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Abstract

In this paper, we address the problem of cache invalidation in mobile environments. We present
Bit-Sequences, a new cache invalidation algorithm in which a periodically-broadcast invalidation
report. is organi~cd as a set of binary bit sequences with an associated set of timestamps. A scal
able version of the Bit-Sequences algorithm for large databases, called Multi-Level Bit-Sequences,
is also discussed. As demonstrated through simulation experiments, the Bit-Sequences algorithm
performs consistently well under conditions of variable update rates/patterns and client discon
nection times. Furthermore, the size of the invalidation report in this algorithm is relatively small
and is independent of the number of data items to be invalidated.

1 Introduction

In a mobile computing environment, caching of frequently-accessed data items will be an important

technique that will reduce contention on the narrow bandwidth wireless channels. However, cache

invalidation strategies will be severely hampered by the disconnection and mobility of clients [7]. It

is difficult for a server to send invalidation messages directly to mobile clients that have cached the

data items to be updated, since these clients often disconnect to conserve battery power and are

frequently on the move. On the other hand, the narrow bandwidth wireless network will be dogged

if massive numbers of clients attempt to query a server to validate cached data. Therefore, the

existing caching algorithms employed in the traditional client-server architecture where the locations

and connections of clients do not change may not be readily applicable to mobile environments.

In [7J, Barbara and lmielinskl provided an alternate approach to the problem of invalidating

caches in mobile environments. In this approach, a server periodically broadcasts an invalidation

report in which the data items that have been changed are indicated. Rather than querying a server

directly regarding the validation of cached copies, clients listen to these invalidation reports over

wireless channels. This approach is attractive in the mobile environment because (1) a server need

not know the location and connection status of its clients and (2) the clients need not establish an

"uplink" connection to a server to invalidate their caches.
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One interesting new issue, however, arises when clients use the invalidation report to invalidate

their caches. This issue is the false invalidation of client caches. Since an invalidation report can

include only limited or partial information regarding data changes or the current database state,

caches that are actually valid may be invalidated. For example, when a client has disconnected for

a substantial period of time, the report may not cover all updates to data items that have occurred

since the time of disconnection. In this case, the client may invalidate a cache which is actually valid.

Once a cache is invalidated, the client must seek verification or updating of the cache from the data

server.

Consider the Broadcasting Timestamps (TS), Amnesic Terminals (AT), and Signatures (SIG)

algorithms presented in [7J. In the TS algorithm, the invalidation report includes only the information

regarding the data items that have been updated within the preceding w seconds. The report includes

the names of these items and the timestamps at which they were updated. The invalidation report in

the AT algorithm includes the identifiers of data items that were updated during the last broadcast

period L. In both algorithms, clients must invalidate their entire cache when their disconnection

period exceeds a specified length (w seconds for TS and L seconds for AT). In the SIG algorithm,

the report contains a set of combined signatures of data items.! The structure and size of these

signatures are designed to diagnose up to f differing items. If more than f different items (it does

not matter whether these items had been cached or not) were updated in the data server since the

combined signatures were last cached, most items cached by the clients will be invalidated by the

SIG algorithm, although many are in fact valid. An explanation of this observation is offered in

Appendix A. Thus, these existing algorithms are effective for a client in terms of a low ratio of false

invalidation (to total invalidation), only if the client has not disconnected for a period that exceeds

an algorithm-specified parameter (e.g., w or L) or if the number of updated items during the period

is not greater than an algorithm-specified parameter (e.g., I).

In a mobile environment, it is most desirable to provide a cache invalidation algorithm whose

performance will not be severely affected by such changing workload parameters as client discon

nection times and update rates. Mobile units will frequently be "off', with substantial periods of

disconnection intended for battery conservation. Within these substantial disconnection periods, the

number of items to be updated by a server may be unpredicatable. A high rate of false invalidation

will usually reduce the cache hit rate in query processing, resulting in increased traffic on the narrow

wireless networks and decreased query processing throughput.

This paper introduces a new cache invalidation algorithm, which we call Bit-Sequences (BS). In

this algorithm, the invalidation report consists of a set of binary bit sequences with an associated

set of timestamps. As in other invalidation-report based algorithms, a server periodically broadcasts

invalidation reports and clients listen to them over wheless dlannels to invalidate their caches.

1Signat.ures are checksums computed over the value of data items in t.he database. A combined signature is the

Exclusive OR of a set of individual signa.lures. Each combined signature, therefore, represents a subset of data items.

In t.he SIG algorithm, m combined signatures are computed such lhat. an item i is in t.he set of combined signature SJ

(1 :5 j :5 m) with probabilit.y J~l where f is the number of differing items up to which the algorithm can diagnose.
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One salient property that the algorithm has is that changing workload parameters, such as client

disconnection times and update rates/patterns, have less adverse impact on the effectiveness of this

algorithm than on other algorithms.

We also discuss a scalable BS algorithm called Multi-Level Bit-Sequences for large databases. The

algorithm can scale to large databases for the "information feed" application domain with skewed

access pattern without the use of large invalidation report. The scalability feature is important

because the large invalidation report will waste precious wireless bandwidth and increase latency for

client cache verification.

To study the effects of disconnection time and update pattern on the performance of various

proposed algorithms, we have implemented a simulation model of a client-server system that supports

mobile hosts over wireless communication channels. In this paper, we use this simulation model to

compare the false invalidation ratio and buffer hit ratio between the proposed BS algorithm and

the SIG algorithm. This analysis is intended to assess the extent to which the performance of the

proposed algorithm can surpass that of existing algorithms for the conditions of changing workload

parameters.

The remainder of the paper is organized as follows. Section 2 discusses the related work. Section

3 describes the Bit-Sequences algorithm. Section 4 discusses the scalable BS algorithm with regard

to large databases. In Section 5, we compare the Bit-Sequences algorithm with the SIG algorithm

through a simulation. Concluding remarks are offered in Section 6.

2 Related Research

Many caching algorithms have been recently proposed for the conventional client-server architecture

in which the positions and wired-network connections of clients are fixed. A comprehensive discussion

and comparison of caching algorithms in the conventional client-server architecture can be found

in [10]. The issue of false invalidation does not exist in this architecture because, as shown in the

algorithms discussed in [10], either the server can directly invalidate client caches or clients can query

the server for the validation of their caches. In both cases, only obsolete caches will be invalidated.

