
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1995 

Sequence Alignment in Molecular Biology Sequence Alignment in Molecular Biology 

Alberto Apostolico 

Raffaele Fiancarlo 

Report Number: 
95-075 

Apostolico, Alberto and Fiancarlo, Raffaele, "Sequence Alignment in Molecular Biology" (1995). 
Department of Computer Science Technical Reports. Paper 1247. 
https://docs.lib.purdue.edu/cstech/1247 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


SEQUENCE ALIGNMENT IN
MOLECULAR BIOLOGY

Alberto Apostolic:o
Raffaele Giancarlo

CSD TR-95-075
November 1995



Sequence Alignment III Molecular Biology

Alberto Apostolico·
Purdue University and Universita. di Padova

November 28, 1995

Raffaele Giancarlot

Universita di Palermo

PURDUE CS TR 95-075

Abstract

Molecular biology is a computationally intense realm of contemporary science and faces some
of the current grand scientific challenges. In its context, tools that identify, store, compare and
analyze effectively large and growing numbers of bio-sequences are found of increasingly crucial
importance. Biosequences are routinely compared or aligned, in a variety of ways, to infer
common ancestry, to detect functional equivalence, or simply while searching for similar entries
in a database. A considerable body of knowledge has accumulated on sequence alignment during
the past few decades. Without pretending to be exhaustive, this paper attempts a survey of some
criteria of wide use in sequence alignment and comparison problems, and of the corresponding
solutions. The paper is based on presentations and literature given at the Workshop on Sequence
Alignment held at Princeton, N.J., in November 1994, as part of the DIMACS Special Year on
Mathematical Support for Molecular Biology.

"Dipartimento di Elettronica e Informatica, Universita. di Padova, Via Gradenigo 6/A, 35131 Padova, Italy, (39­
49)828-7710; axa@arLdei.unipd.iti partially supported by NSF grant CCR_92_01078, by NATO grant CRG 900293,
by the National Research Council of Italy, and by the ESPRIT III Basic Research Programme of the EC under
contract No. 9072 (Project GEPPCOM).

IDipartimento di Matcmatica, University of Palermo, Via Archirafi 34, 90123 Palermo, ItalYi raf­
faelc@altair.math.unipa.it; partially supported by MURST Grant "Algoritmi, Strutture di Calcolo e Sistemi In­
formativin; part of this work was done while the author was visiting AT&T Bell Labs., Murray Hill, NJ. > U.S.A..



1 Introduction

Classical taxonomy is based on the assumption that conspicuous morphological and functional sim~

ilarities in species denounce close common ancestry. Likewise, modern molecular taxonomy pursues
phylogeny and classification of living species based on the conformation and structure of their re­
spective genetic corles. It is assumed that DNA code presides over the reproduction, development
and sustainance of living organisms, part of it (RNA) being employed directly in various biological
functions, part serving as a template or blueprint for proteins. In these latter, following somewhat
the dual principle of modern architecture, function follows form. The apparent functional, struc­
tural and sequence resemblance of proteins found in organisms of completely different morphology
has further stimulated interest in a taxonomy based on sequence homology.

Two biomolecules are said to be homologous if their sequences are likely to be offsprings of
a common ancestor sequence. However, ancestor sequences are not available, and homology is
deduced from the similarity of existing sequences: the more two such sequences are similar, the
more likely their homology is assumed to be.

Early studles on methods and tools for the automated analysis and comparisons of biosequences
were stimulated by the identification of the aminoacid sequences of a number of proteins which
occurred in the 1960s. Activity in this area has been growing ever since, and culminates with the
considerable outburst of recent years, as more and more sequences accumulate from the genome
sequencing of humans and other species. Despite some key conceptual acquisitions and substantial
practical progress, we still do not have consolidated methods for every sequence alignment task.
This should not come as a surprise, since the complexity of biosequence alignment is rooted in some
of the subtliest and most delicate aspects of scientific inference.

In an attempt to capture genetically significant relationships among sequences, several criteria
have been proposed as measures of sequence similarity. While they aU need to relate in one way
or another to the basic mechanisms of evolution, there is no simple way to test and validate any
one of them. At the empirical level, such a validation is made impossible by the uniqueness of
the evolutionary experiment. At the epistemological level, the notion of a class of similar objects
does not rest on very firm grounds. For instance, a claim known as the "Theorem of the Ugly
Duckling" [93] states that as long as all of the predicates characterizing the objects to be classified
are given the same importance or "weight", then a swan will be found to be just as similar to a
duck as to another swan. The reason for this apparent paradox is in the fact that classification
as we experience it on an empirical basis is only possible to the extent that the various predicates
characterizing objects are given nonuniform weights. Applied to the study of biomolecules, this
means that we shall be able to build better and better alignment algorithms as we learn more and
more about precisely those homologies that our algorithms seek to detect.

DNA molecules appear naturally to be repositories of "information" that is propagated through
evolutionary history and used in replication and transcription mechanisms central to the life-cycle
of cells and organisms. Quantitative definitions and measures of such information seem to be at
the heart of sequence comparison methods, and have been attempted in various ways over the
years. On one hand, this information seems to be relatable to Shannon's notion of uncertainty and
may be measured as such (see, e.g., [29]). On the other, this information is used at the cellular
level for the synthesis of structure (for function), hence for departure from chaos. While Shannon's
classical measure applies to the information in transmission, structural information possibly stored
in biosequences seems rather related to the notion of redundancy. Measuring structure in finite
objects, however, presupposes the accomplishment of the "intuitive program" of "analyzing ran­
domness as far as it is possible within the region of finite sequences" [74], as cultivated already by
Von Mises [91] and other statisticians at the turn of the century. One of the deepest acquisitions in

2



this domain is linked to Kolmogorov's innovative approach to the definition of information [56] (see
also [64]). In this approach -which seems reminiscent in a seductive way of the very mechanism
of molecular evolution-, information (alternatively, conditional information) is measured by the
length of the recorded sequence of zeroes and ones that constitute a program by which a universal
machine produces one string from scratch (alt., from another string). The sobering conclusion,
however, is that under this scheme there is no such thing as a finite random sequence: while a
great many sequences of sufficiently large length tend to behave randomly in the limit, any short
sequence exhibits some kind of regularity. It appears thus that we can measure and study ran­
domness (whence also structure) in finite objects (see, in particular, [2]) only to the extent that
we can legitimately privilege (i.e., assign a high weight to) certain regularities and neglect others,
a principle that seems to be pendant, in syntactic pattern recognition, to the statistical paradox of
the ugly duckling.

In conclusion, the difficulties inherent to sequence alignment lie in the process offorming the nec­
essary educated biases, in the dynamical and interactive process of extracting the feature weights.
Along the way, the practice of sequence alignment shall constantly oscilate between the risks of
overlooking important structure and discovering any arbitrarily chosen kind of structure every­
where.

There is a number of biological motivations and contexts for computer alignment of molecular
sequences, which results in a variety of methods and tools. There is global alignment of pairs
of sequences that are globally related by common ancestry, local alignments of related sequence
segments, multiple alignments of members of protein families. Some special techniques of self­
alignments have also emerged recently as useful tools. Finally, and not entirely disjointly from the
above, ancillary alignments are performed in data base searches, typically, in order to detect homol­
ogy of proteins. The corresponding available computational methods have developed considerably
since the pioneering work by M. O. Dayhoff [21] and others. Since 1982, Nucleic Acids Research
has routinely devoted special issues of 600 pages or more to the latest developments in this area.
By 1983, enough original material had accumulated on sequence comparison techniques to warrant
dedication of a full volume [79]. Part of these developments occurred in parallel with algorithmics
on strings, thus contributing some remarkable challenges to algorithmic design. In general, however,
the two endeavors conserved rather distinctive individual flavors. On one hand, the computational
biologist would be typically driven by the need to obtain some significant speed-up in the process­
ing of a limited class of sequences on some specific machine or class of (commercial) machines. On
the other, the algorist would be concerned with unveiling the combinatorial structure of a rigidly
defined problem, in order to achieve a higher asymptotic efficiency in computations performed
by an abstract machine. Historically, efficient algorithmics on strings and efficient computational
methods for bio-sequence manipulations have found separate places in the literature, and in fact
mostly addressed separate audiences. In general, molecular biologists are dismayed to find that
formalization and computation involves almost invariably a number of abstractions and simplifica­
tions that denature the original problem at least in part. On the other hand, mathematicians and
computer scientists incline towards an attitude that a problem that does not lend itself to a crisp
formulation, or which reveals itself as trivial or intractable, is no longer a problem. While some
of the negative trends of the past are successfully being reversed, the challenges that lay ahead of
sequence alignment are still numerous and staggering.

