance space into connected
components just as contact space partitions configuration space.

The kinematic tolerance space models the variations from the nominal kinematics. With
small tolerances, the free and blocked zones are shrunken versions of the nominal free and
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Figure 4: Geneva mechanism with a parametric tolerance specification of 0.05 units and a
detail of its kinematic tolerance space.

blocked spaces, whereas the contact zone is a fattened version of Lhe nominal contact space.
The contact zone bounds the quantitative variation from the nominal kinematics. Qualitative
changes in kinematics do not occur because the free zone, hence every free space in the
variational class, is homeomorphic to the nominal free space. With larger tolerances, the
contact zone can grow [at enough to alter the free zone topology, thus producing qualitative
changes in kinematics.

We observe quantitative and qualitative variation in the Geneva mechanism. A uniform
geometric profile Lolerance of 0.05 units produces quantitative variation in kinematic function
because the contact zone is narrower than the nominal free space (Figure 3). A profile
tolerance of 0.08 units produces qualitative changes because the contact zone pinches closed
the nominal free space and carves necks in the nominal blocked space (Figure 5). Thc
qualitative changes are most pronounced in the mechanisms with maximal and minimal
parts (Figure 6). The maximal free space shrinks to four partial channels. The driver pin
cannot fit in the wheel sloLs, hence cannot rotate the wheel. The minimal free space grows
to include necks at the junctions of the horizontal and diagonal segments. The driver pin
can slip out of the wheel slots and jam against the locking segments.

Kinematic tolerance space has a simple structure when the variational classes of the parts
arc monotone. The free zone equals the free space of the maximal parts because it is a subset
of every free space. The blocked zone equals the blocked space of the minimal parts because
it is a subset of every blocked space. We illustrate this property on the Geneva mechanism
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Figure 5: Detail of the Geneva mechanism with uniform geometric profile tolerance of 0.08
uniLs and it dcLail of its kinematic tolerance space.

with the profile tolerance of 0.08 units. Comparing Figure 5 with Figure 6, we sec that the
free zone equals the free space of the maximal mechanism and that the blocked zone equals
the blocked space of the minimal mechanism.

Kinematic tolerance space has it compositional structure akin to that of configuratiOTl
space for mechanisms with independent part tolerances. The free zone equals the intersection
of the embedded pairwise free zones because it mechanism configuration is free when every
instance of every pair of parts is free. The blocked zone equals the union of the embedded
pairwise blocked zones because a mechanism configuration is blocked when some instance of
some pair of parts is blocked.

5 Kinematic tolerance space computation

Computing kinematic tolerance spaces is at least as difficult as computing configuration
spaces. We have developed a kinematic tolerance space computation program for the class
of mechanisms covered by our HIPAIR configuration space computation program: planar
mechanisms consisting of higher pairs with two degrees of freedom apiece. We follow the
HIPAIR strategy of exploiting domain properties to manage the worst-case complexity of
the computation. The program computes the pairwise kinematic tolerance spaces and com­
poses them, much as with configuration spaces. It generalizes HIPAIR and reuses several
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Figure 6: Maximal and minimal Geneva mechanisms with a 0.08 unit uniform geometric
profile tolerance and their configuration spaces. The mechanisms are displayed in jamming
configurations, which correspond to the dots in the configuration spaces.
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subroutines. We discuss only those steps that differ from the HIPAIR configuration space
computation algorithm.

The pairwise computation exploits the topological property that the contact zone bound­
ary bounds the free zone, the blocked zone, and the contact zone interior. We compute the
contact zone boundary, derive the kinematic tolerance space partition that it induces with
HIPATR, and classify the components. The classification algorithm employs point/region
containment and region adjacency. The components that contain endpoints of nominal con­
tact curves form the contact zone. The free zone consists of those remaining components in
which a single, arbitrary configuration belongs to the nominal free space. The rest of the
components form the blocked zone.

We compute the exact contact zone boundary for uniform geometric profile tolerances.
The contact zone equals the complement of the union of the free and blocked zones, as
proved in the Appendix. Its boundary equals the union of their boundaries because they are
open. The free and blocked zones equal the frcc space of the maximal pair and the blocked
space of the minimal pair by monotonicity. Their boundaries are the maximal and minimal
contact spaces. We compute maximal and minimal contact spaces from the minimal and
maximal pairs with HIPAIR and then construct the contact, free, and blocked zones from
them with a planar line sweep algorithm. We compute the contact spaces of the pairs with
HIPAIR and construct the contact, free, and blocked zones from them with a line sweep
algorithm. For example, Figure 6 shows the contact spaces of the maximal and minimal
Geneva mechanism1), which form the contact zone boundary shown in Figure 5.