Recently, the notion of using a repetitive broadcast medium in wireless environments has been

investigated. The property of data broadcast program which provides improved performance for

non-uniformly accessed data was investigated in [2]. The authors in [2] also addressed the impact of

data broadcast on the client cache fetch and replacement policies. The mobile computing group at

Rutgers has investigated techniques for indexing broadcast data [14, 15]. The main motivation ofthis

work has been to investigate ways to reduce battery power consumption at the clients for the access

of broadcast data. In our approach, the invalidation report is organized in a bit indexing structure in

order to save the space of broadcast channels. An approach of broadcasting data for video on demand

has been addressed in [17]. The approach, called pyramid broadcast, splits an object into a number

of segments of increasing sizes. To minimize latency the first segment is broadcasted more frequently
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than the rest. An adaptive scheme of broadcasting data was described in [13]. The adaptability is

achieved by varying the frequency of broadcast of individual data items according to the frequency

of requests.

In [7J, issues of cache invalidation using a broadcast medium in a wireless mobile environment

were first introduced. The SIG, TS, and AT algorithms that use periodically broadcast invalidation

reports were proposed for client caching invalidation in the environment. It has been shown in

[7] that, when the update rate is low, the SIG algorithm is best suited for clients that are often

disconnected, while the TS algorithm is advantageous for clients that are connected most of time.

The AT algorithm is best suited to update intensive scenarios, provided that the clients are awake

most of time. However, the effectiveness of these algorithms in terms of low false invalidation ratio

depends heavily on such workload parameters as client disconnection time and the number of items

updated during these disconnections.

To support long client disconnections, an idea of adapting the window size of the TS algorithm

Wa.'> discussed in [6, 8]. The approach in [6, 8] adjusts the window size for each data item according

to changes in update rates and reference frequencies for the item. This is different from our proposed

approach which does not need the feedback information about the access patterns from clients. In

the adaptive TS approach, a client must know the exact window size for each item before using an

invalidation report. These sizes must therefore be contained in each report for the client to be able

to correctly invalidate its caches. 2 However, no detailed algorithm was presented in [6, 8] to show

how the window size information is included in the invalidation report. For this reason, we will not

compare this approach with our approach in this paper.

The work in [11] discusses the data allocation issues in mobile environments. The algorithms

proposed in [11] assume that servers are stateJul since they know about the state of the clients'

caches. The algorithms use this information to decide whether a client can hold a cache copy or not

to minimize the communication cost in wireless channels. In contrast, servers in our algorithm (as

well as the TS, AT, and SIG algorithms) are stateless since they do not have the state information

about clients' caches.

3 The Bit-Sequences Algorithm

3.1 Caching Management Model

A mobile computing environment consists of two distinct sets of entities: mobile hosts and fixed hosts

[12,7,5). Some of the fixed hosts, called Mobile Support Stations (MSSs), are augmented with a

wireless interface to communicate with mobile hosts, which are located within a radio coverage area

called a cell. A mobile host can move within a cell or between two cells while retaining its network

2Consistency problem might arise if the windolV size for a data item is not included in an invalidation report.

Consider that the window size is decreased during a client disconnection period. After the client wakes up, tIte absence

of information regarding the new window size may ca.use it to falsely conclude the data item is still valid.
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connections. There is a set of database servers each covering a cell.

Each server can only service users which are currently located in its cell. A large number of

mobile hosts resides in each cell; all issue queries which take the form of simple requests to read the

most recent copy of a data item. We assume that the database is updated only by the servers. The

database consists of N numbered data items (or pages): db d2, ••• , dN and is fully replicated at each

data server. The data item (or page) is the basic update and query unit by the server and client.

Each server will periodically broadcast invalidation reports. To answer a query, the client on a

mobile host will listen to the next invalidation report and use the report to conclude whether its

cache is valid or not. If there is a valid cached copy that can be used to answer the query, the client

will return the result immediately. Invalid caches must be refreshed via a query to the server.

3.2 The Algorithm

In the Bit-Sequences (BS) algorithm, the server broadcasts a set of bit sequences. Each sequence

consists of a series of binary bits and is associated with a timestamp. Each bit represents a data

item in a database. A bit "1" in a sequence means that the item represented by the bit has been

updated since the time specified by the timestamp of the sequence. A bit "0" means that that item

has not heen updated since that time.

The set of sequences is organized in a hierarchical structure. The highest-ranking sequence in

the structure has a number of N bits which corresponds to N data items in the database. That is,

each item is represented by one bit in this sequence. As many as half the bits (N /2) in the sequence

can be set to "1" to indicate that up to the last N /2 items have been changed recently (initially,

the number of "1" bits may be less than N /2). The timestamp of the sequence indlcates the time

after which these N /2 items have been updated. The next sequence in the structure will contain

N /2 bits. The kth bit in the sequence corresponds to the kth "I" bit in the highest sequence (i.e. I

both represent the same data item). In this sequence, N /22 bits can be set to "1" to indicate the

last N /22 items that were updated recently. The timestamp of the sequence indicates the time after

which these N /22 items were updated. The following sequence, in turn, will contain N /22 bits. The

kth bit in the sequence corresponds to the kth "1" bit in the preceding sequence. In the current

sequence, N/23 bits can he set to "I" to indicate the last N/23 items that were updated recently.

The timestamp of the sequence indicates the time after which these N /23 items were updated. This

pattern is continued until the lowest bottom sequence in the structure is reached. This sequence will

contain only 2 bits; these correspond to the two "1" bits in the preceding sequence. Of the two bits

in the lowest sequence, one can be set to "1" to indicate the last item that was changed recently.

The timestamp of the sequence indicates the time after which the item was updated.

For simplicity, we assume that the number of data items, N, is the n power of 2; I.e., N = 2n for

some integer n. Let Bn denote the highest sequence, Bn_1 the next sequence, ... , and B1 denote the

lowest sequence, where n = log(N). The timestamp of bit sequence Bk is represented by TS(Bk).
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Figure 1: A Bit-Sequences Example

Clients must check the invalidation report before they can use their caches for query processing.

If there is a bit sequence among the sequence set with the most recent timestamp that is equal to

or predates the disconnection time of the client, the sequence will be used to invalidate its caches.

The data items represented by these "1" bits in the sequence will be invalidated. If there is no such

sequence (i.e., the disconnection time precedes the timestamp of the highest sequence), the entire

cache in the client will be invalidated.

Example 3.1 Consider a database consisting 0/16 data items. Figure 1 shows a Bit-Sequences (BS)

structure reported by a server at time 250. Suppose that a client listens to the report after having

slept for 80 time units. That is, the client disconnected at time 170 (=250-80), which is larger than

TS(B2 ) but less than TS(B1 ). The client will use B 2 to invalidate its caches. To locate those items

denoted by the two"1" bits in B 2 , the client will check both Ba and B'1 sequences, using the following

procedure. To locate the second bit that is set to "1" in B 21 check the position of the second "1" bit

in Ba. We see that the second"1" bit in Ba is in the 5th position; therefore, check the position of

the 5th "1" bit in B4. Because B4 is the highest sequence and the 5th "1" bit in B4 is in the 8th

position, the client concludes that the 8th data item was updated since time 170. Similarly, the client

can deduce that the 12th data item has also been updated since that time. There/ore, both the 8th and

12th data items will be invalidated.