Some of the focal contemporary issues are addressed below in this paper, the basic purpose
of which is a better understanding of what the biologists expect from sequence alignment, how
much of such an expectation has been fulfilled and how one could go about in defining future
tasks. The paper implicitly reviews some past history, and tries to pin-point the major results
and biological findings that led designers of sequence alignment to pursue some avenues of research

3



rather than others. Next, bio-mathematical theory of sequence alignment is addresses, comparing
various models and notions of similarity between sequences. Some emphasis is placed on the
mechanisms presiding over the choices of parameters (e.g., weighting functions). This leads us to
the study of the statistical tools that are used to establish the significance of alignements, and how
well they model the underlying biological knowledge. As mentioned, when models are translated
into computational tools, some of their subtleties are inevitably lost. We thus try to understand
here what are the trade-offs between the sophistication of the theoretical model and the difficulties
associated with their implementation. This is of particular interest in the case of multiple sequence
alignment, perhaps the single most prominent instance of a computationally intensive alignment
task where approximations, computational tradeoffs and significance are all subtly intertwined.

2 Sequence Alignment Issues and Early Results

Intuitively, Sequence Alignment consists of establishing how closely two or more sequences (strings
over an alphabet) are related to each other. Closeness is usually quantified according to some
similarity or distance measure. For example, the sequence aba is close to the sequence abda, since
one can be obtained from the other by insertion or deletion of a symbol. From now on, we use the
term string to refer to a sequence of symbols.

The aim of this section is to get acquainted with some of the issues in sequence alignment and to
point out early work in this area. Most of those issues will be discussed at length in the remaining
sections of the paper.

The earliest reference to a problem involving sequence alignment dates back to 1879 and it is a
puzzle due to Lewis Carrol [17J. It works as follows: two English words, of equal length, are given
and one is asked to transform one into the other by substituting one letter at a time. Insertion
and deletion of letters are not allowed. For example, head and tall can be transformed into each
other by going through the words heal, teal and tell. Intuitively, one can say that the two given
words are at a distance of 4, since we need those many substitutions to go from one to the other.
Later on, in the realm of coding theory, that simple notion of distance has been "invented again"
by Hamming [34J and extensively used for the design of good codes for data transmission [28J.

A more complete notion of distance between sequences was defined by Levenshtein in 1965
[60J. It can be described as follows. Given two strings, transform one into the other by using a
sequence of the following operations: insertion, deletion, substitution of a symbol and exch. The
most commonly used weights for DNA are the ones by [27]. For amino acids, many weight systems
have been proposed (see for instance [26,65,75,76,84]). However, for a long time the ones by [22J
have been the standard and, very recently, the ones by [37] seem to be superior for the alignment
of distantly related proteins [38].

A very important aspect of sequence alignment is to establish how meaningful a given alignment
is. This basic question applies both to global and to local alignments. Informally, it can be stated
as follows: is a given alignment of two sequences due to chance? Answers to this question involve
the investigation of many statistical aspects of sequence alignment such as the expected length of
an alignment or the expected distribution of scores of alignments. The mathematical tractability of
those statistical questions seems to depend on two things: what kind of alignment we are considering
and the weights that we assign to the edit operations. Early results in this area are reported in
[19, 49, 86]. A closely related issue is a quantification of the sensitivity and selectivity of sequence
alignment methods. Sensitivity is the ability to detect distant evolutionary relationships between
two strings, while selectivity is the ability to avoid the assignment of high scores to unrelated
strings. In order to evaluate an alignment method with respect to those two parameters, one needs

4



criteria to establish whether a meaningful alignment has been found or missed.
Obviously, also the time required to compute an alignment of two strings is very important.

As for the statistical significance of an alignment, the efficiency seems to depend on the chosen
alignment method and the properties satisfied by the weights. It is interesting to point out that
over the years the following trend has taken place. As strings to be aligned got longer, the design of
algorithms computing the alignment "shifted" from the basic Needleman and Wunch method [68]
(which computes an optimal alignment) to methods that give up the optimality of the computed
alignment for speed. Two excellent examples are the algorithms reported in [5, 62, 97, 98]. For the
interested reader, an overview of some algorithmic issues related to this trade-off speed-optimality
as well as to the impact of weights on the computational speed can be found in [30].

Alignment methods for two strings can be used for data base searches. That is, we are given
a data base of proteins and we want to establish whether a query string is biologically related to
strings in the data base. Usually, that involves the computation of a local similarity between the
query string and each string in the data base. The strings having a similarity score exceeding some
threshold are usually reported and further screened to assess the biological meaningfulness of the
method. Statistical knowledge about score distributions or empirical knowledge is used for that
screening.

As the knowledge about biological sequences grows, one tries to ask more complex questions
about the "closeness" of two or more sequences. One such type of question deals with the problem
of fInding approximate repeated patterns within each string. Those approximate repeated patterns
seem to be associated with several important properties of DNA and proteins. For instance, parts
of chromosomes are made of repeated patterns. A fixed number of those repeated patterns is lost
when the cell divides. So, it seems that those repeated patterns are some kind of clock "ticking"
the number of divisions that the cell can still undergo. The first algorithmic studies in this area
are due to Miller [66] and Landau and Schmidt [57].

We will see an example of this when we discuss the problem of locating tandem repeats in a
string [81].

Another important and very active area of Sequence Alignment is the one that deals with the
alignment of multiple sequences. There are many ways in which this problem can be stated and, in
what follows, we will discuss only a few of them. For instance, Sankoff stated the following problem,
now referred to as multiple alignment under an evolutionary tree [77]. We are given a set of strings
( say, proteins) labeling the leaves of a given tree. We want to find ancestral strings to label the
internal nodes of the tree and such that a given score function is minimized. Intuitively, one is
trying to establish whether a set of strings have common ancestors and how those ancestors look
like. Sankoff also provided algorithms for this problem [77]. Another version of multiple sequence
alignment is the one that asks for the longest common subsequence of a set of strings [39].

For multiple sequence alignment problems one faces the same difficulties and issues already
mentioned for the alignment of two sequences, i.e., choice of weights, statistical significance, etc.,
except that here things are much harder. For instance, many multiple sequence alignment problems
are NP-Hard (see for instance [92]), or too time consuming (see [41]). Also in the case of multiple
sequence alignment, there is a trend to develop fast algorithms that trade-off optimality of the
required solution for speed (see for instance [11]). However, in some cases, even the computation
of approximate solutions is hard (see for instance [92]).

A string of DNA encodes the genome (or parts of) a living organism. The notion of distance
between strings that uses the edit operations previously defined models evolution through a set of
very local changes when applied to genomes. Although such a distance is appropriate to describe
evolution of small parts of a genome (for instance, a substring of a string describing a chromosome),
it shows limitations in quantifying the evolutionary distance between two entire genomes or two

5



entire chromosomes within two genomes. Indeed, evolution at the level of the genome seems to
involve non-local, large scale operations, which can rearrange a whole segment of a chromosome in
one evolutionary event. Those non-local changes are hard to detect using a distance based on very
local edit operations (see for instance discussions in [32,50,69, 78, 80, 96]). In order to overcome
this difficulty, one tries to "compare" two genomes by using more structured information. The idea
is the following. Assume that we can write both genomes we want to compare as two strings ofgenes.
Now, molecular biology suggests that if the two genornes are related, one should be obtainable from
the other by a suitable rearrangement of its genes. This approach (gene rearrangement) has been
pioneered by Palmer and Herbon [69] even though the earliest application of gene rearrangement
to genome comparison seems to date back to 1938 [23]. From the combinatorial point of view,
gene rearrangement requires the definition of new distances between genomes (strings of DNA).
Moreover, it gives rise to a set of very interesting and challenging combinatorial problems. In this
context, the first formulation of a new distance and of an algorithm computing it seems to be due
to [96J. Very recently, there has been quite a bit of work, initiated by Kececiouglu and Sankoff [54),
for the formal investigation of the computational complexity of various distances between genomes.
Later on, we will briefly review the state of the art.

3 Two Basic Sequence Alignment Methods

In this section we introduce two methods that are used to compute similarity between two proteins,
Le., two strings x[1 : n] and y[1 : m] over the alphabet of amino acids. Those methods compute
two (differently dermed) local similarity scores. The first one is a specialized version of the second.

MSP. It computes an extremely simple notion of alignment in which no insertions and deletions
of symbols are allowed. Consider two substring x[i: i +k] and y[j : j +k] of x and y, respectively.
We can align those two substrings by pairing x[i] with y[j], x[i + 1] with y[j + 1] and so on. We
can define a score for that alignment. Indeed, let o5(a,b) be the weight of "pairing" a with b, where
a and b are letters over the alphabet I: of amino acids. 05 can be thought of as a matrix, which we
refer to as the substitution matrix. The score of aligning two substrings (of equal length) of x and
y is given by the sum of the weights of the letters paired together. An alignment is locally optimal
if and only if its score cannot be improved by either extending both substrings or by shortening
both of them. The Maximal Segment Pair is the best locally optimal alignment and it is taken as
the (local) alignment of the two strings. In some cases, one may be interested in all locally optimal
alignments.

Other methods of this kind have also been proposed (see for instance [9, 10, 51, 83]). Moreover,
this simple method is the base for the BLAST program, one of the fastest programs for local
sequence alignment [5].

