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Abstract

In this work we consider the Successive Overrelaxation (SOR) method for the so-
lution of a linear system Az = b, when the matrix 4 has a block p X p partitioned
p—cyclic form and its associated block Jacobi matrix J, is weakly cyclic of index p.
Following the pioneering work by Young and Varga in the 50s many researchers have
considered various cases for the spectrum ¢(J;) and have determined (optimal) values
for the relaxation factor w € (0,2) so that the sOR method converges as fast as pos-
sible. After the most recent work on the hest block p—cyclic repartitioning and that
on the solution of large scale systems arising in queueing network problems in Markov
analysis, the optimization of the convergence of the p—cyclic SOR for more complex
spectra g(J,) has become more demanding. Here we state the "one-point” problem for
the general p—cyclic complex SOR case. The existence and the uniqueness of ils solu-
lion are established by analyzing and developing further the theory of the associated
hypacycloidal curves. Ior the determination of the optimal parameter(s) an algorithm
is presented and a number of illustrative numerical examples are given.

Subject Classifications: AMS(MOS): 65I'10. CR Category: 5.14

Key Words: iterative methods, p—cyclic matrices, successive overrelaxation, hypocycloidal
curves

Running Title: Optimal p-cyclic SOR

'Department of Mathematics, University of Joannina, GR-451 10 Ioannina, Greece.
2The work of this author was supported in part by NSF grant CCR. 86-19817, AFOSR. 91-F49620 and
ARPA grant DAAH04-94-G-0010.




1 Introduction

Block iterative methods are suitable for the solution of large sparse linear systems having
matrices that possess a special structure. In the present work we consider the block p—cyclic

SOR. Given

Az =b, Ae@C™", =,be (1.1)

and the block decomposition

A=D-L-U (1.2)

where D, L and U are nonsingular block diagonal, strictly lower and strictly upper triangular
matrices, respectively, the block SOR. method for any w # 0 is defined as follows

:I:(m+1) :Ewm(m] +c, m:0,1,2,..., (‘[3)

where

Lo:=(D-wl)[(1-w)D+wl), ¢:=wD—wL)b (1.4)

and 2@ ¢ @ arbitrary. It is well known that, for nonsingular linear systems (1.1), SOR
converges iff p(L£,) < 1; also that, for w € IR, w € (0,2) constitutes a necessary condition
for SOR to converge.

For arbitrary matrix coefficient A in (1.1), little is known about the value of the optimal
relaxation factor w that minimizes p(L, ). However, for the case where A has a special block
¢yclic structure more 1s known. In this case we assume, without loss of generality, thal A
has the block form

An 0 0 e Ay
Az A 0 S 0
A= 0 Azxp As;m - 0. (1.5)
0 0 - Appa Ap

With D in (1.2) defined by D = diag (A11, Aaa, ..., Agp), the associated block Jacobi iteration
matrix J, = I — D' A has the form

0 0 0 - B
B, 0 0 - 0

L= 0 B 0 - 0. (1.6)
0 0 - B, 0

Matrices of the form (1.6) were defined by Varga [20] to be weakly cyclic of indez p, and
in this case A in (1.5) is termed block p-cyclic and consistently ordered. For such matrices
Varga [20] proved the relationship



(At w—1)° = wPpP )7 (1.7)
between the eigenvalues g of J, and X of £, generalizing in this way Young’s relationship
for p = 2 [23]. Under the further assumption that all eigenvalues of JI satisfy

0<pP <p(d]) <1,

Young and Varga determined the unique optimal values for the parameter w, denoted (rom
now on by & (see also [21], {24], [1]). Similar results have been obtained (see [10, 12, 13, 22, 5])
for the case where the eigenvalues of J? are nonpositive, that is,

~(CEgP < a0

For the case where the eigenvalues of J? are real the corresponding problem has been solved
very recently [2, 15]. Meanwhile and only for p = 2 the known as the "one-point” problem
that is when o(.J;) is complex and lies in a rectangle, which is symmetric wrt the real and the
imaginary axes and is strictly within the infinite unit strip, was solved in [9, 18]. (Note: The
term ”one-point” comes from the fact that the only information needed to find the optimal
w (@) is the coordinates of the vertex of the rectangle in the first quadrant.) Later, Young
and Eidson [25] obtained the solution to the more general *many-point” problem (see also
[24]). Tt is also important to note here that for the solution of all the arising minimization
problems one uses, directly or indirectly, conformal mapping transformations. Because of
the transformations involved one deals with ellipses for p = 2 and with hypocycloidal curves
of cusped, shortened and stretched type for p > 3 (see, e.g., [14, 22]) which are depicled in
Figure 1.

After the most recent work on the best block p—cyclic repartitioning by Markham, Neu-
mann and Plemmons [11], Pierce, Hadjidimos and Plemmons [16), Eiermann, Niethammer
and Ruttan [2] and Galanis and Hadjidimos [4] and the work on the solution of large scale
systems arising in queueing network problems in Markov analysis, with direct applications
to computer, communication and transportation systems, by Kontovasilis, Plemmons and
Stewart [8] and Hadjidimos and Plemmons [6, 7] the optimization of the convergence of the
p—cyclic SOR for more complex spectra o(J,) has become more demanding.