Server Bit-Sequences Construction Algorithm: For each invalidation report, the server will

construct a Bit-Sequences (BS) structure based on the update timestamps of data items. To construct

the structure, the server should know the data items that are updated and the timestamps for these

updates. An update linked list can be used to maintain the information about the update timestamps.
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Each data item can be denoted by a node in the list. The node should include the following fields:

(a) the index number of the data item (note that data items are numbered consecutively)j (b) the

update timestamp; (c) the pointer to the next nodej and (d) the I-bit position of the data item in a

bit sequence.

All the nodes are linked by the pointer fields in the decreased order of update timestamps. That

is, the first node in the update linked list denotes the data item that is most recently updated; the

second node denotes that data item that is next recently updated; and so on. When a data item

is updated, the node denoting the item is moved to the head of the update linked list. To quickly

locate the node in the list for a data item, an additional index, called the item-node index, that

maps a data item to its node in the update linked list can be used. Using the update linked list and

the item-node index, the server constructs the Bit-Sequences structure by the following procedure

(initially, all bits in Bk are reset (Le., "0") and TS(Bk) = 0 for all k, 0 ~ k ~ n):

1. If the update timestamp of the lth node is larger than zero, then construct B,,:

A. while (i ~ N /2 and the update timestamp of the ith node is larger than zero) do:
J* initially, i = 1 */

set the jth bit in B" to "1" where j is the index number of the ith nodej i = i +1-

B. assign the update timestamp of the ith node to TS(B,,). J*when i < N/2,TS(B,,) = 0*/

C. for i = 1 to N do:
J* update the I-bit position of node in the update linked list; initially, j = 1 */

if the ith bit (Le., the ith data item) is set to "I" in Bn , then (a) locate the node
for the ith data Hem in the update linked list using the item-node index; (b) set the
value "j" into the I-bit position of the nodej j = j + 1.

2. If EBk+l ~ 2, then construct Bk for all k (0 ~ k ~ n - 1):

A. while (i ~ EBk+l/2) do: r initially, i = 1*/

set the jth bit in Bk to "1" where j is the I-bit position of the ith node; i = i + 1.

B. assign the update timestamp of the ith node to TS(Bk).

C. for i = I to EBk do:
J* update the I-bit position of node in the update linked list; initially, j = 1 */

if the ith bit (I.e., the ith data item) is set to "I" in Bk, then (a) locate the node
for the ith data item in the update linked list using the item-node index; (b) set the
value "j" into the I-bit position of the node; j = j +1. 0

Note that, in the above algorithm, we use a dummy bit sequence Bo. The size and "1" bit

number of the sequence are always equal to zero. However, the server will include the timestamp of

the sequence TS(Bo) into each invalidation report. The timestamp indicates the time after which

no data item has been updated.

Client Cache Invalidation Algorithm: Before a client can use its caches to answer the queries,

the client shall wait for the next invalidation report that includes the Bit-Sequences structure, and
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then execute the following procedure to validate Hs caches. The input for the algorithm is the time

variable T, that indicates the last time when the client received a report and invalidated its caches.

1. if T S(Bo) :::; Tj, then no cache js to be invalidated and stop;

2. ifT, < TS(Bn ), then the entire cache is invalidated and stop;

3. Locate the bit sequence Bj wHh the most recent timestamp that is equal to or predates the
disconnection time TI, i.e. , Bj such that TS(Bj):::; TI but Tj < TS(Bj_t) for all j (I :::; j:::; n)j

4. Invalidate all the data items represented by the" 1" bits in Bj. To determine the index numbers
of these items (I.e., the position of the bit that denotes the data item in B n ), the following
algorithm can be used:

A. mark all the "1" bHs in B j ;

B. if j = n, then all the data items that are marked in B n are to be invalidated and the
positions of these "1" bits in B n are their index number in the database and stop;

C. for each "1" bit in B j , mark the ith "1" bit in Bj+! if the "1" bit is in the ith position in
Bj;

D. j = j +1 and go back to step B. 0

3.3 Discussion

As we have seen in the previous subsection, a client in the BS algorithm may invalidate its entire

cache only if Hs disconnection period started prior to the time specified by the timestamp of the

highest bit sequence B n . In this case, there would be at least N/2 data items that have been updated

at the server during the client disconnection period. When the client disconnection period is less

than TS(Bo), there are no data items which need be invalidated.

A client will use a bit sequence, say Bk (1 :::; k :::; n), to invalidate its caches if it started its

dlsconnection at a time which is equal to or larger than TS(Bk) but smaller than TS(Bk_d. By

the properties of Bit-Sequences, we know that as many as EBk data Hems that are indicated by"I"

bits in Bk may need to be invalidated. Among the 'BBk data items, there are at least EBk_1 data

Hems that have been updated at the server since the client's disconnection (where EBk/2 = EBk _ 1 ).

Therefore, in the worst case, there are at most EBk/2 data items in the client caches to be falsely

jnvalidated. The real number of falsely invalidated data items will actually depend on several factors

such as the last time the invalidated data items were cached, and the query/update patterns etc.

To see how the caching time or query/update pattern impact the false invalidation, assume that

the client started the dlsconnection at time TI where TS(Bk) < Tj < TS(Bk_t) (see Figure 2). The

worst case jn which EBk/2 data items are to be falsely invalidated can happen if and only if (1) the

"BBk/2 data Hems were updated from TS(Bk) to T, and (2) the client cached these items after the

updates (and before its disconnection) at time Te . Scenario 1 in Figure 2 shows the case. On the

other hand, if the client cached these data items at the time Tc that is before TS(Bk), then these

invalidated data items are actually obsolete ones and no data item is falsely invalidated. Scenario
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Figure 2: Client Query/Disconnection Scenarios

2 in Figure 2 gives the case. Furthermore, even the client cached some of these data items between

TS(Bk) and TI, these cached items will not be falsely invalidated if they were updated between TI

and TS(Bk_r),

In contrast, in the AT or TS algorithms, the entire cache will be invalidated if the disconnection

time exceeds an algorithm-specified value (w seconds in TS and L seconds in AT), regardless of how

many data items have actually been updated during the disconnection period. The actual number

of updated data items may be very small if the update rate is not high (the actual number can be

approximated by AuT, where Au is the update rate and T is the disconnection time). In the SIG

algorithm, most of the cache will usually be invalidated when the number of data items that were

updated at the server during the disconnection time exceeds f. Thus, the false invalidation ratio in

the AT, TS, or SIG algorithms will depend heavily on such workload parameters as the update rate

and disconnection time.