SW-Local ([45, 82, 85]). It computes local alignments of two substrings of x and y, but this time
insertion and deletion of symbols are allowed. For each pair of prefixes x[1 : i] and y[l : j] we ate
interested in finding the best suffixes of those two prefixes that can be aligned with each other using
the full set of edit operations. That can be done by means of the following dynamic programming
recurrence (obtained by Smith and Waterman [85]):

M;,j = max(M;_l,j_l + .(x[i], x[j]),M;_l,j +0, M;,j_l +0, 0) (1)

where 6 is the weight of deleting or inserting a symbol, 1 :$ i :$ nand 1 :$ j '$" m. It is chosen to
be a negative number. The initial conditions of the recurrence are given by Mi,O = 0 and MO,j = O.

6



The alignments computed by the above recurrence are locally optimal. Among those, we choose
the best, i.e., the one corresponding to max(Mi,j), 1 ~ i ~ nand 1 ~ i ~ m. We remark that a
slight change in (1) and in its initial conditions yields a method for the computation of the global
similarity between two strings. SW-Iocal (with modifications by Gotoh [31]) is the base of the
SSEARCH program for local alignment.

4 The Structure and Choice of Weights

In the two alignment methods we have outlined in the previous Section, 0 and s are the weights
corresponding to insertion/deletion and substitution of a symbol, respectively. The numeric values
that one chooses for those weights are extremely important in order to obtain alignments that are
biologically meaningful. There are two natural questions that one can ask about weights. What
is the structure of weights, Le., is there any mathematical methodology that can help us to obtain
numeric values for weights that turn out to be useful for molecular biology? How do we actually
compute those weights? The current state of the art provides partial answers to those questions and
many of the results depend on whether we want to use weights for local or global alignment and on
which method we are using. In what follows, we will first present results for the MSP method. So,
we will discuss mainly substitution matrices in the local alignment context and, unless otherwise
stated, an alignment of two strings is the one obtained by MSP. Then, we will consider the problem
of how to choose gap and substitution weights for SW-Iocal, since it is a good representative of the
class of methods allowing gaps.

4.1 The Structure of Substitution Matrices

When one looks for optimal local alignments of two strings, one is trying to discover whether parts
of those two strings are related to each other through evolution. The scores (and therefore the
weights of substitutions) give a quantitative measure of that relationship. So, the weights should
be designed to discriminate biologically meaningful alignments from ones due to chance. In very
loose and intuitive terms, two strings can always be obtained one from the other through some
amount of "evolutionary change". So, when we align those two strings, it seems reasonable to use
the weights that best capture that amount of "evolutionary change". Unfortunately, that quantity
1s not know to us. However, in order to investigate the "structure of weights", let us assume that
it is known. Moreover, to simplify notation, we assume that all letters of the alphabet are integers
in [1, IEll·

Let Pi be the probability that symbol i appears in a randomly chosen string from E*. We refer
to the Pi'S as the background probability distribution of the symbols of the alphabet. Let qi,j be
the probability that, for the amount of evolutionary change we have fixed, symbol i is substituted
by symbol j. We refer to qi,;'s as the target probability distribution of two symbols of the alphabet
substituting each other. It has been shown [47] that the best weights one can use to capture the
given amount of evolutionary change are of the form

(
..) log(q;,;/p;p;)

s t,] ;:;;: A (2)

where).. is a normalization constant. A few remarks are in order. As already stated in Section 2,
many substitution matrices have been proposed, even before (2) was discovered. Most of them are
log-likelihood matrices and therefore have the form prescribed by (2). This is intuitively appealing,
since s(i, j) gives a "measure" of how much the probability of the event "symbol i substitutes

7



symbol P' differs from chance. Equation (2) is important because it points out that, at least for
MSP alignments, that intuition is indeed correct.

There are other requirements that those substitution weights must satisfy. We will state and
justify them. There must be at least two letters in :E for which their weight is positive. Since we
would like to assign positive scores to locally optimal alignments, that constraint avoids to consider
empty alignments (of zero score). Consider the weight of two randomly chosen symbols, then its
expected value must be negative. If the expected weight of two randomly chosen letters would be
positive, extending two substrings in an alignment as far as possible would tend to increase the
score of that alignment (so the defInition of locally optimal alignment would be meaningless).

4.2 How to Compute Substitution Matrices

We now turn to the problem of how to actually determine the numeric values for substitution
matrices. The hard part is the computation of the target probabilities in (2). We will briefly
discuss two methods, one due to [22] and the other one due to [37].

The PAM Matrices. Dayhoffet al. [22] use a stochastic process to model evolution ofproteins: at
each discrete time instant, a symbol (an amino acid) has a certain fixed probability of substituting
another symbol. They also define a unitary measure of evolutionary change as a Point Accepted
Mutation (PAM for short): one PAM is deftned as the amount of evolutionary change required
for 1% of all symbols to be substituted by other symbols. In other words, in a given string, one
PAM expresses 99% conservation and one symbol substitution per 100 symbols. Let Ml be the
stochastic matrix giving the target probability distribution at one PAM. That is, Mdi,j] = qi,j at
one PAM. M 1 is a matrix that has been experimentally determined by studying a group of closely
related proteins [22]. Mn = (M1)n is the target probability distribution at n PAM's.

Now, for a given evolutionary distance (expressed in PAM's), we can use the corresponding M
matrix to compute the substitution matrix as given by (2). Actually, one has a family of matrices
from which to obtain substitution matrices. Those target distribution matrices are simply referred
to by the PAM distance corresponding to them. So, PAM 250 is the matrix corresponding to an
evolutionary distance of 250 PAMs.

One drawback of the method just described to compute weights is that, for distantly related
strings, one infers target probabilities from the target probabilities of closely related strings. That
may lead to inaccuracies since we are not estimating the target probabilities directly from samples
of distantly related strings. Henikoff and Henikoff [37] have recently proposed a different method to
obtain target probabilities for distantly related strings. The idea is to infer those probabilities from
a large set of representative families of proteins. Here we outline the main ideas of the method.

The BLOSUM Matrices. Since lEI = 20 for the alphabet of amino acids, there are 210 distinct
pairs of symbols (i,j), each of which corresponds to a substitution of symbol i with j. (Here
(j, i) is considered to be same as (i,j». The target probabilities are a normalized estimate of
the frequencies with which one can find a substitution (i,j). We estimate those frequencies and
therefore the corresponding probabilities using a data base of proteins. That is done as follows.
The proteins in the database are divided into blocks, according to the criteria outlined in [37]. A
block is a set of.s strings, each of length w. So, we can think of a block as an .s X w matrix. For
each column of that matrix, we count how many times symbols i and j appear in that column and
we increase the frequency estimate of that pair of symbols accordingly. (Each such an occurrence
corresponds to a substitution of a symbol of a string into another symbol in a different string in
the block.) The process is repeated for all blocks.

8



An important feature of this method is the fact that one can cluster closely related proteins that
are in the same block. Such a clustering avoids that closely related proteins give a large contribution
to the target frequencies (we want to obtain target frequencies that "capture" similarity between
distantly related proteins). The idea is the following. Let us assume that we want to reduce the
contributions to the target frequencies of proteins that are at least 80% similar. Then, for each
block, we cluster together all proteins that are at least 80% similar and each of those clusters is
now one string in the block. We use those new blocks to estimate target frequencies. We remark
that the similarity of proteins within blocks is obtained by other methods [37].

The above approach gives rise to a family of target probability distribution matrices, the BLO­
SUM family. Each BLOSUM matrix has also a number attached to it that refers to the percentage
that one has used for clustering. For instance, BLOSUM 62 is the matrix obtained by clustering
together, in each block, proteins that are at least 62% similar. From each BLOSUM matrix, we
can obtain substitution matrices again using (2).

4.3 How to Choose Substitution Matrices

When we want to align two strings using MSP, we need to choose a substitution matrix. From
what we have said above, we should use the substitution matrix that best captures the evolutionary
change transforming one string into the other. Unfortunately, that distance is not known to us,
even though we may have some idea about it. Up until recently, one would resort to use the
PAM 250 matrix since exper1mentally it seemed the best suited to align d1stantly related strings.
Recently, Altschul [3] has come up with a very interesting interpretation of substltution matrices in
information theoretic terms. That interpretation is useful both 1n choosing a substitution matrix
from a family of matrices (like the PAM or BLOSUM families) and in comparing the performance
of matrices from different families, i.e., the ability of substitution matrices to yield biologically
meaningful alignments. As for sequence alignment methods, performance of substitution matrices
can be assessed by est1mating their sensltivity and selectivlty.

Let H = 'Ei,jqi,j log2(Qi,j/PiPj) be the relative entropy of the target and background distribu­
tions. We associate that quantity to a substitution matrix with target probabilities qi,/S.

Now, fix two strings for which we want to compute an MSP alignment and assume that q~ . is
'"the target probability distribution for the alignment of those two strings. Let H' be the same as

H but with the new target probability distribution.
Notice that H' is the average score per symbol substitution in that alignment. Since HI is also

a measure of information, we can interpret It as the average information (in blts) per position that
is needed to distinguish that alignment from chance. In other words, it gives, for each position of
the alignment, the amount of information that we need to discriminate between the target and the
background probability distributions. Now, to align the two chosen strings, we should choose a
substitution matrix with relative entropy close to H'. Since we do not know H', we have to resort
to approximate it. That is done as follows.