It is the main objective of this paper to study and solve the more general problem of the
minimization of the spectral radius of the SOR iteration matrix in the case of the ”one-point”
problem for p > 3. The present work is organized as follows. In Section 2 the main problem
is described and various properties of a class of hypocycloidal curves, referred to as ”Aypos”
from now on, associated with the problem of interest are analyzed and studied. Based on
the properties of the hypos through a given point and their associated SOR methods it is
proved in Section 3 that the optimal solution to the “one-point” problem, if it exists, is given
by means of a shortened hypo. In Section 4, the existence and the uniqueness of the solution
to our problem are established. Finally, in Section 5, a numerical algorithm is presented for
the determination of the solution and a number of numerical examples are given.
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Figure 1: Hypocycloidal Curves of all kinds and types for p = 5




2 Analysis and Study of a Class of Hypocycloids

Let ¢(J,) be the spectrum of the Jacobi matrix J, in (1.6). This has a p—cyclic symmetry
about the origin (see [21]). Let P be a point of the complex plane strictly within the (2p)**
open (2p) — ant of it with polar coordinates (r,%), r > 0, —2 <% < 0. (Note: The extreme
casest = 0,1 =0and ¢ = —% can be treated as limiting cases of the ones to be studied.)
Let {e, 8) be the cartesian coordinates of P. There will be

a = rcosy, B = rsing,
b= &, (@ GNP @1

Suppose that either P(r,1) or its symmetric wrt the real axis, P/(r,—%), is an element of
o(Jp). Suppose also that all possible hypos with p "vertices” that are symmetric wrt the real
axis and pass through P contain o(.J,) in the closure of their interior. Qur main problem is
then that of determining, among all the associated convergent block SOR methods in case
such SORs exist, the one that is asymptotically faster. For this, an analysis and a study
of some further properties of the class of all the aforementioned hypos through P must be
made.

The parametric equations of the cartesian coordinates of the points of a hypo, when the
parameter ¢ takes all values in [0, 27), are given by the expressions

z(t) = YZcost + S2cos(p — 1),

y(t) = —g%si'ni + 2‘:_T“siira(;p — 1) (2.2)

(see, e.g., (19] or [22]). In (2.2), b and a are to be called the "real” and the ”imaginary”
semiaxes of the hypo because in the trivial case p = 2 they are nothing but the corresponding
semiaxes of an ellipse. In view of the p—cyclic symmetry of the hypo we will consider that
¢ € [0, Z]. So the associated arc of the hypo will lie in the last (2p) — ant since it is described
in a clockwise fashion when ¢ increases. The real and the imaginary semiaxes of the hypo
will lie then along the real positive semiaxis and the ray with argument —%, respectively.
Let { = # be the value of the parameter corresponding to the point P of a hypo passing
through it with semiaxes b and a (see Fig. 2). From (2.1) and (2.2) it can be obtained that

o= E'Eﬂcosﬂ + bé“ cos(p — 1)9,
B=  —Hlsinf+ Esin(p —1)6, (2.3)

1/2

r= {302+ a2 + (8 — a?)cospt]} .

We begin our analysis with a number of propositions that will be stated and proved. In
order to simplify the notation we will be using 4 ~ B” to denote that the two quantities
or expressions A and B are of the same sign, that is sign{A) = sign(B).

Lemma 2.1 The semiaxes of any hypo passing through P are given by the expressions

b= —g-lacos(2 —1)0+ Bsin(E — 1)0] = ?(T%Eicos((g —1)8 — ),

cos( P:—D)

a= m—)[asin(g ~1)8 — Beos(2 — 1)) = m";)sm((% —1)8 — ).

(2.4)

5




o0y bppog b

aI P(o,f

211

dazt

Figure 2: Hypocycloidal Curves passing through the point P




Proof: From the first two equations of (2.3), solving first for —'2|'— and 22 and then for b and
a, using simple trigonometric identities, the middle expressions in (2. 4) are readily obtained.
Then, from the latter expressions the ones on the right are easily obtained by plugging in

the expressions for @ and § from (2.1). O
Lemma 2.2 For any hypo passing through P there hold

>r>a if 06(—1,0,%),
b {:r:a if 0=—p (2.5)
<r<a if 8€(0,—p).

Proof: In view of the rightmost expressions in (2.4) we easily obtain after some simple
manipulation, where positive common factors are omitted, that b—a ~ sin(#+1). However,
since 0 < 8, —9 < ;7’ and —% <B4+ < 3;;, the relationships between b and a depending on
the values of 8 in (2.5) are obtained. Based on these relationships and the third one in (2.3)
the assertions regarding r in (2.5) readily follow. O

From now on a hypo through P will be termed hypo of type I, or simply hypo I, iff b > a
or, equivalently, iff 8 € {(—, %) It will be termed hypo IT iff b < a or iff 8 € (0, —) (see
Fig. 1). If b = a the hypo is a circle and constitutes a limiting case of both types of hypos I
and II.