Let us now consider the report size III each algorithm. In the BS algorithm, the size of the

invalidation report can be approximately expressed as a function of the number of data items: 2N +
bTlog(N), where N is the total number of data items in the database and bT is the size of a timestamp.

By the definition, we know that, for the N data items, there are log(N) bit sequences with respective

sizes (in bits) of N, N/2, N/22 , ••. , 2. The total bits for the set of sequences will be no more than

2N. Because each sequence is associated with a timestamp, the total bits for these timestamps will

be bTlog(N),

In comparison, the report size in the SIG algorithm can be expressed, as in [7]' as 6g(f +
1)(In(1/6)+ln(N)), where 9 is a parameter used to specify the bound 29 of the probability offailing to

diagnose an invalid cache, 6 is a parameter used to specify the bound of the probability of diagnosing

valid cache as invalid, and f is the number of different items that the SIG algorithm can diagnose.

The report sizes for the TS and AT algorithms can be expressed, as in [7], as nw(log(N) + bT) and

nLlog(N), respectively, where nw is the number of data items updated within w seconds and nL is

the number of data items updated within L seconds. As an example, if we set N = 1024, g = 16,

0= 10-7 , f = 10, and bT = 512, the report sizes in the BS, AT, TS, and SIG algorithms will be

around 7200 bits, 10nL bits, 522n w bits, and 24000 bits, respectively. That is, the report size in BS

is smaller than that in SIG but larger than that in AT and TS.

In summary, the Bit-Sequences (BS) algorithm has the following the key features that distinguish

it from the AT, TS, SIG algorithms:
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• Changing workload parameters, such as client disconnection time and update rate/pattern, are

expected to have less impact on the ratio of false invalidations than with the AT, TS, or SIG

algorithm.

• The size of bit sequences is independent of the number of updated items.

4 The Scalable Bit-Sequences Algorithm

In the basic BS algorithm, each bit is used to represent a data item in the database. The invalidation

report size, which is represented by 2N + bTlog(N), is approximately lineally proportional to the

number of items in the database. To limit the size of invalidation report for large databases, at

the simplest level, we can uniformly increase the granularity of each bit in the invalidation report

instead of increasing the number of bits. For example, for an 8GB database, each bit in the report

can represent an 8MB data block in the database. Both clients and servers can still use 8K page

size as their access granularity. A bit in the report will be set to "1" if and only if any page in the

block represented by the bit has been updated. A client will invalidate a cached data page if the

block that contains the page has been marked by "1" bit in a corresponding bit sequence. We call

this scaled algorithm as the Coarse Gmnularity BS (CG-BS) algorithm.

A second method is to group different data pages into one data block according to the relative

frequency of update. For example, rarely updated data pages can be grouped in one data block and

each frequently updated data page itself constitutes one data block. Each data block is represented

by one bit in the invalidation report. The Weighted Granularity BS (WG-BS) scheme would scale

well to a large database if the update pattern in the server is relatively "static".

Intuitively, we believe that both scaled BS algorithms described above still perform better than

the SIG algorithm for a client if more than f, say m, data pages have been updated during the

disconnection period of the client. The reason is that most caches in the client will be invalidated

in the SIG algorithm if m (> J) data pages (it does not matter whether the m pages are cached or

not) have been updated in the server. On the other hand, for the scaled BS algorithms, if these m

pages happen to be within one block, the client needs only to invalidate all the cached pages that are

in the same block. Cached data pages from other blocks will not have to be invalidated. Generally,

the false invalidation rate depends on which blocks the updated data pages and cached data pages

reside at. Similarly, both scaled BS algorithms has a low false invalidation rate compared to the AT

or TS algorithm for long dlsconnected clients.

However, both the CG-BS and WG-BS methods have some disadvantages for some application

domains like those in "information feed" environments. 3 In an "information feed" application, the

3111 an ~information feed~ environment, although some information such stock prices during trading hours may

change constantly, the cache approach is stiIl very useful if a small percent deviation of the true values in lhe clients

may be acceptable. In this situation, lhe "quasi-copy" scheme proposed in [3] can be applied. The seever can send

invalidation information only for lhe data whose changes have exceeded the threshold specified by the "quasi-copy"
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data server produces (or updates) data that would be consumed by other clients. Both updates and

queries have the same "hot spot" pages (or the shared locality) in a specific time period. Furthermore,

the "hot spot" pages may dynamically be changed. For example, traffic data pages will be the "hot

spots" (updated by servers and consumed by clients frequently) only in the traffic rush hour, while

the pages for some stock prices would become "hot" only during the heavy trading period of these

stocks. In the CG-BS algorithm, di.fferent stock prices may be grouped in one data block. If only

a few hot stocks are heavily being traded, the clients that have cached many slowly changed stocks

may be falsely trigged to establish an uplink connection for cache verification. The WG-BS algorithm

may not adapt well to this dynamically changed "hot spots" of updates and queries.

4.1 The Multi-Level Bit-Sequences Algorithm

We now describe a Multi-Level Bit-Sequences (ML-BS) algorithm that is expected to adapt well to

an "information feed" environment with dynamically changed and skewed "hot spots" of updates

and queries. In the algorithm, the database is abstractly viewed as a hierarchical data structure.

Suppose that the database has NP+! data pages (p ~ 0). In the highest level, the database is equally

divided into N data p-blocks. In the next level, each data p-block is equally divided into N data

(p-l)-blocks. This pattern is continued until the lowest level is reached. In the lowest level, each data

I-block is divided into N data a-blocks (Le., data pages). It is assumed that a data page is the basic

access unit for updates and queries in both the server and client sides.

An invalidation report consists of one a-level BS (OL-BS) structure, one I-level BS (IL-BS)

structure, ... ,and one p-Ievel BS (pL-BS) structure. Each kL-BS structure (0 ~ k ~ p), which is

the exact same as that described in Section 3 for the BS algorithm except the granularity of each

bit, consists of log(N) bit sequences with an associated set of timestamps. The highest-ranking

sequence in each kL-BS structure has N bits, while the lowest-ranking sequence has 2 bits. In the

OL-BS structure, each bit represents one data page (i.e., one data O-block) in a data I-block. Each

bit in the kL-BS structure represents one data k-block in a data (k+I)-block (0 ~ k ~ p and the

(p+l)-block is the database). The bit is set to "1" only if any data page in the data k-block has

been updated since the time specified by the sequence timestamp.

In each invalidation report, the OL-BS structure is always used to represent the data pages in the

"hot" data I-block. The IL-BS structure is used to represent the data I-blocks in the "hot" data

2-block, and so on. The absolute starting address (or name) of the data k-block represented by each

kL-BS structure is also included in the invalidation report. The clients will use the address to figure

out whether a cached page belongs to the data k-block.