Altschul [3] has shown that, in order for the score of an MSP alignment to be meaningful,
its score must be of at least 10gN bits, where N is the product of the lengths of the two strings
being aligned. Now assume that, for the two strings we want to align, we expect the length of the
best local alignment to be f (this value is usually determined by resorting to heuristic knowledge).
So, the amount of bits each position must contribute to the score of that alignment is log N / f.
Therefore, we choose a substitution matrix with relative entropy close to log N / f. Based on this
criterion, Altschul [3] provides a set of guidelines on which PAM matrices to use in which contexts.
Further studies are reported in [4, 87].

The relative entropy of a substitution matrix is also very important to establish a criterion

9



on which to base the comparison of the performance (sensitivity and selectivity) of two different
substitution matrices. For instance, the PAM family of matrices has been obtained in a totally
different way from the BLOSUM family and there seems to be no obvious relationship between
members of the two families. The question is how to compare those two families of matrices (
the performance of the PAM 250 matrix should be compared with BLOSUM 62 or with another
matrix?). Using relative entropy, it seems reasonable to compare the performance of two matrices
that have the same entropy. Using this criterion, Henikoff and Henikoff [37J have compared those
two families of matrices and they showed that the BLOSUM matrices seem to perform much better
than the PAM matrices. Additional extensive studies are reported in [38]. For completeness, we
point out that those experimental studies have been carried out for local alignment methods that
allow gaps.

4.4 Weights for Alignments with Gaps

Here we consider the problem of choosing weights for global or local alignment methods when both
gaps and substitutions are allowed.

The weights consist of a substitution matrix and a gap penalty 6. The choice of the gap penalties
is by trial and error. A typical choice is -12 for the first symbol in the gap (the first insertion or
deletion in a series) and -4 for the remaining gaps in the series (see for instance [71]). It is an
open problem to determine a provably optimal set of values for gap penalties.

The substitution matrix is usually chosen to be a log.likelihood matrix, i.e., a matrix whose
entries have the form prescribed by (2). So, any of the matrices described in Section 4.2 can be
used. Unfortunately, that choice is based on heuristics only. That is, so far, there is no theory
stating that a substitution matrix for SW·local should be of that form. Moreover, it has been
argued in [3] that a result analogous to equation (2) may not be possible to prove for the case of
alignments with gaps.

For the time being, one resorts to extensive experimentations to establish how well a set of
weights performs. In this context, it is important to come up with good methodologies on which
to base the design of those experiments. Some steps in that direction have been taken (see for
instance [37, 70]). We will see one of those methodologies in Section 5.

5 Sensitivity and Selectivity of Alignment Methods

Good algorithms for sequence alignment must show a good balance between sensitivity and selec­
tivity. As already mentioned, sensitivity is the ability to detect distant evolutionary relationships
between two strings, while selectivity is the ability to avoid the assignment of high scores to unre­
lated sequences. In order to evaluate an alignment method with respect to those two parameters,
one needs criteria to establish whether a meaningful alignment has been found or missed.

One criterion is to establish the statistical significance for the score of a given alignment. For
MSP, one can phrase the problem as follows. Consider two random protein strings, I.e., they satisfy
the probabilistic assumptions stated in Section 4.1. How many distinct locally optimal alignments
with score at least S are expected to occur simply by chance? Karlin and Althschul [47] have shown
that such a number is well approximated by the formula

I(N exp->'s (3)

where). is the same normalization constant of equation (2), N is the product of the lengths of the
strings we are aligning and J( is a parameter that can be explicitly computed [47,48]. Once that

10



we know the score S of a locally optimal alignment, we can use (3) to establish how meaningful it
is (the smaller the number given by (3), the more meaningful the alignment is).

For the more general case of global or local alignment between two strings, where both gaps and
substitutions are allowed, e.g., alignments computed by SW·local, it would be interesting to obtain
some statistical theory about the expected distribution of optimal scores. For the time being, the
only available results are for some important special cases (see [58, 95]). Because of that lack of
knowledge, Monte Carlo techniques are sometimes used to establish how likely it is for a given
alignment score to be due to chance [24, 62, 72].

Another approach that has been recently proposed is to come up with a methodology for the
empirical assessment of the selectivity and sensitivity of alignment methods. Pearson [71] has
proposed one such a methodology and he has applied it to the comparison of some alignment
programs for data base searches. We will briefly outline the main points of that methodology.

The sensitivity and selectivity of a method is quantified by two parameters. One is the number
of strings in the data base that are biologically related to the query string and that were "missed"
by the method during a search (that measures sensitivity). The other is the number of strings in the
data base that are biologically unrelated to the query string and that were "found" by the method
during a search (that measures selectivity). Moreover, sensitivity and selectivity of an alignment
method is evaluated with respect to the SSEARCH program.

As for establishing when a string in the data base has been found or missed, Pearson has sug­
gested several statistical criteria [71]. In principle, those criteria would need the a priori knowledge
of the statistical distribution of scores. That knowledge is experimentally precomputed as follows.
Using previously available knowledge, the data base is conceptually divided into two sets of strings:
the ones related to a sample query string and the ones that are not related. Using SSEARCH and
a set of weights for the edit operations, the scores between the sample string and each unrelated
string is computed. That gives a distribution of scores for unrelated sequences. The same is done
for the set of related sequences.

Now a method is evaluated by running many experiments using different criteria to establish
when it has found or missed a string in the data base. The method uses the same weights as the
ones used by SSEARCH to precompute statistical information.

We remark that the above experimental methodology (or similar ones-see [37]) can also be used
to evaluate the performance of substitution matrices. Indeed, one fixes the method once and for
all and the experiments are performed by changing the matrices.

6 Self-Alignments

Sometimes it is important to locate repeated patterns in a string x[I : nJ. The two patterns that
seem to be of most biological interest are non-overlapping repeats and tandem repeats.

Consider two substrings x[j : r] and x[i : t], with i 2: r. Let Score(xt,xD be the similarity
score between those two strings. That is, the sum of the weights of the operations transforming
one string into the other. Such a sequence of operations gives also an alignment of x[j : r] with
x[i : t]. We refer to that alignment as a repeat. The repeat is a tandem repeat if £ = T. To keep
things simple, let us assume that, among all possible repeats, we are interested in finding the best
one. That is, the one of maximum score. This problem has been proposed by Miller [66J, who
also gave a practical algorithm solving it. The heart of the algorithm is the dynamic programming
recurrence (1) that is used for local alignment. However, the computation of that recurrence needs
to be modified to account for the facts that we are aligning a string with itself and that we are
interested in non-overlapping regions of similarity. Kannan and Myers [46] found an interesting

11



(4)

way to combine some of the ideas in [66] with ideas by Apostolico et al [7] (see also [1]) for the
parallel computation of the alignment between two strings. The algorithm they devised has an
O(n2 10g2 n) time performance.

Recently, Schmidt [81] has made important contributions in this area in several directions.
She generalized the notion of locally optimal alignment for strings (the one due to Sellers [82])
to locally optimal (non-overlapping) repeats and to locally optimal tandem repeats. Then, she
devised an O(n2 10gn) time algorithm that computes all those locally optimal repeats. The data
structures she devised may be useful in other sequence alignment contexts. Intuitively, those data
structures support fast answers to queries on shortest paths in grid graphs associated with the
dynamic programming recurrence (1). For completeness, we mention that a simplified version of
the problem of finding all locally optimal tandem repeats has been considered in [57].

7 Multiple Sequence Alignment

Given a set of strings Xl, :1:2, "', xk over an alphabet :E, a multiple alignment for those strings is a
two-dimensional matrix of k rows satisfying the following conditions. The entries of A are either
symbols from the input alphabet or the empty symbol>' (the identity under concatenation), and
concatenating the entries in row i of A yields the string Xi. Given a cost function d, defined on the
columns of A, an optimal alignment is one that minimizes the sum of the costs on all columns of a
multiple alignment matrix A. Formally, we want a multiple alignment matrix A = (aiih::;;i:Sk that
IDllllIDlzes

L d(alja2j ...akj).
j

A little reflection reveals that there is no unique way to make the problem statement precise,
as the cost function d could be specified in several ways that are meaningful from a biological
perspective, or necessary from a computational perspective, or both. Correspondinlgly, multiple
alignment comes in several flavors. H d consists of tallying the number of distinct symbols in
each column, then the output consists of a shortest common supersequence (SCS) of the input
strings. If d is chosen so that d(alja2j ...akj) = -1 when all symbols in a column are identical
and is 0 otherwise, then the output consists of a longest common subsequence (LCS) of the input
strings. Other notable variants are the minimum sum of pair and the multiple alignment under
a fixed evolutionary tree, both to be discussed below. The reader is referred to [8, 18, 94J for
coohmprensive surveys of the available methods. Moreover, it should also be pointed out that the
current methods may not yield biologically adequate alignments [59, 88].

The problem in its general form gives rise to a recurrence that is computed thru an obvious
generalization of the dynamic programming algorithm that handles two strings. This produces an
algorithm taking time O(2k n k ) and space O(nk ) to process k strings of comparable length. This
performance may be regarded as exponential or polynomial depending on whether k is assumed to
be a parameter or a constant. Either way, the computations demanded by this and other methods
of multiple sequence comparisons are impractical even for modestly sized sets of relatively short
sequences (say, 5-10 sequences each about 100 symbol long). Some versions of the multiple se­
quence alignment problem were motivated precisely by the biologists' need to settle for suboptimal,
biologically plausible solutions, in exchange for computational affordability.