Lemma 2.3 There exist uniquely determined cusped hypos I and II through P cor-
responding to ¢ = 8y € (0, 2) and ¢ = 677 € (0, %), respectively. For these hypos there

hold
(p— V)sin(0; + ) — sin((p—1)0; — %) = 0, (26)
(p — V)sin(0r1 + ) + sin{(p— )8 — ) = 0. :

Furthermore, 8; and 8;; satisfy the inequalities
0<On<—p<b<_ (2.7)
P

Proof: The proof will be given for the cusped hypo I since the corresponding proof for the
cusped hypo II is similar. As is known for the cusped hypo Iit is ¢ = "’f‘!b. Hence, using the
expressions from (2.1) and (2.2) one obtains

B8  —(p—1)sint+sin(p— 1)t

tany = a (p — 1)cost + cos(p — 1)t =: (1) (28)

(see also (3.1) of [3]). Differentiating the function K;(t) wrt ¢, omitting positive common
factors and using simple trigonometric identities, we obtain, after some manipulation, that

0K, (t)

T —(p — 2)(1 — cospt). (2.9)

Since t € [0, T] Ki(t) is a strictly decreasing function of ¢ taking values from 0 to —tanZ.
Thus there wﬂl exist a unique value of ¢, denoted by 8; such that K;(f;) = tani. From the
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expression for K;(fr) in (2.8) one can very easily obtain the first equation in {2.6). Also, in
view of Lemma 2.2 and the concept of a hypo I the validity of the two rightmost inequalities
in (2.7) is readily established. For the cusped hypo IT we simply note that the corresponding
to (2.8) relationships are

B (p—1)sint + sin(p— 1)t

bans) = a —(p — 1)cost + cos(p— 1)t = Ku(t) (2.10)

(see also (3.1%) of [3]). O

Having done the analysis so far we are now able to prove that the semiaxes 4 and e of
the hypos through P are continuous functions of 8 € (0, Z). Moreover, they have derivatives
writ § that are of constant sign in specified subintervals of #. The latter will establish the

slrictly monotonic behavior of each of the three elements (variables) a, b and # in terms of
cither of the others.

For this, we define the [unctions F' and G below by using the middle expressions in (2.4}

F:=F(b,0)= ccos(2—1)0+ Bsin(E — 1)8 — beos() = 0, (2.11)
G :=G(e,0) = asin(f—1)8 — feos(Z —1)8 — asin(%g) = 0. ’
First, we work with the function #, differentiate it wri b and then wrt 6. So, we get
F = —cos(%) <0, ¥0e/(0, E), (2.12)
D

and by simple manipulation, using the middle expression for 4 from (2.4) and the expressions
for & and 8 from (2.1), we obtain that

Fy = B(§~-1cos(§ —1)0 —a(§ - 1)sin(§ - 1)0 + 2hsin(Z)
~ (p = Vpsin(0 4 %)+ sin((p — 1)0 — 9) = k{8, ).

However, from (2.5) for hypos I-we have that both sines in k(f,%) in (2.13) are positive.
Thus

(2.13)

Fj>0, Ve (—;b,%). (2.14)
On the other hand, for hypos I, we readily obtain from (2.13) that

ok

%~ cos(8 + ) + cos((p—1)0 — %) >0, V0e(0,—). (2.15)
Therefore, k strictly increases with ¢ € (0,—). Since, from (2.6), &(#;7,%) = 0, k takes
on only negative values in the previous interval of 8. Consequently, we have proved that the

function k(8,) or, equivalently, Fé satisfies the relationships

<0, V8¢ (0,91;),
F =0, 8=0p, (2.16)
>0, Vée (91[,—1,b).
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Relationships (2.14) and (2.16) can be writfen together as follows:

< 0, Ve (0, 9[1),
Fy =0, =20, (2.17)
>0, VO€ {0, 1)

where the case § = — has been incorporated since, in view of (2.13), the corresponding
value of Iy is strictly positive.

Let now by, ar and bys, arr denote the real and the imaginary semiaxes of the cusped
hypos I and II, respectively (see Fig. 2). Then, according to the Implicit Function Theorem
(see, e.g., Thm 14.1 of [17]) we will have the following statement.

Lemma 2.4 For # increasing in (0, 8;;], b strictly decreases from rcosy to by;. For 8
increasing in [fry, %), b strictly increases from by Lo oo.
Proof: By virtue of the Implicit Function Theorem, using (2.12) and (2.17), it can be
obtained that

%
% = —Ff <0, Yl0e (0,911) (2.18)
and also that 5 P
b 0 T
— = - 05, —). )
30 F;,)U, VGE( ”,p) (219)

The limiting cases for 8 = 8;; and # = 0, ? can be readily obtained from (2.17) and by using
continuity arguments, respectively. O

Working now with the function G in (2.11) and following a similar analysis one can end
up with similar results regarding the behavior of the imaginary semiaxis a as a function of 0.
Some of the intermediate results and final conclusions and a lemma (Lemma 2.5) analogous
to Lemma 2.4 are given below without any further explanations. Thus we have:

¢ ., pd T
G, = —sm(E) <0, V#e(0, ;), (2.20)
Gy ~ (p— 1)sin(0 + ) = sin{(p — 1)0 — ) = (6, ), (2.21)

and

=0, 0=4, (2.22)

<0, V&e(0,8;)),
G.f
>0, YOe(05,7%)

Lemma 2.5 For # increasing in (0, 8/], e strictly decreases from co to a;. For @ increasing
in [01, ), a strictly increases [rom a; to reos(Z +¢).




Table 1: Behavior of the semiaxes b and a as functions of &
7 0 011 — 01
b reos N\, brr / r / b /
a ore) AN ary N r . ar / reos(Z + 1)
Type ol Stretch Cusp Short Circle Short Cusp Stretch
Hypo i} 1I 1I I I I

B e

The behavior of the semiaxes b and a as functions of & together with the kind and type
of the corresponding hypo are given in the self-explained Table 1. Some names of the hypos
are given in an abbreviated form.