Example 4.1 Suppose that the database with 83 data pages is organized in a three-level gmnularity

data structure (see Figure 3). In the three-level BS algorithm, an invalidation report will include

scheme. For example, the server indicates the "update" of a stock price in the invalidation report only if the change of

tIle stock price is more t.Itan 0.5 percent of its last broadcast. value.
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one DL-BS, one iL-BS and one 2L-BS structures. The highest-ranking bit sequence in each structure

has 8 bits, while the lowest-ranking bit sequence has only 2 bits. In the DL-BS structure, each bit

represents a data page (i.e., a data D-block) in a block (i.e., a data i-block) of 8 pages and set to "1"

only if the page has been updated since the time specified by the sequence timestamp. In the 1L-BS

structure, a bit that represents a data i-block in a data 2-block of 8 data i-blocks is set to '1' only

if any page in the i-block has been updated since the time specified by the sequence. In the 2L-BS

structure, a bit that represents a data 2-block is set to '1' only if any page in the 2-block has been

updated since the time specified by the sequence timestamp.

,-

Figure 3: A Multi-Level Bit-Sequences Example

Server Multi-Level Bit-Sequences Construction Algorithm Sketch: For each invalidation

report, the server will construct a set of multi-level BS structures by the following procedure:

1. Determine the "hot" data (k + I)-block (0 ::; k ::; p): The "hot" data (k + I)-block in which
data pages are frequently queried by clients can be dynamically changed time to time. For
some "information feed" applications, the server can simply use application semantics (e.g.,
the traffic report in the rush hour, the weather report in the severe-weather watch period, or
the stock quotes in the trading hours) or the rate and pattern of updates in the recent time
period to determine the data (k + 1).block because both updates and queries share the same
"hot spots". In general, however, the server may use the feedback information from clients to
adaptively decide the data (k +I)-block (the adaptive algorithms similar to those in [6, 13] can
be used for the purpose). The absolute address of the "hot" data (k + I)-block will be included
in the next invalidation report.

2. Construct the update linked list for each "hot" data (k + I)-block (0 S; k S p): Because the
kL-BS structure may be used to represent a data (k + I)-block dynamically, the update linked
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list should be built according to the update timestamps in the corresponding data pages of the
(k + I)-blocks. Each node in the update linked list denotes a data k-block in the "hot" data
(k + I)-block. The update timestamp in the node is equal to that of the data page that is most
recently updated in the (k + I)-block. All the nodes in the update linked list are linked by the
pointer fields in the decreased order of update timestamps.

3. Construct the kL·BS structure (0 S; k S; p): The kL-BS structure is constructed using the
update linked list of the "hot" data (k +I)-block. The construction procedure is that same as
that of the basic BS structure except that each bit in the kL-BS structure represents a data
k-block. 0

Client Cache Invalidation Algorithm Sketch: After receiving an invalidation report, the client

will use the following procedure to validate each cached page:

1. Locate the kL-BS structure: determine the smallest k such that the data (k + I)-block repre
sented by the kL-BS structure in the invalidation report contains the data page (the address
of the data k-block has been included in the report).

2. Validale the cached page: use the cache invalidation procedure similar to that in the basic
BS algorithm to validate the cached page. The input to the procedure includes the kL-BS
structure determined in the Step 1 and the parameter T1 which is the last time when the cache
was validated or cached. The cached data page is to be invalidated if the data k-block that
contains the page has been marked by "1" bit in a corresponding bit sequence. 0

4.2 Optimization for Cold Page Invalidation

In the ML-BS algorithm described above (and the basic BS algorithm as well), a client will validate

all the cached pages when it receives an invalidation report. Suppose that the cached pages, which

are not denoted by the bits in the page-level OL-BS structure, are in a k-block denoted by a bit in

the kL-BS structure. If any page in the block has been updated since the last cache validation time,

then these pages will be invalidated although most of them are actually valid. To reduce the false

invalidation chance, the following optimization can be applied:

Broadcast Cache-Freshing Bit-Sequences: In each invalidation report, the server includes an

additional Bit-Sequence structure called Cache-Freshing Bit-Sequences (CF-BS). The bit granularity

in the structure is at the data page level (i.e., each bit represents a data page in a data I-block and

the structure represents the data I-block). The server changes the I-block represented by the CF-BS

structure periodlcally. That is, the structure will represent the (j + l)th (or the 1st) data I-block

in the database if it represented the jth (or the last) data I-block in the last invalidation report

(assuming all the data I-blocks in the database are numbered).

Deferred Cache Invalidation for Uncertain Cold Pages: When a client receives an invalidation

report l it uses the following rules to decide whether a cached copy is to be validated or not.

1. Always validate the cached pages in the I-blocks represented by the fine-granularity CF-BS
and OL-BS structures;
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2. Always validate the cashed page in the data k-block (1 :::; k :::; p) denoted by a blt in the kL-BS
structure if the data k-block has not been updated since the last validation of the cached pagej

3. Defer to invalidate any other cached page until it is used if the data k-block (1 ~ k ::s; p) that
contains the page has been updated since the last validation of the cached page.

Because each cached copy will not be always validated when the client receives an invalidation

report, the client should maintain a validation timestamp for each cached copy. When the cache

invalidation algorithm that uses a kL-BS (0 ::s; k :::; p) or a CF-BS structure is executed, the the

input parameter Tl to the algorithm will be the last time when the page was validated or cached.

~ The rule 1 will actually produce a very low false invalidation ratio because of the use of the

fine-granularity (i.e., page-level) BS structure, while the rule 2 does not invalidate any cached page

(though it does validate the valid cached pages). The cached pages validated in both rules 1 and 2

will receive a latest validation timestamp. The cached pages that have a later validation timestamp

will have a lower chance of being falsely invalidated next time because a low ranking bit sequence

can be used for a cached copy that has a late invalidation timestamp.

In the rule 3, however, the client will defer to invalidate any other cached page until it is used if

the page is to be invalidated by a coarse-granularity kL-BS structure. The delay of invalidation will

help to reduce the false invalidation chance for the llcold" cached page. In fact, the "cold" cached

page may be less frequently updated or queried than "hot" cached pages. Before the query that uses

the the "cold" cached page arrives, there might be many queries executed for "hot" cached pages

(therefore, there are many invalidation reports received and cache validations completed). If the

client happened to receive a report that contains a CF-BS structure representing the "cold" page's

I-block before the query is executed, then the "cold" page might be validated a.<> a valid copy by

the fine-granularity CF·BS structure and receive a later validation timestamp. When the query to

the "cold" cached page is executed, the client can use the cache provided that no other pages in the

k-block have been updated after the client received the CF-BS structure.