Exact solutions for the LCS are given in [41J, [39], [40}, [42]. Their typical form is exponential
in the number k of strings. In some cases, such a complexity does not even degrade gracefully to
the corresponding complexities for the case of 2 strings. While simple greedy algorithms achieve a
performance of Opt +O(Opt l / Vi ) for the SCS, and Opt - O(Opt1/ 2+f

) for any E: > 0 for the LCS,

12



the existence of acceptable approximation algorithms can be confuted [43]. The general multiple
alignment problem inherits NP-completeness from its LCS and SCS specializations. In fact, NP­
completeness results relative to LCS and SCS problems were rust achieved by Maier [63]. More
recent results are in [89] and [15].

7.1 Minimum Sum of Pairs

For this version of the multiple sequence alignment problem, the cost function din (4) is given by:

d(alia2i···aki) = L.l<J<g<kc(a/i,ugi) (5)

where C(A, A) = 0, c(a, b) is an entry in one of the subs titian matrices discussed in Section 4.1 when
both a and b are in the alphabet L.. When only one of the arguments is A, c is a gap cost (see
Section 4.4). Moreover, c must satisfy the triangle inequality.

Intuitively, an optimal multiple alignment in tms case is one that best accomodates the pairwise
alignment of the strings involved subject to the constraint that all strings must be aligned. For the
case k = 2, it reduces to standard two-sequence alignment discussed in previous Sections. Notice
that Minimum Sum of Pairs alignments (SP alignments, for short) tend to maximize the number
of positions at wmch all, or nearly all, of the aligned strings agree. Bacause of this property, the
method is useful in multiple alignments of biological sequences, e.g., proteins, where we want to
measure the "variability" of the sequences rather than identify plausible ancestors [6, 16].

In principle, it is not difficult to set up a solution in O(k22knk ) time and O(nk ) space. However,
SP alignemnt is NP-complete [92]. We point out that NP-completeness of this problem cannot be
directly inferred from the NP-completeness of the general alignment problem given by (4), since
the cost function d is now specified. Even before the computational complexity of SP was settled,
there have been two lines of research aiming at the design of fast algorithms for the problem. A
common feature of both efforts is to find a good matrix A. That is, a matrix A that, although not
optimal, has a cost "close" to the optimum. That is done by using an observation, wmch we now
state.

Let A be any SP alignment and let Ai,i be the pairwise alignment of string X; and Xi induced
by A. That is, Ai,i is obtained from A by deleting all of its rows, except the i-th and the j-th,
and then by deleting all columns that have only A'S. Now, if there is a multiple alignment A such
that Ai,i gives the optimal pairwise alignment of Xi with Xi, for each 1 :s; i < j ~ k, then A is an
optimal S P alignment.

This observation suggests to find a good alignment using the following "idea". Compute the
(;) optimal pairWise alignments of the k strings. By suitably combining those pairwise alignments,
build an alignment A in such a way that the cost of its induced pairwise alignments A,i is "close"
to the cost of the optimal pairwise alignment of Xi and Xi, for all 1 :s; i < j :s; n.

Unfortunately, it is not always possible to combine all pairwise alignments into a multiple
alignment A. That is due to the fact that some pairwise alignments may be incompatible for such
a combination. So, one usually resorts to the less ambitious task of choosing a subset of pairwise
alignments (usually k -1) that are compatible, I.e., they can be combined into a multiple alignment.
For instance, in the Feng and Doolittle alignment algorithm [25]), one chooses a spanning tree from
the complete graph of all pairwise alignments. Now, let's see how the above observations are used.

Carrillo and Lipman have proposed a method that "cuts down" the search space in which the
optimal solution lies [16]. Indeed, they give a method to compute upper bounds on the cost of
pairwise alignments induced by the optimal alignment we are seeking. Then, the reduction of the
search space is achieved by limiting the search to alignment matrices that induce pairwise alignments
of cost within the upper bounds. Essential for the determination of those bounds is to find a good,

13



although not optimal, multiple alignment A. Significant reductions of the computational effort
have been reported [61J.

Another line of research tries to devise approximation algorithms that guarantee a provably
good solution. That is, they compute a matrix A, again not necessarily optimal, but for which one
can prove "a priori" how close it is to the optimal solution. The best performance ratio currently
available is 2 - Ilk, for any fixed 1. It has been obtained by Barna and Pevzner [12] improving
on earlier remarkable work by Pevzner [73] and Gusfield [33]. From the practical point of view,
it seems that the method by Gusfield is the one that, so far, yields biologically plausible solutions
that are only 2% from optimal [73].

At the hearth of those approximation algorithms there is a careful investigation of the connection
between the compatibility of pairwise alignments to form multiple alignment of k strings and the
choice of which pairwise alignments to use. Indeed, first of all, the notion of compatibility has
been extended from pairwise alignment to multiple alignments involving I strings, I < k. That is,
the optimal alignments from which we try to build A consist of I strings each (so, now we have
(7) possible alignments to choose from). Moreover, that notion has been formalized in terms of a
graph having some specific topological constraints (those graphs are called configurations in [73]).
Finally, the problem of finding a good multiple alignment A has been reduced to the one of finding
an optimal configuration satisfying some additional topological constraints. This latter task can
be done in polynomial time. We remark that not all of the (7) possible alignments of I strings are
used to obtain A.

7.2 Traces

As we have discussed in the previous Subsection, even if we have all (~) possible pairwise alignments,
only a limited number is used to build the "approximate solution" A. In view of the observation
in the previous Subsection, there is a fundamental question that needs to be asked: Given a set of
pairwise alignments, how can we find a multiple alignment that is as close as possible to all pairwise
alignments in the set? This question was brought to light by Kececioglu [52], who formalized it
and gave algorithms solving it. We briefly review this multiple alignment method.

Given k strings Xl, X2, ... , Xk, fix a set F of pairwise alignments of those strings. F can be
represented by an alignment graph G = (V,E) together with a partial order relation <. V is given
by pairs (i,xj[ij), for 1 ::; j ::; k. There is an edge between two vertices if and only if the two
characters in the vertices are matched in a pairwise alignment in F. Moreover, given two vertices
v and w, v < w if and only if the character in v immediately precedes the character in w in one of
the strings. This partial order relation captures the ordering of characters within a string.

One can observe the following. A path in an alignment graph is a set of characters that can be
potentially aligned into a column of a multiple alignment matrix A. Generalizing, the connected
components of a set of edges in G can be seen as columns in a multiple alignment A. Those columns
are valid if they can be ordered so CUi to respect the < relation character by character (on the rows
of A).

Informally, the maximum trace problem consists of identifying an optimal subset of the edges
of E such that their connected components can be combined into a valid multiple alignment A.
Optimality is defined so as to "maximize" the use of the information available from the pairwise
alignments in F. This problem can be formally stated so as to satisfy formulation (4). Moreover, it
contains Minimum Sum of Pairs as a special case [52]. Kececioglu showed that the general problem
is NP-complete and he devised a branch and bonnd solution for it.

14



7.3 Multiple Sequence Alignment Under an Evolutionary Tree

Flx a set X of k strings and let Y be a set of hypothetical ancestral strings. An evolutionary tree
Tx,Y for X is a weighted tree of IXI +IYI nodes, where the leaves are associated to the strings in X
and the internal nodes to the ones in Y. The weight or cost of an edge is usually taken to be the edit
distance between the strings at its endpoints, Le., the cost of the pairwise alignment. The cost of a
tree is the sum of the costs of its edges. In its most general form, multiple sequence alignment under
an evolutionary tree consists of finding a minimal cost tree Tx,Y for X. Minimization is carried
out over all sets Y and trees Tx,Y. The optimal multiple alignment matrix A can be recovered
from the optimal tree since any tree of pairwise alignment can be merged into a multiple alignment
that complies with the alignments in the tree. An important special case, due to Sankoff (77] and
which was the first formulation of this kind of alignment, is for a fixed tree. That is, the topology
of the tree is fixed and we must optimize over the strings in Y only. Following Sankoff [77J, this
''family'' of multiple sequence alignments can be cast in the form given by (4). We also point out
that this type of alignment tries to minimize the number of mutations from the species represented
by strings in X to their ancestors, repesented by the strings in Y.

For this class of problems, there are a set of negative results stating that the existence of
approximation algorithms that can get arbitrarily close to the optimum is unlikely, even if the
topology of the tree is given [92].

Without any tree being assumed, an approximation with a performance ratio of 2 - 2/k in
O(k2n 2 ) time has been established by Gusfield [33]. When the tree is fixed, Sankoff [77] provided
an exact algorithm. Studies that generalize to this problem some of the ideas of Carrillo and Lipman
for SF alignment are reported in Altschul and Lipman [6] and Pevzner [73]. An approximation
with performance ratio of 2 for fixed tree with triangle inequality is afforded in time O(k2n 2 +k3

)

[44].