Remarks: From Lemmas 2.4, 2.5 and Table 1 one can readily draw the following con-
clusions: i) For each b € (br1,7cos?p) there are two hypos passing through the given point
P. One is a stretched of type II while the other is a shortened II. Their corresponding &'s
belong to the intervals (0, 0;;) and (07, —1)), respectively, and can be uniquely determined
from the first equations in (2.4). The corresponding values of their a’s are in the intervals
(arr,o0) and (r,arr), respectively, and, having found the #'s, can be determined from the
second equations in (2.4). ii) Ior each « € (qy, rcos(g— + 1)) there are also two hypos of type
I, a shortened and a stretched one, passing through P. Their corresponding §'s lie in the
intervals (—1,8;) and (0, -:—), and can be uniquely determined from the second equations in
(2.4) while their ¥'s are in the intervals [r, bs) and (bs,0) and can be determined [rom the
fitst equations in (2.4). iii) For any other possible value of b the hypo through P is a unique
shortened one. It is of type II for b € (byy,7) and of type I for b € (r, b;).

Based on the Remarks made previously and having always in mind the conclusions of
Lemmas 2.4 and 2.5 as well as of Table 1, one notes that if one restricts oneself to considering
only one kind of hypos through P, either shortened or stretched, then there is a one-to-one
correspondence between any two of the three elements (variables) b, a and & of them so that
any one of them can be given as a function of either of the others.

As is known from the analysis of convergent p—cyclic SOR methods, associated with
shortened and stretched hypos, the elements thal play the most important role are the two
semiaxes of the hypos (see [2] and [15], respectively). In the case of shortened hypos the
two semiaxes are directly involved in the formulas that give the corresponding parameters
of the SOR. However, in the case of the stretched hypos the parameters that are directly
involved are for hypos I the imaginary semiaxis, the intercept on the real semiaxis, denoted
from now on by b", and the value of the parameter ¢ that corresponds to &%, denoted by 7,
and for hypos Il the real semiaxis, the intercept on the imaginary semiaxis ¢™ and the value
of t = 0" corresponding to a” (see Fig. 2).

For stretched hypos I, not necessarily passing through P, with semiaxes b and a we have
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from (2.2) that
b= Meeosft + & =2cos(p — 1)8%,

0= —+—smﬂ T.sm( —1)8". (2.23)

In view of (2.23), assuming that the hypo in question has intercept 4" on the real semiaxis, in
other words it passes through P=(b",0), it is implied, after some simple manipulation, that

tan
E: -,ta_y;,(—[-—-zl])_g_-SI(g)_SI’

_ sm(ﬂ—)

e = wmE-nr =) =

(2.24)

[

A slatement very useful in the subsequent analysis based on the functions s; and s,, defined
in (2.24), is given in the sequel. Part of it can also be found in [15].

Lemma 2.6: Let P*(b*,0} be the closest to the origin point of intersection of a stretched
hypo I, of semiaxes b and a, with the real semiaxis. The function s; defined in (2.24) is a
strictly increasing function of 8” € (0, ) taking values in the interval (;%,00). The function

82 is a strictly decreasing function of 0" € (0, %) taking values in the mterval (==, 55)- On

the other hand, for a fixed a, b strictly increases from a-% to co while 5" strictly decreases

from a-%; to Si=. Their common limiting value is assumed for § = 0 and corresponds to

the cusped hypo I
Proof: Differentiate s; wri to 8 € (0, 2 %) Alter some little algebra we take

051

T ~ psin(p — 2)8" — (p — 2)sinpf™ = (2.25)

Differentiating now s] wrt 8 we have %L ~ cos(p—2)0" —cospd™ > 0. Since s{(0) = 0 and &}
strictly increases in [0, Z], it is concluded that s{ is strictly positive implying, in turn, that s
1s strictly increasing. The end points of the interval for the values of s, are readily obtained by
considering the limits of s; as #* tends to 0 and %, respectively. For the function s;, the prool
is similar and is not given here. (See, e.g., Lemma 1 of [15]). For a fixed @, the monotonic
behavior of b and & and their common limiting value as 6* tends to 0 are trivially verified. O

Remarks: i) In Lemma 2.6, for a given ratio f € (;5—, oo) a family of stretched hypos 1
are defined for which #* exists in (0, %) and is unigue. This unique value of 8 is shared by
all the members of the family. ii) If the stretched hypo I of Lemma 2.6 passes through P

then 0 < 07 < 8 since the point P precedes P on the hypo.

An analogous analysis for stretched hypos II reveals that the corresponding point of
intersection, P*(a", —%), with intercept ¢” on the imaginary semiaxis, will satisfy the rela-

i1




tionships
z tan{ Z+ E_1) -
Pl G (Zp_ﬂ_: ) ):533(9)5531
tan(5-)
cos{%.)

T = cos(-';--!-(‘;- - 1)3') =: 54(9 ) = 54.

The following statement analogous to Lemma 2.6 is given without proof.

Lemma 2.7: Lel P*(a®,—Z) be the closest to the origin point of intersection of a
stretched hypo II, of semiaxes b and a, with the imaginary semiaxis. The function s3 defined
in (2.26) is a strictly decreasing function of 8™ € (0, %) laking values in the interval (J%;, 00).
The function s, is a strictly increasing function of 8™ € (0, g) taking values in the interval
(ML%, -£5)- On the other hand, for a fixed b, a strictly increases from b-%; to co while a”

b

cosZ "

striclly decreases from 422 to Their common limiting value is assumed for §” = T and

corresponds to the cusped hypo 1.