4.3 Discussion

A single coarse-granularity BS structure can limit the size of an invalidation report for a large

database. It may, however, incur a high false invalidation chance. The ML·BS method provides a

flexible scheme that allows the system to use multiple BS structures to tune the granularity of data

blocks for invalidation. The basic idea behind the ML-BS method is to use less bits to represent the

data pages that are rarely changed in the database. If each of these data pages is represented by one

bit, in most of time these bits either are in "0" status or appear in the top-ranking bit sequences

with very small timestamps. In a coarse-granularity BS structure, these pages are actually grouped

4In the cache invalidation algorithms described previously, the client will validate all the cached pages when il
receives an invalidation report. These algorithms, therefore, only maintain t.he validalion timestamp 7i for the whole

cache rather than for each individual cached page.
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together and represented by a few bits. The use of the CF-BS structure and the deferred validation

for uncertain cold caches will help to reduce the false invalidation chance for these "cold" data pages.

For the "hot" data pages, on the other hand, a fine·granularity (i.e., page-level) BS structure

can be used for the validation of cached copies. The server can simply determine these "hot" data

pages according to application semantics or the update rate and pattern (in the "information feed"

application domain, both the servers and clients will have a shared locality in most of time). The

ML"BS method is expected to perform well without the use of large invalidation report for the

"information feed" applications with a skewed access pattern .

In some situations, the "hot" data pages may be separated in different data I-blocks. For example,

both the traffic rush hour and the severe-weather watch may happen at the same time, but the data

pages for the traffic report and the weather watch reside in two different data blocks. In this Ca.'ie,

the first half of bits in the page-level BS structure can be used to represent the traffic data pages,

while the second half of bits are used to denote the weather watch data pages. However, the server

should include two absolute starting addresses in the invalidation report, one for the traffic pages

and another for the weather watch pages. The client can figure out the data page represented by

each bit according to the absolute starting address and the position of the bit.

The the ML·BS algorithm can scale to a large database in terms of the size of invalidation

report. Suppose that we have an NP+l page database and the highest-ranking bit sequence in each

kL BS structure is N bits. Then the size of each invalidation report in the ML-BS algorithm will

approximately be (p+ I)S(N) where S(N) (= 2N + bTlog(N)) is the size of a ba.'iic BS structure

with N bits in the highest-ranking bit sequence. In comparison, if the basic BS algorithm is used

(i.e., one bit for one page), the size is close to S(N)P+l for N » 1.

5 Simulation Study

The performance analysis presented here is designed to compare the effects of different workload

parameters, such as disconnection time and query/update pattern, on the relative performance of

the basic BS algorithm and the SIG algorithm proposed in [7J. The performance metrics in the study

include the false invalidation ratio and the buffer hit ratio in clients. We do not include the ML-BS

algorithm in our performance study in this paper because we expect that the ML-BS algorithm can

be comparable to the basic BS algorithm in terms of the false invalidation ratio and the buffer hit

ratio provided that the server can correctly decide the "hot spots" for the applications with a skewed

access pattern. Also, the study does not include the AT and TS algorithms because they are not

applicable to long disconnections of clients.

Our model is similar to that employed III [9, 10] but has been extended to support message

broadcasting over wireless channels. Our model also simplifies aspects of resource management in

both client and server so that no CPU and I/O times are modeled in each. Such a simplification is

appropriate to an assessment of the false invalidation ratio and the buffer hit ratio. All simulations
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were performed on Sun Spare Workstations running SunDS and using a CSIM simulation package

[161·

5.1 System Configuration

For simplicity, we model a single server system that services multiple mobile clients. At the server, a

single stream of updates is generated. These updates are separated by an exponentially distributed

update interarrival time. The server will broadcast an invalidation report periodically.

Each mobile client host generates a single stream of queries. The arrival of a new query is

separated from the completion of the previous query by either an exponentially distributed think

time or an exponentially distributed disconnection time. Our model assumes that each client will

enter into a disconnection mode once for every three consecutive queries. In other words, each group

of three queries will be separated by a disconnection time, and these three queries are separated from

each other by a think time.

We assume that the buffer pool in the server is large enough to hold the entire databMe. The size

of client buffer pools is specified as a percentage of the database size. The buffer pools arc managed

using an LRU replacement policy.

The network is modeled as a PRE-RES server (Le., the service discipline is preempt resume,

based on priority) with a service rate of Network Bandwidth. Invalidation report broadcMts have

higher priority than other messages, ensuring that these reports can always be broadcast over the

wireless channels with an exact broadcMt period specified by the parameter Broadcast Period. All

other messages are of equal priority and will be served on a first-come first-served basis.

Our model can specify the item access patterns of workloads, thus allowing different client locality

types and different server update patterns to be easily specified. For each client, two (possibly

overlapping) database regions can be specified. These regions are specified by the HotQueryBounds

and ColdQuenJBounds parameters. The HotQueryProb parameter specifies the probability that a

query will address a data item in the client's "hot" database region. Within each region, data

items are chosen through a uniform distribution. For the data server, the HotUpdateBounds and

CoidUpdateBounds parameters are used to specify the "hot" and "cold" regions, respectively, for

update requests. The HotUpdateProb parameter specifies the probability that an update will address

a data item in the update's "hot" database region.

Tables 1 presents the database simulation parameters and settings employed in our simulation

experiments. Table 2 describes the range of workloads associated with access patterns considered in

this study. These workloads are very similar to those described under the same names in [10]. The

UNIFORM workload is a low-locality workload in which caching is not expected to reap significant

benefits. The HOTCOLD workload has a high degree of locality of client queries. The FEED

workload is intended to model an "information feed" situation where the data server produces data

to be consumed by all other clients. This situation is of interest because information services are
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IParameter ISetting

Data Item Size
Database Size
Client Buffer Size
Number of Clients
Broadcast Period
Network Bandwidth
Control Message Size
Mean Think Time
Mean Disconnect Time
Mean Update Arrive Time

8192 bytes
1000 data items
25% of database size
100 mobile client hosts
10 seconds
10000 bits per second
512 bytes
100 seconds
200 to 10000 seconds
100 to 1000 seconds

Table 1: Simulation Parameter Settings

FEEDHOTCOLDIUNIFORM I
HotQueryBounds - ito 1+9,i-10(k-1)+9, the kth client Ito 200
ColdQueryBounds all DB remainder of DB remainder of DB
HotQueryProb - 0.8 0.8
HotUpdateBounds - - 1 to 200
ColdUpdateBounds all DB all DB remainder of DB
HotUpdateProb - - 0.8

IParameter

Table 2: Workload Parameter Settings

likely to be one of the typical applications in mobile computing environments [12].