Computing the ex:act contact zone boundary for parametric tolerancc1) is more difficult
because the pairs are not monotone. The general solution is to compute the extremal contact
curves with respect to the parameters, which is a computationally expensive functional opti­
mization. Instead, we approximate the boundary under the assumption that the tolerances
are small with respect to the kinematic function. The method generalizes sensiLivity analysis
to varying contacts. We denote the tolerance vector by p, its nominal value by p, its lower
bound by I, and its upper bound by u. The nominal contact space consisLs of contact curvel)
of the form y = f(x,p) with x and y the kinematic Lolerance space coordinates. We approx­
imate the contact zone boundary by linearizing the contact curves around p and offsetting
them by the variation in y. The y variation is defined by:

'" 8j _. {u; if8j/8p; > 0
8Y=L,-8(w;-p;)wlthwi= I lh .

i Pi i 0 erWlse.

The ith term is the maximal linear variation in y induced by Pi variations. It occurs when Pi

is maximal or minimal depending on whether y increases or decreases with Pi. We compute
the contact curves with HIPAIR, discretize them with respect to x, offset each sample point
by ±5y, and connect the offset points into upper and lower curves that approximate the
contact zone boundary. For example, Figure 4 shows the kinematic toJerance space of the
Geneva mechanism with the tolerance vector P = (a, b).
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We compose pairwise kinematic tolerance spaces (parametric or geometric) with indepen­
dent part tolerances using the HIPAIR intersection algorithm [9]. The procedure is justified
by the compositional structure of the spaces, just as with configuration spaces. We linearize
the contact zone boundaries and intersect them by the simplex method. The result is a
partition of the mechanism kinematic tolerance space into free, contact, and blocked ;r;onc
regions defined by linear inequalities in the configuration space coordinates.

Computing the kinematic tolerance space for geometric tolerance specifications requires
roughly three times as much time as computing the nominal configuration spaces: one for
the maximal contact space, one [or the minimal contact space, and onc to construct the
zones. For example, the kinematic tolerance spaces in Figures 3 and 5 were computed in
four seconds apiece on an Iris Indigo 2 workstation. The computation time for parametric
tolerances depends on the linearization accuracy. For example, the kinematic tolerance space
in Figure 4 was computed to an accuracy of 0.01% in one second.

6 Kinematic tolerance analysis

Kinematic tolerance space provides the informat.ion for systematic kinematic tolerance anal­
ysis. Free zones whose topology differs from that of the nominal free space indicate possible
failure modes, such as undercutting, interference, and jamming. Contact zones describe the
variability of the contact function. The width of the contact zone bounds the quantitative
deviation in kinematic function. Contact zones that contain horizontal or vertical segments
indicate that the slope of the nominal contact space can change, which interchanges locking
and driving functions_ Contact relations that hold in the contact zone hold in every instance,
whereas ones that fail in some contact zone configurations may fail in some instances. The
linearized contact equations, which define the contact zone, specify the kinematic variation
in terms of the part variations, thus supporting sensitivity analysis of higher pair assemblies
with changing contacts.

We demonstrate the role of kinematic tolerance space in kinematic tolerance analysis
by means of an extended example involving the shutter mechanism of a disposable camera
(Figure 7a). The shutter mechanism consists of 10 higher pairs, none of which have standard
kinematic or tolerance models. The advance wheel moves the film forward by one frame and
rotates the driver cam, which engages the spring-loaded shutter in the shutter lock. Pressing
the release button rotates the shutter lock, thus releasing the shutter. The shutter trips
the spring-loaded curtain, which briefly rot.ates away from the lens. The light that passes
through the lens aperture exposes the film.

We focus on the loading sequence of the driver, shutter, and shutler lock, which performs
the most complex kinematic function (Figure 7b). The driver consists of three planar pieces:
a cam, a slotted wheel, and a film wheel mounted on a shaft. The shutter is planar and is
spring-loaded clockwise. The shutter lock is planar and is spring-loaded counterclockwise.
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Figure 7: Disposable camera: (a) shutter mechanism; (b) top view of driver, shutter, and
shutter lock assembly.

The driver cam interacts with the shutter tip. The driver slotted wheel interacts with the
shutter lock tip. The shutter pin interacts with the shutter lock slot.