Remarks analogous to the ones after Lemma 2.6 can be made. This time, however, il Lthe
stretched hypo II passes through P it will be 8 <87 < 2.

To close this section we give below one more stalement thal will be used in Section 3. It
1s closely related to the two previous Lemmas.

Lemma 2.8: The function

sin(p — 18"
sind”

-

s :=s(6") , 0" €0, (2.27)
P

is a strictly decreasing function of 0° with its extreme values being p — 1 and 1, respectively.

Proof: Ior the strictly decreasing character of s, see Lemma 3 of [15]). Its extreme values

are readily found. Note that the value at the left end of the interval is a limiting one. D

3 Convergent SORs and Associated Hypocycloids

From the convergence SOR theory and the analysis so far it 1s known that for 1 < by < b
there is no hypo through P of any kind (cusped [20, 22, 5], shortened [2], or stretched [15])
that is associated with a convergent SOR. On the other hand, for &;; < 1 < by there are at
least shortened hypos II that lead to convergent SORs (see [2]) while for by < & < 1 all
kinds and types ol hypos may lead to convergent SORs .

The elements of a convergent SOR, namely its relaxation factor w and its spectral radius

1
P(‘Cw) = ??_ps 1 <q, (31)
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are related to the real and the imaginary semiaxes of the associated hypo through the
relationships below

—1p?  b—
1 b+ a, (w—1)n _ ¢ (3.2)
w1 2 w1 2

For a given point P, defined in the beginning of Section 2, let a € (ay, reos($ +9)) and
bst, 0, 0" and 8" be the real semiaxis, the value of the parameter ¢ at P, the intercepl on
the real semiaxis and the value of £ at P~(b",0), respectively, of the stretched hypo I with
imaginary semiaxis a. Let also &,;, and 8,5 be the real semiaxis and the value of ¢ at P of
the shoriened hypo I through P with imaginary semiaxis . For the SOR. that is associated
with the previously defined stretched hypo to be convergent there must hold

"
o 2<a<{:vcc's~— and b < cos(7)

P P cos(§ — 1)0" (33)

(see Thm da of [15]). The first set of inequalities in (3.3) are satisfied due to the fact that
a € (ay, rcos(% + 1)) and the theory developed so far. In view of (2.24), however, the second
inequality holds Zff
bst <1 (34)
or, equivalently, ff
tan(Z —1)0"
tan(2-)

Under the assumption (3.4), or its equivalent (3.5), it is obvious that

(3.5)

a <

cos(E +
r<r¥<bm<b‘r<bsr<l
cos’;

and therefore the SOR method associated with the shortened hypo with semiaxes &, and «
does also converge.

Together with the two hypos above (stretched and shortened) that lead to convergent
SORs we also consider the cusped hypo I which shares with the two previous hypos their
imaginary semiaxis a. This cusped hypo will have a real semiaxis b = a—*"— It is clear that
both &* and b,, will be strictly less than b = aJ_’— However, in view of (3 5), (2.24) also
gives

tan(g —1)0" tan(2 - 1) p—2
< — < . 2 = . :
a tan(’%) = supy €[0,2) tan(“%) p (3 6)

2
associated with a convergent SOR. Note that for a fixed and 8~ varying to produce a conver-

gent SOR associated with a stretched hypo I, the latter cannot take all the values in [0, "]

Consequently, § = ek < 1 and the cusped hypo I with semiaxes b = az%; and ¢ is also

but only those in [0, 8" ), where §* is the unique value of 8 that makes the strict inequality
in (3.6) be an equality.
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Let &y, &syn and &, denote the (optimal) relaxation factors of the stretched, shortened
and cusped hypos that share their imaginary semiaxis a € (ay, rcos(% +4)) and the first two
pass through P. The respective (optimal) spectral radii of the three associated SORs will
be given by the following expressions (see [2, 20, 22, 5, 15)):

ep,) = P24 D5, -1y = [Catelg, @)
- =—pp ::} — = P acﬁ P
ALg) = i@ = 1) [(p_g) A (3.8)
and )
’O(E‘:’“) - Smgzn—ﬂ'l) O —1) = [Smsmpﬁ w'“]p' (3.9)

To prove one of the main results of this section we need the following statement whose
proof will only be outlined.

Lemma 3.1 Consider the point P and the shortened and stretched hypos I with a
common imaginary semiaxis a € (ar, rcos(s + 1)) that pass through it. Let bs, by be their
real semiaxes and b = a—L be the correspondmg semiaxis of the cusped hypo 1. Suppose
that the condition (3.4) i 1s sat1sﬁed Then the optimal relaxation factors of the associated
(convergent) SORs will be in the following order of magnitude

1 < g <D <@g < 2. (3.10)

Proof: The inequalities in (3.10) and the proofs of our main assertions almost duplicate
the corresponding ones in Thms 4a and 7a of [15] but refer to quite different hypos. The
inequalitics 1 < @, < 2 trivially hold because of the middle expressions in (3.7) and
(3.9) and in view of the convergence of the associated SOR method. The second inequality
from the left can be easily verified to be true in a way similar to that in [15] with the only
difference being that in our case a is fixed and b,y varies instead of the other way around.
Very briefly, differentiate the two rightmost members of the equation in (3.7) wrt to bg,

next replace the expression [Mfﬁsh]p a.ppea.ring in the resulting equation by using the

second expression in (3.7) and finally solve for ZZea ab to obtain

ODsp  Den(@eh — 1)[pber — (p — 2)a]
B = (p= DowlB—a®) (3.11)