To simulate the SIG algorithm, additional algorithm-specified parameters are needed. The setting

for the invalidation report size (SigReportSize) in SIG is 24000(bits) which is computed by the formula

6g(J + l)(ln(l/<5) +In(N)) wmch is given in [71, with N = 1000, g = 16, <5 = 10-', and f = 10 (i.e.,

the number of differing items that can be diagnosed by SIG). In our experiments, the signatures in

the SIG invalidation report are simulated as well, since we have not used actual data items in these

simulations. Each signature is simply represented by an integer variable. The value of the variable

will be increased by one whenever one data item in the set represented by the signature is updated. In

this way, for a signature Sj, the broadcast copy will be different from the cached copy if any data item

in the signature set was updated between the last caching time and the current broadcasting time.

The simulated signatures have been idealized to forestall any possibility of incorrectly diagnosing an

outdated cache as valid. In real signatures, the probability of incorrectly diagnosing a cache as valid

is bounded by the parameter 29 [7J.

The false invalidation ratio is computed by dividing the sum of the false invalidated items by the

sum of the total invalidated items in the simulation. The total invalidated data items in a caching

algorithm include those data items which are both falsely and legitimately invalidated. The buffer

hit ratio is defined as the ratio of the number of queries that are answered using client caches to the
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total number of queries.

5.2 Experiment 1: The UNIFORM Workload
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Figure 4: UNIFORM Workload, Update Rate = 0.001

In the UNIFORM workload, as indicated in Table 2, each query reads a data item chosen uni

formly from among all the data Hems in the database. Also, each update request chooses a data

item unlformly from all the data items. In this workload, both query and update parameters display

no locality of access.

Figure 4 shows the experimental results achieved with the UNIFORM access workload and a mean

update interarrival time of 1000 seconds. The false invalidation ratio of the SIG algorithm (with f =

10) increases rapidly when the disconnection time increases. In contrast, the false invalidation ratio

of the BS algorithm is very low (less than 0.05 for all the disconnection times from 200 to 10000

seconds). It is observed that the false invalidation ratio of the SIG algorithm increases fast although

the multiplication value of the mean disconnection time (::; 10000) and the mean update rate (=
0.001) in Figure 4is no larger than the SIG parameter f (= 10). This behavior can be explain as

follows. In our experiments, both disconnection time and update interarrival time are exponentially

distributed. For a particular client, the disconnection time may exceed the mean disconnection time

and the number of updated data Hems during the disconnection period may also be larger than the

mean number of updated data items. Once this happens, a large number of data items will be falsely

invalidated (the reason is discussed in Appendix A). This number may be much larger than the

actual number of updated data items will significantly increase the false invalidation ratio (Notice

that the ratio is computed by taking the sum of the false invalidated items and the sum of the total

invalidated items in the simulation, and dividing the first sum by the second one). If we assume

the disconnection time and the update rate are constant distributions, the false invalidation ratio in

Figure 4 should be very close to a because the multiplication value of the disconnection time (= a
to 10000) and the update rate (= 0.001) for each client should be no larger than the parameter f
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(~ 10) of SIG.

Figure 4 also shows the buffer hit ratio of an "idealized" cache invalidation algorithm called

BASE. The "idealized" algorithm always invalidates stale cached data and never falsely invalidate

any valid cached data. It is shown that the BS algorithm is almost as good as the BASE algorithm

in terms of buffer hit ratio.
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Figure 5: UNIFORM Workload, Update Rate:::; 0.01

In this experiment, we also examine the effect of high update rate on the false invalidation ratio

by setting the mean update interarrlval time to 100 seconds. Figure 5 shows the experimental

results. The false invalidation ratio of the BS algorithm is still very low even under the condition of

high update rate, while the false invalidation ratio of the SIG algorithm reaches 0.9 rapidly at the

disconnection time 2000. Due to the high false invalidation rate, the buffer hit ratios are very low in

SIG. The experimental result indicates that the BS algorithm can adapt to changing update rates

much better in terms oflow false invalidation ratlo than the SIG algorithm.

5.3 Experiment 2: The HOTCOLD Workload

In the HOTCOLD workload, each update request chooses a data ltem uniformly from all data

ltems. Each client has a IO-item hot query region to which 80% of lts requests are directed; the

other 20% of its requests are directed to elsewhere in the database. Thus, this workload represents

a situation in wmch client queries favor disjolnt local hot regions of the database and significant

benefits can be expected from caching.

Flgure 6 depicts the experimental results results achieved wlth the HOTCOLD workload and a

mean update interarrival time of 1000 seconds. A comparlson with Figure 4 and Flgure 6 indicates

that the buffer hit ratios of the BS and SIG algorithms In the HOTCOLD experiment are obviously

higher than those in the UNIFORM experiment. The lncreases of the hit ratios are due to the high

locality of the query access In the HOTCOLD workload.
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Figure 6: HOTCOLD Workload, Update Rate::=:: 0.001

The buffer hit ratio of the SIG algorithm in Figure 6 drops faster than that of the BS algorithm

when the disconnection time increases, Because of the differences of false invalidation ratios.

5.4 Experiment 3: The FEED Workload
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Figure 7: FEED Workload, Update Rate = 0.001

In an "information feed" workload, the data server produces data to be consumed by other clients.

This is intended to approximate an environment, such as stock trading, where a database of stock

prices might be maintained by an information feed and then accessed heavily by other clients. In this

workload, 80% of the server updates are directed to 20% of the database; 80% of the client queries

are also directed to this region.

Figure 7 indicates the experimental results achieved with the FEED workload and a mean update

interarrival time of 1000 seconds. Once again, the false invalidation ratio of the BS algorithm remains
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very low even when the disconnection time increases. Comparing Figure 4 and 7, we note that the

increasing rate of the false invalidation ratio of the SIC algorithm in this experiment is lower than

that in the UNIFORM experiment. This is because in this experiment both updates and queries

are directed to the same "hot" region. The frequently cached items (Le. queried items) are also the

frequently updated data items. So, the false invalidation ratio of the SIC algorithm decreases in this

workload. Consequently, the hit ratio of the SIC algorithm in this experiment is higher than that in

the UNIFORM experiment.

5.5 Summary

The experiments presented in Sections 5.2 through 5.4 showed the false invalidation ratio and the

buffer hit ratio of the SIC, and BS algorithms under different disconnection times, update rates,

and access workloads. In general, changing these workload parameters have little impact on the

false invalidation ratio of the BS algorithm. The buffer hit ratio of BS is very close to that of the

"idealized" cache invalidation algorithm (which has no false lnvalidation to cached data). In the

environment of a high locality of queries, the false invalidation ratio will have a significant impact

on the buffer hit ratio.