7.4 Dot-Plots

Multiple sequence comparisons may also be based on measures other than edit scripts, e.g., dot­
plots [20]. In its simplest version, the dot-plot associated with a pair of strings is the raw binary
matrix of matches between those two strings, Le., entry (i,j) = 1 iff the ith symbol of the first string
is identical to the jth symbol of the second string. Criteria more general than mere matching can be
adopted, e.g., weighted matches. In the most striking cases, just glancing at a binary dot-plot one
finds regions of high similarity in the underlying strings: such regions are in fact overwhelmingly
exposed thru visual impact from dense dot areas clustered along diagonals. Working with a set of
strings, the issue becomes one of "merging" multiple pairwise dot-plots into a single, meaningful
region of density in the hyperspace determined by that set. A natural problem in this context
is that of how to define consistency, i.e., the degree of significance which could be assigned to a
dot in one of the planes given the existence of the other dot-plots. Dot-plots cannot be simply
superimposed, because of deletions and insertions in the various alignment pairs. The alternative
proposed in [67] consists of filtering the individual original plots according to a consistency criterion
that results in an easy and elegant algebraic computation. Specifically, assume 3 strings are given
and let A(l,2)' A(1,3) and A(2,3) be the pairwise plots, with obvious meaning. The criterion consists
of requiring that a similarity (i,j) in A(1,3) be supported by the appearance, for some k, of dots
at (i, k) and (k,j) in A(1,2) and A(2,3)' respectively. This validation of dots translates thus to a
standard boolean matrix multiplication and can be performed accordingly. The result is a filtered
dot-matrix which is now consistent with the other two, according to this criterion. Filtration of
the triple is obtained by subjecting the other two plots to the same treatment. For many strings,

15



the problem reduces to iteration over sets of 3 strings.
In [90], the problem is modeled as a multipartite graph, and "having a similarity in common" is

interpreted in terms of a suitably introduced notion of consistency on multipartite graphs. Finding
all there is in common between the dot-plots becomes then the problem of finding the maximum
consistent subgraph to a given multipartite graph. Algorithms based on this formalization have
successfully performed on biological examples.

8 Genome Comparison: A New Class of Sorting Problems

Recall that a genome is a string of DNA. As stated in Section 2, evolution at the level of the
genome seems to involve non-local, large scale operations, which can rearrange a whole segment of
a chromosome in one evolutionary event. Those non-local operations are: inversion (it replaces a
segment of the chromosome with the reverse DNA string); transposition (which moves a segment
to a new location of the genome); translocation (it exchanges segments between the ends of two
chromosomes); duplication (which copies a segment to a new location); insertion (which inserts a
segment) and deletion (which removes a segment). Therefore, new notions of distance have been
proposed that quantify the "evolutionary change" of one genome in the other by means of (subsets
of) the above operations ( see [78J and references therein).

The mechanism through which one can define a distance between genomes is the same used to
define any other metric on strings (see Section 2). One formally defines and assigns weights to the
operations of interest (say, inversion, transposition and translocation). Then, given two genomes,
the distance between the two is defined in exactly the same way as in Section 2, except that the
transformation of one genome into the other uses the new set of operations. In what follows, we
will assume, for simplicity, that the two genomes we are comparing consist of a single chromosome.

We need some information on how genomes are represented. Most of the current data for
genomes is in the form of maps, which provide the location of genes along the chromosomes. For
a single chromosome containing n distinct genes, a map can be represented as a permutation of
the integers 1,2, ... , n, e.g., (2,5,3,1) is an example of snch a map for a "chromosome" with four
genes. Sometimes, the genes have an orientation on the map (the reader is referred to [53, 36] for
motivation). In that case, each gene is assigned a sign: + or -. So, the oriented version of our
example "chromosome" could be (+2, -5, +3, +1). For the time being, we will concentrate mainly
on maps in which there is no orientation.

Consider two chromosomes we want to compare. When the two maps consist of the same n
genes, then the operations of interest are inversion, transposition and translocation. In what follows,
we will mainly concentrate on this case and we will define some of those operations formally. We
anticipate that all those operations will have unit weights. When the two maps are not composed
of the same n genes, then duplication, insertion and deletion are also relevant. We will not consider
this CMe.

8.1 Inversion Distance

We are given the maps of two chromosomes, each consisting of some permutation of the same
n genes. That is, the two maps are given by the permutations a = (at, 0"2, ... , O"n) and T =
(Tl' T2, ... ,Tn). We model the inversion operation described earlier by means of the reversal of the
interval [i,j]. Formally, a reversal of the interval [i,j] is the permutation p = i,i +1, .. ",J"--+

j,j - 1, ... , i. Applying p to a by the composition a· p has the effect of reversing the order of the
genes O"i, ••• , O"j. For instance, let a = (2,4,3,1). A reversal [2,3] applied to a would yield the new
permutation (2,3,4,1).

16



We are interested in the following problem. Given the permutations u and r, find a series of
reversals PI, P2, ... , Pd such that u . PI . P2 ...Pd = r, where d is minimum. d is referred to as
the reversal distance. Notice that problem reduces to finding the reversal distance between the
permutation ¢> = r-l l7 and the identity permutation t = (1,2, ... , n), where r- l be the inverse of
T. We wiU work with this version of the problem, which is known as sorting by reversal. Since
reversals generate the symmetric group Sn, an alternative statement of the problem is: given
an arbitrary permutation ¢> of Sn, find the shortest product of generators that equals ¢. Let
d(n) = max.pESn d(¢», where d(¢» is the reversal distance of ¢> from the identity permutation.

Sorting by reversal was posed by [96J. Those authors also devised an heuristic algorithm com­
puting it. Very recently, Kececioglu and Sankoff [54J started a formal study of the computational
complexity of this problem and conjectured that it is NP-Hard. The relationship between sorting
by reversal and other fairly well understood problems in Computer Science that might help settle
this question is discussed in [54].

Kececioglu and Sankoff also devised two algorithms. One is a polynomial time approximation
algorithm that finds a solution within a factor of two from optimum. It is the first algorithm for
which one can show a performance guarantee bound on the solution. The other one is a branch
and bound algorithm that always finds an exact solution to the problem. In order to have a fast
convergence of the branch and bound search, one needs to come up with nontrivial lower and upper
bounds on the reversal distance d. Both algorithms have been shown to perform well on biologically
important data [54].

Bafna and Pevzner [14] have recently obtained a 7/4 approximation algorithm. In order to
obtain that result, they had to study some combinatorial and probabilistic problems on Sn that
are interesting in their own right and relevant to molecular biology as well. They proved that
d(n) = n - 1, settling a conjecture by Gollan (see [14, 54]). They also studied the problem of
expected reversal distance between random permutations and showed that it is very close to d(n).
That is an indication of the fact that reversal distance provides a good separation between related
and non-related sequences in molecular evolution studies.

A related problem is the one of sorting signed permutations by reversals. ¢> is still a permutation
on {I, 2, ... , n}, but each element of ¢> has a + or - sign, e.g., (+1, -5, +4, -3, +2) is a signed
permutation. Now, a reversal [i,j] is defined as above, but it changes also the signs of the elements
¢>i,¢>iH, •.• ,¢j. For instance, [3,4] applied to (+I,-5,+4,-3,+2)yields (+1,-5,+3,-4,+2). We
are interested in finrllng the shortest sequence of reversals that transforms ¢> into the identity signed
permutation t = (+1, +2, ... , +n). Motivation for the biological relevance of this problem can be
found in [36, 53J. We limit ourselves to mention that an optimal solution to the signed case gives
an excellent approximation of the reversal distance for the case of unsigned permutations presented
e"lier [36, 53].

As in the unsigned case, approximation algorithms were developed first (see [14, 53]). Surpris­
ingly, the signed case can be solved in polynomial time [36].

8.2 Some Other Notions of Distance

Another operation for which a distance has been defined is transposition. Its relevance to biology
is addressed in [35]. Again, the two genomes are (unsigned) permutations a and T of the integers
in [1, n]. A transposition p(i,j, k) exchanges the "place of the integers" [i,j - 1] and [j,k - IJ in
the interval [i, k - 1]. For instance p(2, 4, 6) transforms (2,3,4,5) into (4,5,2,3). a· p(i,j, k) has
the effect of exchanging (Ii, ... ,l7j_l with Uj, ... , ak-l The transposition distance between 17 and T

can be defined in the same way as the inversion distance between those two permutations, except
that we apply transposition transformations rather than reversals. Again, since transpositions

17



generate the symmetric group Sn, the transposition distance between q and T can be reduced to
the computation of the transposition distance between 4J = T-

1
q and the identity permutation.

This problem is referred to as sorting by transposition. Again, as in the case of sorting by reversal,
it has been conjectured that it is NP-Hard. The first provably good approximation algorithm has
been obtained in [13].

The distances that we have defined so far use only one kind of operation, i.e., either reversal or
transposition. Kececioglu and Ravi [55] have developed a model for translocation that allows them
to define a distance in terms of that operation. They also defined a distance using two operations:
inversion and translocation. The computational complexity of those new distances is also an open
problem. For the time being, approximation algorithms are available [55].