The film advance continuously rotates the driver counterclockwise via the film wheel.
In the initial configuration (snapshot 1 of Figure 8), the shutter tip lies on the driver cam,
the shutter pin lies in the shutter lock slot, and the shutter lock docs not touch the slotted
wheel. As the driver rotates counterclockwise, the driver cam rotates the shutter clockwise
by pushing the shutter tip (snapshot 2). The shutter pin leaves the slot in the shutter lock
(snapshot 3). The shutter lock spring rotates the shutter lock clockwise until the tip touches
the driver slotted wheel (snapshot 4.). The tip then follows the wheel contour. 'When the
shutter tip passes the highest point of the driver cam, it breaks contact with the cam. The
shutter spring forces the shutter to rotate counterclockwise, causing the pin to engage the
shutter lock on the surface below the slot (snapshot 5). The loading sequence ends when the
shutter lock tip drops into the driver wheel slot and blocks further rotation (snapshot 6).

We analyze the kinematic variation under a uniform geometric profilc tolerance of 1 ullit
for aU parts (0.5% of the diameter of the smallest part). The kinematic tolerance spaces
of the kinematic pairs reveal the sensitivity of the pairwise kinematic functions to part
deviations (Figure 9). The driver/shutter function is insensitive to the part tolerances. The
shuttcr tip follows the driver cam profile with a small deviation from its nominal path. The
driver/shutter lock space also shows insensitivity to the part tolerances since the vertical
channel is roughly the same as the nominal channel. The shutter lock tip follows the contour
of the driver slotted wheel until it drops into the driver wheel slot. A larger tolerance can
eliminate the channel and prevent blocking. The shutter/shutter lock space shows that
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Figure 8: Loading sequence of the driver, shutter, and shutter lock.
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Figure 9: Shutter mechanism pairwise tolerance zones.

small deviations in the pin and the slot can cause the shutter lock La release the shutter
spontaneously under the action of the spring. This happens when the lower boundary of the
horizontal slot in the blocked space has a positive slope. Shape deviations of 0.1 units can
make the slope positive because the nominal value is a small negative number.

The mechanism tolerance space reveals the sensitivity of the mechanism function to part
deviations. Coupling between part interactions leads to a global failure mode in which the
driver cam does not push the shutter tip far enough for the shutter pin to clear the slot in
the shutler lock. The failure occurs in mechanism -instances where the value of b, b" at the
lowest point of the driver/shutter contact space is greater than the value b2 at the bottom,
left corner of the horizontal slot in the shutler/shutter lock contact space. Figure 10 shows
the projections of the nominal and failure modes in the driver/shutter configuration space.
In the nominal mode, the configuration follows the lower segment of the horizontal slot from
right to left, drops into free space at the left end of the horizontal slot when the shutter
pin clears the shutler lock slot, and moves right and down as the shutter pin engages below
the shutter lock slot. In the failure mode, the configuration follows the horizontal slot from
right to left, does not reach the left end of the horizontal slot, and returns from left to right
without engaging the pin in the slot.

The mechanism tolerance space shows that the variational class of mechanisms may
contain a failing instance where bl > b2 because -0.26 ::; b1 ::; -0.22 and -0.24 ::; b2 ::;

-0.15. This does not guarantee the existence of an instance in which bl > b2 because the
shutter effects the values in opposite ways. Increasing the shutter size decreases b1 by shifting
the contact between its tip and the driver cam, but also decreases 62 by incrca.<;ing the size
of the pin, which must clear the shutter lock slot. We compute the maximum of b1 - b2 over
the variational class by binary search in the shutter profile, using the monotonicity in the
other parts. (The kinematic tolerance space contains the equations for more sophisticated
optimization algorithms.) The maximum occurs when the driver is minimal, the shutter
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Figure 10: Projections of kinematic function onto the driver/shutLer lock configmation space.

lock is maximal, and the shutter offset is 0.72 units. The mechanism works correctly for this
value, but fails when we increase the shutter lock offset from 1 unit to 1.25 units. Manual
analysis can easily miss this kind of failure.

7 Conclusion

We present a general method [or worst-case limit kinematic tolerance analysis: computing
the range of kinematic variation of a mechanism from its tolerance specifications. The
method covers all types of mechanisms with parametric or geometric part. tolerances. 'rVe
develop a model of kinematic variation, called kinematic tolerance space, that generalizes the
configuration space representation of kinematics. We derive properties of kinematic tolerance
space that express the relationship between the nominal kinematics of mechanisms and their
kinematic variations. Using these properties, we develop an efficient kinematic tolerance
space computation program for planar pairs with two degrees of freedom and for assemblies
of such pairs with independent part tolerances.