Although all the experimental results were given under 3 hours (10000 seconds) disconnection

times, The mean false invalidation rates for the BS algorithm are expected not very high even when

the disconnection times are longer than 3 hours. A client will invalidate its entire caches only if

more than half number of data items have been updated in the server since its last validation time.

We only presented the experimental results in the range of 3 hours disconnection times because this

range provides a clear and useful comparison between the SIC and BS algorithms.

In this paper, we have not discussed the performance of these algorithms for a situation in

which clients are often connected. This aspect has not been addressed as in this paper we are more

interested in the false invalidation aspect of these algorithms and its effect on their performance. The

false invalidation problem becomes serious only when these algorithms are placed under conditions

of long client disconnection times and changing update and query rates. When clients are often

connected, both T8 and AT algorithms are expected to perform well, because of the relatively small

size of invalidation reports.

6 Conclusions

In this paper, we have introduced a new cache invalidation algorithm, called Bit-Sequences (B8), in

which a periodically broadcast invalidation report is organized as a set of binary bit sequences with

an associated set of timestamps.

We have shown that the B8 algorithm adapts itself dynamically as the update rate/pattern varies

because the bit sequence Bk (1 ::; k ::; n) in the invalidation report will always carry the information
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about the N/2n-(k-l) data items that have been recently updated. Clients using the bit sequence Bk

to invalidate their caches will be guaranteed that, among the data items that are marked in 2:,Bk for

invalidation, half (2:,Bk/2) have actually been updated at the data server. A ellent that invalidates

its entire cache is guaranteed that 2:,Bn /2 data items have been updated. This adapt.ability enables

the BS algorithm to reduce the false invalidation ratio at client sites.

We have also described a scalable BS algorithm, called the Multi-Level BS (ML-BS) algorithm,

for large databases without the use of large invalidation report. The algorithm is applicable to the

"information feed" application domain in which the clients have a dynamically changed and shared

locality of accesses. In the ML-BS algorithm, each bit with coarse-granularity in the kL-BS structure

(k > 0) is used to denote a group of rarely (or slowly) changed data pages, while each hit with fine

granularity in the OL-BS structure is used to represent one "hot" data page. IT the clients can always

use the fine-granularity OL-BS structure for the validation of "hot" data pages, the false invalidation

ratio will be expected to he very low.

In a mobile environment, it is highly desirable to provide a cache invalidation algorithm that

adapts dynamically as workload parameters change unexpectly. This adaptability is motivated by

the observation that the frequent disconnection and movement of mobile clients renders the system

workload highly unpredicatable. A flexible algorithm will be less severely impacted by these chang"

ing workload parameters. In this paper, it has been shown that this adaptability can be improved

by utilizing the update information in the server. Ideally, a caching algorithm should be capable of

adapting much better if the information from clients such as the query patterns and client discon

nection time can be utilized. We plan to investigate the development of such adaptive algorithms on

the basis of feedback regarding query patterns and client disconnection time in the future work.
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Appendix A: Probability Analysis of the False Alarm in SIG:
In the SIG algorithm presented in [7], there is the probability of diagnosing a cache (of data item)

as invalid, when it is not. When the number of data items that have been updated since the last
combined signatures were cached is equal to or less than f, the probability (which was given in [7])
is:

Pi = Prob[X ~ Kmp] S exp(-(K -1)'mf)
where f is the number of different items up to which the algorithm is designed to diagnose,

1 :::; J( :S 2, m is the number of combined signatures determined by 6g(/ +1)(ln(l/o) + In(N)), p
(:::::: l~f(l- ~)) is the probability of a valid cache being in a signature that does not match, and X
is a binomial variable with parameters m and p.
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However, when the actual number nu of updated data items at server is greater than f, the
probability P'? of incorrectly diagnosing a valid cache by the algorithm will be dlfferent from Pl.
Using the simllar analysis procedure as in [7], the probability can be computed as follows. To compute
PI'" we shall first compute the probability prI

" of a valid cache being in a different signature. For
this to happen, the following must be true:

1. This item must belong to the set in the signature. The probability is 1~1 (Notice that in the
SIG approach, each signature is corresponding to a set of data items and each set is chosen so
that an item i is in the set Si with probability 1~1)'

2. Some item that has been updated since the jast time the signature report was cached must be
in the set and the signature must be different. The probability will be (1- (1- 1~1 )rI" )(1- 2-9 )

where nu is the number of data items that have been updated since the last time the signature
report was cached, 9 is the size (in bits) of each signature (Notice that the probability that the
two dlfferent values of an item have the same signature is 2-9 ).

Thus, the probability prI
", of a valid cache being in a signature that does not match is:

Pn" __1_(1_ (1- _'_)n")(I_ T') '" _1_(1_ (1- _1_)n")
- 1+1 1+1 1+1 1+1

Now we can define a binomlal variable X n ", with parameter m and prl",. Then, the probability
of incorrectly diagnosing a valid cache can be expressed as the probability that the variable X rI

",

exceeds the threshold (=](mp) of the SIG algorithm. That is,

PI'" = Prob[XrI
", ~ !(mp]

n" 10 20 30 40 50
p~o(m - 1500) 0.00048 0.33112 0.76935 0.87915 0.92678
P~o (m - 2900) 5.55E-16 0.00174 0.07992 0.41943 0.68977

Table 3: The Values of Probability PI'" When f = 10,20

Table 3 gives a set of values of the probability which were computed using SAS package [1] for
f = 10,20, m = 1500,2900 (where m i' computed by 6(J+1)(ln(l/b) +In(N)) with N = 1000 and b
= 10-7 ), J( = 1.4 and nu = 10-50. The results indicate that the probability of incorrectly diagnosing
a valid cache increases quickly when nu grows from 10 to 50.

# of Differing Items 10 20 30 40 50 ...

# of Being lnvalided(J 10) 10 263 810 909 934 ...
# of Being lnvalided(J - 20) 10 20 124 462 745 ...

Table 4: The Actual Number of Differing Items vs. The Number of Items to be Invalided

To verify our probability analysis, we conducted a set of simulation experiments to demonstrate
the relation between the actual number of differing items and the number of items to be invalidated.
In the experiments, we used the same parameters as in the probability computation for Table 3.
That is, N = 1000, 6 = 10-7

, and]( = 1.4. The experiments compute combined signatures for two
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databases with nu (=10-50) different items (the total number of items in each database is 1000) and
use the SIG aJgorithm to generate the data items to be invalidated. The simulation results shown
in Table 4 also indicate that the number of data items to be invalidated increased quickly when the
aduaJ number of differing items exceeds the parameter f. In these results, the set of data items to
be invalidated is always a superset of the differing items. 0
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