To prove the second inequality from the right we consider the function

fi= (@, 07) = [fi—ns(—z;;—wb'aﬂ]p-W(@ ~1) (3.12)
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defined for any 8" ¢ [0,8%). If we replace 5* from (2.24) and use the function s in (2.27),
(3.12) can be rewritten as

f = f(@a,0%) = aiDa| (Dot — 1)- (3.13)

Note that from Lemma 2.8, s strictly decreases while -2 strictly increases in [0,6%). Take
any 8 € (0,67). Then it will be
5 ~ =] P (& - | F
[ a2u0)]" < [ Eadu(e")

(3.14)
= s(07)(©:(67) — 1) < s(0)(@x1(87) — 1)

and since s(0) = limg-_ ,s(8") = p — 1, it is proved that f(@.(6"),0) < 0. On the other
hand, f(1,0) > 0, f(&.,0) = 0 and f(1 + p+]'—'0) < 0. It is therefore concluded that
@s{6")(> 1) lies strictly outside the interval [1,&,] and therefore the second inequality from

the right holds true. This concludes the proof of the present lemma. O
Having obtained the result (3.10) of Lemma 3.1 one can prove the following statemnent.
Theorem 3.2: Under the assumptions of Lemma 3.1 there holds

p(Ly,,) <plLy,) (<1). (3.15)

Proof: In view of (3.10), to prove (3.15) it suffices to prove that the bases of the powers in
(3.7) and (3.9) without the w factors satisfy a similar inequality. Namely, that

(bsp + ) < sm(p - 1.)9" -
2 sinpf

(3.16)

For this we substitute b,, and e of the shortened hypo in (3.16) by using the rightmost
expressions in (2.4). Next, for 5" and a for the stretched hypo in (3.16) first we use the
second equation of (2.24) and then the rightmost one in (2.4), recalling that a is the same
regardless of the kind of hypo we are considering. Therefore we can use 0, in the place of
85 in the expression for a. So, after some little algebra, (3.16) gives equivalently that

sin{(p — 1)0s — ¥) < sin(p—1)07

2003(*‘%-'&)32'71((12’- — 1)1 — ) 2cos(-"gi)sin(§ — 1)6"',

(3.17)

or

stn(p — 1)6" < sin((p —1)8a — )
sind” sin(fsh + )

However, in view of Lemma 2.8 the left hand side of (3.18} is strictly less than p — 1. On
the other hand, by virtue of the first inequality of (2.22) the function

I(Bsh: Zlb) = —Sin((p - l)gsh - 1!’) + (p - I)Sin(gsh + 1!’), esh < (01 9[);

(3.18)
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defined in (2.21), takes on strictly negative values. This implies that the right hand side of
(3.18) is strictly greater than p—1. The two previous results, regarding the values of the two
members of the inequality (3.18) wrt the number p — 1, effectively show that the inequality
(3.18) is a valid one and so is (3.15). O

Similarly, statements analogous to Lemma 3.1 and Thm 3.2 can be stated and proved
for stretched hypos II that pass through the point P and are associated with convergent
SOR methods. We simply note that one uses the theory developed so far and also the cor-
responding results of {15] in a similar way. Here we only present the main results pertaining
to stretched hypos II. IFor this we must bear in mind that we consider the point P again and
a stretched hypo II trough P that is associated with a convergent SOR. Let b € (b1, reos),
its real semiaxis, be fixed and let a4 be its imaginary semiaxis with intercept a™ on it. Let §~
be the value of the parameter ¢ at P~(a”, —%). Consider also the shortened hypo II through
P, with the same real semiaxis b, and imaginary semiaxis a., as well as the cusped hypo II
with real semiaxis b. Using the same notation to denote the optimal relaxation factors and
the spectral radii of the SORs associated with the three hypos it can be proved that:

0 <y W < logy < 1 (3.19)

and
p(Ls,,) <p(Ly,) (<1). (3.20)

The previous discussion and the identical resulls (3.15) and (3.20) lead us to the following
general conclusion which we give in the form of a theorem.

Theorem 3.3: For any stretched hypo that passes through the point P and is associ-
ated with a convergent SOR. method there is a unique shortened hypo of the same type (I
or I[} that passes through P, shares with the stretched hypo one of the semiaxes (a or &,
respectively) and is associated with a faster convergent SOR method.

In view of Thm 3.3, it 1s obvious that in order to solve the one-point problem described
in Sections 2 and 3 it suffices to find among all the shortened hypos that pass through P
and are associated with convergent SORs, if any, the one that corresponds to the (asymptot-
ically) fastest SOR. The analysis, the study and the determination of the optimal one-point
shortened hypo, in the sense just explained, will be done in the next section.

4 Optimal One-Point Shortened Hypocycloid

We begin our analysis by considering the point P as in the two previous sections and all
the shortened hypos through it as well as the two cusped ones. From Lemmas 2.4, 2.5 and
Table 1 it is clear that for & € (0;;,0;) the semiaxes b and a of the class of all the hypos
we consider are differentiable functions of #. Also, a is differentiable wri b and vice versa
in their respective intervals. In the sequel the analysis is facilitated if one considers all the
elements (parameters) of the hypos of interest as differentiable functions of &.
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For the various derivatives involved analytic expressions can be found which are of con-
stant sign. These expressions are presented in a series of lemmas that follow.