Much work remains to be done in this area. For instance, we have considered some distance
problems in which the involved operations have unit weight. It would be interesting to consider the
case in which those operation are assigned a weight (restricted to reversal distance, this problem
has been proposed by (54]). Such an investigation would lead to two new areas of research: How
to assign weights to the chosen operations (for a brief discussion of this topic see [78]) and how to
compute those distances.

9 Acknowledgements

This paper is based on presentations and literature given at the Workshop on "Sequence Alignment"
which was held in Princeton, N.J., Nov 10-12, 1995, as part of the DIMACS Special Year on
Mathematical Support for Molecular Biology. The authors gratefully acknowledge the support and
dedication of their colleagues in the Workshop Committee, most of whom also served as lecturers
delivering the notes that the present paper tried to capture: S. Altschul, D. Brutlag, R. Doolittle,
M. Farach, P. Green, D. Gusfield, S. Henikoff, J. Kececioglu, D. Lipman, W. Miller, W. Pearson,
P. Pevzner, D. Sankoff, J. Schmidt, G. Stormo, M. Vingron, M. Waterman. Thanks are also
expressed to DIMACS and to the Steering Committee of its 1994-95 Special Year for devising this
topic, stimulating and supporting every aspect of that meeting.

References

(1] A. Aggarwal and J. Park. Searching in multidimensional monotone matrices. In Proc. 29th Symposium
on Foundations of Computer Science, pages 497-512. IEEE, 1988.

[2] A.Lempel and J. Ziv. On the complexity of finite sequences. IEEE Trans. on information The.ory,
22,75-81, 1976.

[3] S.F. Altschul. Amino acid substitution matrices from an information theoretic perspective. J. Mol.
Bio., 219:555-565, 1991.

[4] S.F. Altschul. A protein alignment scoring system sensitive to all evolutionary distances. J. Mol. Eval.,
36,290-300, 1993.

[5] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment search tool. J.
Mol. Bio., 215:403-410, 1990.

[6] S.F. Altschul and D.J. Lipman. Trees, stars, and multiple biological sequence alignment. SIAM J. Appl.
Moth, 49(lP97-209, 1989.

[7] A. Apostolico, M.J. Atallah, L.L. Larmore, and S. McFadin. Efficient parallel algorithms for string
editing and related problems. Siam J. on Computing, 19:968-988, 1990.

[8] P. Argos, M. Vingron, and G. Vogt. Protein sequence comparison: Methods and significance. Protein
Engineering, 4:375-383, 1991.

18



[9] R. Arratia, L. Gordon, and M.S. Waterman. An extreme value theory for sequence matching. Ann.
Stat., 14:971-993,1986.

[10] R. Arratia and M.s. Waterman. The Erdos-Renyi strong law for pattern matching with a given pro­
portion of mismatches. Ann. Prob., 17:1152-1169,1989.

[11] V. Bafna, E. Lawler, and P.A. Pevzner. Approximation algorithms for multiple sequence alignment. In
A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors, Proc. Combinatorial Pattern Matching
94 (Lecture Notes in Computer Science, Vol. 807 ), pages 43-53, Berlin, 1994. Springer-Verlag.

[12] V. Bafna and P. Pevzner. Approximate methods for sequence alignment. manuscript, 1993.

[13J V. Bafna and P. Pevzner. Sorting permutations by transpositions. In Proc. 6th Symposium on Descrete
Algorithms, pages 614-621. ACM-SIAM, 1995.

[14] V. Bafna and P. Pevzner. Genome rearrangments and sorting by reversals. Siam J. on Computing" 25,
1996.

[15J H.1. Bodlaender and M.R. Fellows amd M.T. Hallett. Beyond np-completeness for problems of bounded
width: Hardness for the w hierarchy (extended abstract). ACM Sympos. Theory Comput., 26:449-458,
1994.

[16] H. Carrillo and D. Lipman. The multiple sequence alignment problem in biology. SIAM J. Appl. Math.,
48(5),1073-1082,1988.

[17] L. Carrol. A new puzzle. Vanity Fair, 1879.

[18] S.C. Chan, A.K.C. Wong, and D.K.Y. Chui. A survey of multiple sequence comparison methods. Bull.
Math. Bioi., 54:563-598, 1992.

[19] V. Chvalal and D. Sankoff. Longest common subsequence of two random sequences. J. of Appl. Probab.,
12,306-315, 1975.

[20] J .F. Collins and A.F.W. Coulson. Molecular sequence comparison and alignment. pages 323-358, 1987.

[21] M. O. Dayhoff and R. V. Eck. Atlas of Protein Sequences and StroctUTe.s. National Biomedical Res.
Foundation, 1968.

[22] M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt. A model of evolutionary change in proteins. In M.O.
Dayhoff, editor, Atlas of Protein Sequence and Strocture, pages 345-352. Nat. Biomed. Res. Found., 5,
supp. 3, 1978.

[23] T. Dobzhanski and A.H. Sturtvant. Inversions in the chromosomes of drosophila pseudoscura. Genetics,
23,28-64, 1938.

[24] R.F. Doolittle. Similar amino acid sequences: Chance or common ancestry? Science, 214:149-159,
1981.

[25] D. Feng and R. Doolittle. Progressive sequence alignment as a prerequisite to correct phylogenetic trees.
Journal of Molecular Evolution, 25:351-360, 1987.

[26] D.F. Feng, M.S. Johnson, and R.F. Doolittle. Aligning amino acid sequences: Comparison of commonly
used methods. J. Mol. Evol., 21:112-125, 1985.

[27] W.M. Fitch and E. Margoliash. Construction of phylogenetic trees. Science, 155:279-284,1967.

[28J R.G. Gallager. Information Theory and Reliable Communication. John Wiley and Sons, 1968.

[29] 1.L. Gatlin. The information content of DNA. J. Theor. Bioi., 10:281-300,1966.

[30] R. Giancarlo. Dynamic programming-special cases. In A. Apostolico and Z. Galil, editors, Pattern
Matching Algoriihms, New York, to appear. Oxford University Press.

[31} O. Gotoh. An improved algorithm for matching of biological sequences. Journal of Molecular Biology,
1620705-708, 1982.

19



[32] A.M. Griffin and M.E.G. Boursnell. Analysis of the nucleotide sequence of DNA from the region of the
thymidine kinage gene of infectious laryngotracheitis virus; potential evolutionary relationships between
the herpes virus subfamilies. J. Gen. Virol., 71:841-850, 1990.

[33J D. Gusfield. Efficient methods for multiple sequence alignment with guaranteed error bounds. Bull
Math. Bioi., 55(1):141-154, 1993.

(34] R. W. Hamming. Error detecting and error correcting codes. Bell System Tech. J., 29:147-160, 1950.

[35] S. Hannenhalli, C. Chappey, E. Koonin, and P. Pevzner. Algorithms for genome rearrangments: Her­
pesvirus evolution as a test case. In $rd Int. Conference on Bioinformatics and Complex Genome
Analysis, 1994.

[36] S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip (polynomial algorithm for sorting
signed permutations by reversals). In Proc. 27th Symposium on Theory of Computing, pages 178-187.
ACM,1995,

[37] S. Henikoff and J. Henikoff. Amino acid substitution matrices from protein blocks. Proc. Nat. Acad. of
Sci., USA, 89:10915-10919, 1992.

[38] S. Henikoff and J. Henikoff. Performance evaluation of amino acid substitution matrices. Proteins:
Structure, function and genetics, 17:49-61, 1993.

[39] W.J. Hsu and Du M.W. Computing a longest common subsequence for a set of strings. BIT, 24:45-59,
1984.

[40] R.W. Irving and C.B. Fraser. Two algorithms for the longest common subsequence of three (or more)
strings. In Third Annual Symposium, CPM 9£, Tucson, Arizona, April 29 - May 1, 1992. Proceedings.
(Lecture Notes in Computer Science, Vol. 644), pages 214-229, 1992.

(41] S. J. !toga. The string merging problem. BIT, 21:20-30, 1981.

[42J G. Jacobson and KP. Vo. Heaviest increasing/common subsequence problems. In Third Annual Sym­
posium, CPM 92, Tucson, Arizona, April 29 • May 1, 199£. Proceedings. (Lecture Notes in Computer
Science, Vol. 644), pages 52-66, 1992.

(43] Jiang and M. Li. Optimization problems in molecular biology. In D.Z. Du and J. Sun, editors, Advances
in Optimization and Approximation (Manuscript received 11 February 1994), 1993.

[44] T. Jiang, E.L. Lawler, and L. Wang. Aligning sequences via an evolutionary tree: Complexity and
approximation. ACM Sympos. Theory Comput., 26:760-760, 1994.

(45] M.1. Kanehisa and W.B. Goad. Pattern recognition in nucleic acid sequences I: A general method for
finding local homologies and simmetries. Nucl. Acid Res., 10:247-264, 1982.

[46] S.K. Kannan and E. W. Myers. An algorithm for locating non-overlapping regions of maximum alignment
score. In A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors, Proc. Combinatorial Pattern
Matching 94 (Lecture Notes in Computer Science, Vol. 684), pages 74-86, Berlin, 1993. Springer-Verlag.