Our work advances the state of the art in kinematic modeling for tolerancing. Kinematic
tolerance space is the first general representation for variational classes of kinematic func­
tions. It represents fixed and changing contacts and quantitative and qualitative variations
in kinematic function. It represents the nominal kinematics and its variations in a uniform
manner, thus eliminating the need for a separate tolerance model. The kinematic tolerance
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space computation program automates a significant part of kinematic tolerance modeling.
It is also useful [or related tasks in mechanism analysis and design. For example, we can
model part wear with geometric tolerances and compute the kinematic tolerance space to
analyze the consequences of the wear. We can fine-tune designs by specifying a range of
variations and selecting the best parameter value combination a..'i the nominal specification.
Tolerancing for assembly can also be studied with kinematic tolerance spaces. The task
is to compute whether every mechanism in the variational class can be assembled, which
involves reasoning about the variational class of kinematic function under assembly motions
[7,19,13J.

Our analysis focuses on the effects of part variations on the nominal degrees of freedom of
mechanisms. As a consequence, the dimension of the configuration space and the kinematic
tolerance space are equal. A full analysis would require computing the effects on all six
degrees of freedom of every part, including those that are fixcd in the nominal model. V\Te
could compute high-dimensional kinematic tolerance spaces to perform this analysis. A
more practical approach is to model the added degrees of freedom as linear perturbations of
the nominal degrees of freedom, as is common in linkage tolerancing [ltl]. For example, the
Geneva mechanism has two nominal degrees offreedom because the other ten are ~xed by the
perfect fit between the wheel and the driver and their mounting shafts. We compute a two­
dimcnsional kinematic tolerance space that neglects imperfect fit. We can model play dne to
imperfect fit with a 12-dimensional space or as a linear perturbation of the two-dimensional
space.

'Ne sec several directions for future work. We plan to test the practicality of kinemat.ic
tolerancc space computation on industrial tolerancing tasks. This will necessitate extensions
to the kinemat.ic tolerance space comput.ation algorithm. We must. compute kinematic tol­
erance spaces for mechanisms with mixed parametric and geometric tolerance specifications,
which arise when part shapes and con~gurations vary simultaneously. We must automate
kinemat.ic tolerance space interpretation tasks, such as detecting qualitative changes in kine­
matic fundion or measming the maximum play. We would like to extend the coverage
to spatial parts, to pairs with three or more nominal degrees of freedom, and to higher
dimensional kinematic tolerance spaces due to imperfect joints.
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Appendix: Proof of topological properties

We prove that the free zone of a kinematic tolerance space i!i open, the blocked zone is
closed, and the contact zone equals the complement of the free and blocked zones. We
treat the cases of uniform geometric profile tolerances and of parametric tolerances where
the parameters are defined on closed intervals and the part shapes and configurations are
continuous functions of the parameters.

The rirst two results are immediate for monotone tolerance specifications, which include
unifonn geometric profile tolerances. The free zone equals the free space of the minimal
mechanism and the blocked zone equals the blocked space of the maximal mechanisms.
Both spaces arc open because free and blocked configurations are preserved by sufficiently
small motions. We prove the parametric result via properties of continuous functions on
compact spaces. The relevant function for the free zone, called the Hausdorff metric, is the
distance between the closest pair of points on two parts of the mechanism. Let d(x,p) denote
the Hausdorff distance in configuration x with p the tolerance parameters. The function d
is continuous because the parts depend continuously on p by hypothesis. Let P denote the
domain of p, X denote the domain of x, and Xo be a point in x. The set Xo x P is compact
because P is a cross-product of closed intervals by hypothesis. "VVe use these properties to
prove that the free zone is open. If Xo belongs to the free zone, d is positive on Xo X P by
definition. Each point in Xo x P has a positive neighborhood in X x P by the continuity
of d. The union of these neighborhoods is an open covering of Xo x P, which has a finite
subcovering by compactness. The projection into X of the intersection of the subcovering is
a neighborhood of Xo on which d is positive. An analogous proof applies to the blocked zone
with the overlap area of the parts replacing the Hausdorff distance.

We prove that the contact zone equals the complement of the free and blocked zones for
parametric tolerances. The proof covers offsets where the parts are continuous functions of
the offset radii, which includes uniform geometric profile tolerances. Given a configuration,
we define a function J(p) whose value is the Hausdorff distance between the parts if p defines
a free instance, 0 if p defines a contact instance, and the negative overlap area of the parts
if p defines a blocked instance. The function f is continuous at free and blocked p values
by elementary calculus. It is continuous at contact values because the Hausdorff distance
and the overlap area are both O. It is positive at free values, zero at contact values, and
negative at blocked values. Given a configuration that is not in the free zone or the blocked
zone, f cannot be positive for all p or negative [or aU p. It must be zero for some p by the
intermediate value theorem. The configuration belongs to the contact zone because this p
value yields a contact instance.
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