Lemma 4.1: The derivative of a wri b € (by, b1) is a continuous function of & that takes
on strictly negative values. It is given by the expression
D= da _ [pa—(p—Q)b]

da (2
=3 = (o 2e_ g3 <o (4.1)

Proof: Differentiating each of the first two equations in (2.3) wrt b, solving each one for %‘—g

and then equating the two equivalent expressions one obtains (4.1). From (4.1) it is directly
concluded that D is negative since for shortened hypos there holds : € ("—’;—2, ;f—z) 0
Note: It is noted that from (4.1) it can be readily obtained that

lim D = -—cotz(%). (4.2)

Lemma 4.2: The derivative of # wrt b € (b;y, b1) is a continuous function of & that takes
on strictly positive values. It is given by the following expression

g
df 2cot(%)
E = [pb — (P — 2)(1] > (0. (43)
Proof: Considering either of the two expressions for % found during the proof of Lemma

4.1 and plugging in it the expression for D from (4.1), (4.3) is obtained. Obviously, % is

strictly positive. O

Lemma 4.3: The second derivative of a (or the derivative of D) wri b & (b, 1) is
a continuous function of b, is given by the expression below and takes on strictly positive
values.

D da_ 2cot?(%)
db ~ di2  [pb—(p—2)

P {2(;0— 1)(e —bD)+ plpa — (p—2)b][1 + cotz(p?g)]} > 0. (4.4)

Proof: Differentiating D in (4.1) and replacing % from (4.3) one obtains the expression in
(4.4). Recalling from (4.1), that D < 0 and also that £ € (P;—z, -25), both terms in the braces
in the expression just found are positive. This proves the second part of our statement. O
As is known for a shortened hypo, which is a member of the class we have been studying
so far, to be associated with a convergent SOR method the point (1,0) of the complex plane
must not belong to the closure of the interior of the hypo in question. This suggests that
the real semiaxis b of the hypo considered must be strictly less than 1. Consequently, if

brr < 1 < byorif by < by < 1 all hypos with b € (b77,1) in the former case and with
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b € (by1,b1] in the latter one will be associated with convergent SORs.

Recalling the relationships (3.1) and (3.2) of a convergent SOR, we introduce the symbol
z to denote either of the two equivalent quantities

1 L
z:===pr(L,). (4.5)
Ui
On climination of w from the equations in (3.2) the polynomial equation in = below
d=¢(z)=(b—a)a"—2z+b+a=0 (4.6)

is obtained. It is readily checked that ¢(0) = b+ a > 0 and ¢(1) = 2(b — 1) < 0, since the
only case of convergence is when b < 1. By Descartes’ rule of signs there is a unique real
positive root z of (4.6) in (0,1), let it be denoted by z, whose p* power gives the spectral
radius of the convergent SOR iteration matrix. The aforementioned rool zg is a continuous
function of the coefficients of the polynomial equation (1.6). However, recalling that for the
class of the hypos through P, a is a continuous function of & it is implied that zg is also a
continuous [unction of b (or of a or even of 0) only. To find intervals, different from (b;;,1)
and (byr, b7) considered previously, in which zgy also lies we note that ¢(b) = (b — a)(6” — 1),
¢(a) = (b—a)(a” +1) and ¢(*E2) = (b— a)(%42)?. Based on the values just obtained we can
state the following lemma.

Lemma 4.4: Under the assumption & < 1, the unique real positive root zo € (0,1) of
equation (4.6) lies in the [ollowing intervals, respectively,

€ (b,*2), if b<a(< ),
Zo { = M2 if b=a(<1), (4.7)
c(Be8), if a<b(<1)

(Note: From (4.7) It becomes clear that in the first case o is given by means of a shortened
hypo II, in the second by a circle and in the third one by a shortened hypo I.)

In the case of a convergent SOR consider the continuous function zq = zo(¥) defined on
the closed interval [b;;, min{1, b;}]. Obviously, for any & in this interval, except for its right
endpoint when it is 1, the corresponding shortened hypo through P will be associated with
a convergent SOR. In what follows we examine the behavior of the function g in the above
interval in the neighborhoods of brr and min{l,b;}. For this we differentiate (4.6) wri b and
solve for %’1 to get

dzo _ (1—D)zf+(1+ D)
db~  2—p(b—a)al’

Since z € (0,1), § € ("’;—2, ;;"—2) and b < 1, is readily checked that 2 — p(b — a)zi™" > 0.
Therefore

(4.8)

dzo

20 (14 28) + (1 3)D. (49)
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However, from (4.1) we have that for b — bf;, 8 — 6}; and D — —o0. On the other hand, if
b; < 1 then for b — b7, # — 87 and D — 0~. In the two cases just examined we will have

dz
bﬁﬂgfw-ﬂ%bﬁggf~1+mmmn>o) (4.10)
Note that in the case min{l,b;} = 1 since for b — 1~ the corresponding SOR. converges it is
implied that zp(b) strictly increases in the neighborhood of 1. In concluding, (4.10) and the
note just made give as a consequence the following statement which establishes the existence
of a minimum point in the interval considered. Thus we have:

Theorem 4.5: Suppose that by < 1. The function zp = zo(d), the root of (4.6) in (0,1)
defined on [brr,min{1,b;:}], strictly decreases in a right neighborhood of &;; and strictly
increases in a left neighborhood of min{1, by}. It therefore possesses at least one minimum
point in the corresponding open interval.