[47J S. Karlin and S.F. Altschul. Methods for assessing the statistical significance of molecular sequence
features by using general scoring systems. In Proc. Nat. Acad. of Sci., U.S.A., volume 87, pages 2264­
2268, 1990.

[48] S. Karlin, A. Dembo, and T. Kawabata. Statistical significance of high scoring segments from molecular
sequences. Ann. Stat., 18:571-581, 1990.

[49] S. Karlin, G. Glandour, F. Ost, S. Tavare, and L.J Korn. New approaches for computer analysis of
nucleic acid sequences. Proc Nat Acad Sci USA, 80:5660-5664, 1983.

[50] S. Karlin, E.S. Mocarski, and G.A. Schachtel. Molecular evolution of herpesviruses: genomic and protein
sequence comparison. J. ViroI., 68:1886-1902, 1994.

[51] S. Karlin and F. Ost. Maximum length of common words among random letter sequences. Ann. Prob.,
16,535-563, 1988.

20



[52] J. Kececioglu. The maximum weight trace problem in multiple sequence alignment. In 4th Annual
Symposium, CPM 93, Padova, Italy, June 2-4, 1993. Proceedings. (Lecture Notes in Computer Science),
volume 684, pages 106-119, 1993.

(53] J. Kececioglu and D. SankoJf. Efficient bounds for oriented chromosome inversion distance. In A. Apos­
tolico, M. Crochemore, Z. Galil, and U. Manber, editors, Proc. Combinatorial Pattern Matching 94
(Lecture Notes in Computer Science, Vol. 807 ), pages 307-325, Berlin, 1994. Springer-Verlag.

[54] J. Kececioglu and D. SankoIT. Exact and approximation algorithms for sorting by reversals, with
application to genome rearrangement. Algorithmica, 13:180-210, 1995.

[55] J.D. Kececioglu and R. Ravi. Of Mice and Men: Algorithms for evolutionary distances between genomes
with translocation. In Proc. 6th Symposium on Descrete Algorithms, pages 604-613. ACM-SIAM, 1995.

[56] A. N. Kolmogorov. Three approaches to the quantitative definition of information. Problemi Pederachi
In!, 1, HJ65.

[57] G.M. Landau and J .F. Schmidt. An algorithm [or locating tandem repeats. In A. Apostolico,
M. Crochemore, Z. Galil, and U. Manber, editors, Proc. Combinatorial Pattern Matching 94 (Lecture
Notes in Computer Science, Vol. 684 ), pages 120-133, Berlin, 1993. Springer-Verlag.

[58] E. Lander, J.P. Mesirov, and W. Taylor. Study of protein sequence comparison metrics on the Connec­
tion Machine CM-2. J. Supercomputing, 3:255-269, 1989.

[59] A.M. Lesk, M. Levitt, and C. Chothia. Alignment of amino acid sequences of distantly related proteins
using variable gap penalties. Protein Engineering, 1:77-78,1986.

[60] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet Phys.
DoH, 6:707-710, 1966.

[61] D.J. Lipman, S.F. Altschul, and J.D. Kececioglu. A tool for multiple sequence alignment. Proc. Nat.
Acad. Sci. (USA), 86:4412--4415, 1989.

[62] D.J. Lipman and W.L. Pearson. Rapid and sensitive protein similarity searches. Science, 2:1435-1141,
1985.

[63] D. Maier. The complexity of some problems on subsequences and supersequences. J. Assoc. Comput.
Mock., 25(2P22-336, 1978.

[64J P. Martin-Lo£. The definition of random sequences. Infonnation and Control, 9, 1966.

[65] A.D. McLachlan. Tests for comparing related amino acid sequences. Cytochrome c and cytochrome
c551. J. Mol. BioI., 61:409-424, 1971.

[66] W. Miller. An algorithm for locating a repeated region. manuscript, 1992.

[67] M.Vingron and P. Argos. Motif recognition and alignment for many sequences by comparison of dot­
matrices. J. Mol. BioI., 218:33-43, 1991.

[68] S.B. Needleman and C.D. Wunsch. A general method applicable to the search for similarities in the
amino acid sequence of two proteins. J. Mol. Bioi., 48:433-443, 1970.

[69] J. Palmer and L. Berbon. Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence.
J. Mol. Evol., 27:87-97, 1988.

[70] S. Pascarella and P. Argos. Analysis of insertion/deletion in proteins. J. Mol. Bioi., 224:461-471,1992.

[71] W.L. Pearson. Searching protein sequence libraries: Comparison of the sensitivity and selectivity of the
Smith-Waterman and FASTA algorithms. Gcnomics, 11:635-650,1991.

[72] W.L. Pearson and W.R. Lipman. Improved tools for biological sequence comparison. Proc. Nat. Acad.
Sci., USA, 85:2444-2448, 1988.

[73] P. Pevzner. Multiple alignment, communication cost, and graph matching. Siam J. on Applied Math.,
5H763-1779,1992.

21



[74] K.R. Popper. The Logic of Scientific Discovery. Hutchinson, London, 1959.

[75] J.K. Mohana Rao. New scoring matrix for amino acid residue exchanges based on residue characteristic
physical parameters. Tnt. J. Pept. Protein Res., 29:276-281, 1987.

[76] J.L. Risler, M.D. Delorme, H. Delacroix, and A. Henaut. Amino acid substitutions in structurally
related proteins. a pattern recognition approach. Determination of a new and efficient scoring matrix.
J. Mol. BioI., 204:1019-1029, 1988.

[77] D. Sankoft'. Minimal mutation trees of sequences. SIAM J. Appl. Math., 28(1):35-42, 1975.

[78J D. Sankoff. Edit distance for genome comparison based on non-local operations. In A. Apostolico,
M. Crochemore, Z. Galil, and U. Manber, editors, Proc. Combinatorial Pattern Matching 92 (Lecture
Notes in Computer Science, Vol. 644 ), pages 121-135, Berlin, 1992. Springer-Verlag.

[79] D. Sankoff and J.B. Kruskal editors. Time Warps, Siring Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison. Addison-Wesley, Reading, MA, U.S.A., 1983.

[80] D. Sankoft', G. Leduc, N. Antoine, B. Paquin, B. Franz Lang, and R. Cedergren. Gene order comparison
for phylogenetic inference: evolution of the mitochondrial genome. Proc. Nat. Acad. Sci., USA,89:6575­
6579, 1992.

[81] J.P. Schmidt. All highest scoring pairs in weighted grid graphs and its application to finding all ap­
proximate repeats in strings. manuscript, 1995.

[82] P.H. Sellers. The theory and computation of evolutionary distances: Pattern recognition. J. of Alg.,
1:359-373,1980.

[83] P.H. Sellers. Pattern recognition in genetic sequences by mismatch density. Bull. Math. Bioi., 46:501­
514, 1984.

[84J R.F. Smith and T.F. Smith. Automatic generation of primary sequence patterns from sets of related
protein sequences. Proc. Nat. Acad. of Sci., USA, 87:118-122, 1990.

[85] T. Smith and M.S. Waterman. Identification of common molecular subsequences. J. Mol. Bioi., 147:195­
197, 1981.

[86] T. Smith, M.S. Waterman, and Burks. The statistical distribution of nucleic acid similarities. Nucleic
Acid Research, 13:645-656, 1985.

[87] D.J. States, W. Gish, and S.F. Altschul. Improved sensitivity of nucleic acid databases searches using
application specific scoring matrices. METHODS: A companion to Method. in Enzim.. , 3:66-70, 1991.

[88] W.R. Taylor. The classification of amino acid conservation. J. of Theor. BioI., 119:205-218,1986.

[891 V.G. Timkovskii. Complexity of common subsequence and supersequence problems and related prob­
lems. Cybernetics, 25(5):565-580, 1990.

[90] M. Vingron and P. Pevzner. Multiple sequence comparison and consistency on multipartite graphs.
manuscript, 1994.

[91] R. von Mises. Probability, Statistics and Truth. MacMillan, New York, 1939.

[92] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Journal of Computational
Biology, to appear, 1993.

[93] S. Watanabe. Knowing and Guessing. Wiley, New York, 1969.

[94] M.S. Waterman. Sequence alignments. In M.S. Waterman, editor, Mathematical Analysis of DNA
Sequences, pages 53-92. CRC, 1989.

[95] M.S. Waterman, L. Gordan, and R. Arratia. Phase transition in sequence matches and nucleic acid
structure. Proc. Natl. Acad. Sci., USA, 84:1239-1243, 1987.

[96] G.A. Wattenson, W.J. Ewens, T.E. Hall, and A. Morgan. The chromosome inversion problem. J. of
Theor. Bioi., 99:1-7, 1982.

22



[97J W.J. Wilbur and D. J. Lipman. The context dependent comparison of biological sequences. SIAM J.
App/. Math., 44:557-567, 1984.

[98] W.J. Wilbur and D.J. Lipman. Rapid similarity searches of nucleic acid and protein data banks. In
Proc. Nat. Acad. Sci. USA 80, pages 726-730, 1983.

23


	Sequence Alignment in Molecular Biology
	Report Number:
	

	tmp.1307986960.pdf.t8dJJ