To find the minimum point(s) of Thm 4.5 we have first to find the points in the above
interval at which %‘1 = 0. However, from (4.8), setting %ﬂ = 0, it is obtained

D+1

Py (4.11)

zh =

In the right hand side of the above equation we replace D using (4.1) and then in the
expression obtained we replace b and @ using the rightmost expressions in (2.4). So after
some algebraic manipulation involving simple trigonometric transformations we take

o = sin((p — 1)0 — )cospl — (p — 1}sin(0 + )
O sin((p—1)8 — ¥) — (p— 1)sin(6 + 1p)cospf”
Since z¢ € (0,1) must be a root of equation (4.6) the value of il just obtained must verify

this equation. Thus, if we use (4.12) and the rightmost expressions in (2.4) for b and a in
(4.6), we have that

(4.12)

[T‘ sinpg—psin(€+l,b)cos((p — 1)9—1,0) ]P
ain((p - 1)9—¢)—(p—1)sin(9+¢)coapg
_ sl'n((p - 1)9—1}1)1:05;}9—(;0 — 1)afn(9+1,b)
- .sin((p - 1)9—1&}—(1‘9 — l)sin(9+'ﬁ)cosp9
from which a value of & € (#r,8;) can be obtained. Therefore, we have effectively proved
the following statement.

(4.13)

Theorem 4.6: Suppose that by; < 1 and let # denote f1,1{ by <1, otherwise denote 81,0,
the value of # at P of the hypo through the points (1,0) and P. If for the real positive root

zo € (0,1) of (4.6), 22 vanishes for some b = b € (brr,min{l,b;}) (vesp. 0 = 8 € (01,0)),

-

then £ = zo(b) = zo(0) is given by (4.12), where § € (811,0) is a root of (4.13).

Notes: i) For the limiting cases ) = 0 and ¢ = —2, the corresponding values 0 = 0 and
§ = Z are recovered from (4.13) but one has first to get rid of the denominators and then
apply (4.13) in the interval (87,8, = [0, Z]. After this, one can readily obtain the very
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simple expessions for Ehand @ from the limiting cases of the formulas in (2.4) and then use
(4.6) to obtain Z = z¢(b). ii) One has to have in mind and apply the previous note even in
cases where i is very close to 0 or to —i:; to avod possible instabilities due to round-off errors.

In the following theorem we establish the uniqueness of the minimum point.

Theorem 4.7: Under the assumptions of Thm 4.6, the real positive root 29 € (0,1) of
equation (4.6), as a function of b € [byy, min{l,b;}] (resp. & € (8,;,0)), attains a minimum
al some unique value & = b (resp. § = ) strictly in the interior of the corresponding interval.
This value of zo, = zo(b) = :r.g(a), can be expressed explicitly in terms of § by (4.12) and
implicitly in terms of either bora.

Proof: To prove our assertion we take the second derivative of mp wrt b (522 si22) and find its
value at the poinl z; at which 5‘-’5'1 = 0 For this, first we differentiate %2 in (4.8), next omil
the positive denominator, then set = 0 and, finally, omit again 0bv10us positive factors.
Thus, we obtain that
d2330 dD
ErA T

which holds in view of (4.4). If there were more than one points b at which %2 = 0, let b,
and b, be any two consecutive ones, then by Rolle’s Theorem there would be an intermediate

point b € (by,b;) at which %:_;& = 0. But then at least at one ol the two points b, or b; we

> 0, (4.14)

would have either %ﬁﬂ =0or d:b’, < 0. This, however, contradicts the inequality in (4.14)

which completes the proof. O

As an immediate consequence of the last three theorems we can have the following one
whose proof 15 obvious.

Theorem 4.8: Under the assumptions of Thms 4.5, 4.6, and 4.7, the functlon g =
zo(d) (= zo(8)) is a strictly decreasing function of b (resp. 8) in [b”,b] Q‘esp [01,0]) and
a strictly increasing one in [b,min{1,b;}] (resp. [0,8]), where & (resp. &) is the value of
b (resp. #) at which the minimum occurs. Moreover, the value of 8 is given as the unique
root of (4.13) in the interval (1, 8) while the value Z of the minimum attained is then given
by (4.12).

Based on the theory so far we would like to comment on the common region in the
last (2p) — ant enclosed by all the shortened (and cusped) hypos through P. Since, as a
by-product of the analysis done, one can show that a shortened hypo through P cannot
have more than one common point with either cusped hypo I or II through P in the last
(2p) — ant, the aforementioned common region is the curvilinear quadrilateral with vertices
0(0,0}, P,:,H(bH,O), P(r,®) and P,,(ar,— ) Its two sides OF;,, and P,,O are straight line
segments while the other two are the arcs Pg,HP and PF,, of the two cusped hypos of types
II and 1, respectively. Clearly, the optimal solution to the one-point problem of this section
is also optimal if all the elements of o(J;,) in the last and the first (2p) — ants lie in the union
of the curvilinear quadrilateral OF, ,PF,, and its symmetric one wri the real axis.

We close this section with the following remark regarding the case p = 2.

Remark: The theory of this paper holds also in the case p = 2. We have confirmed
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it both theoretically and computationally. Very briefly, for p = 2 the parametric equations
(2.2) give the corresponding ones of an ellipse. Obviously, to have convergent SORs (b < 1)
the polar coordinates of the point P must satisfy rcosip < 1. Then, following step by step
the theory developed we can verify that the optimal value of p(Ly,) is given by the expression
in (4.12), where @ is the unique solution of (4.13) in (0, i) It is noted that the cusped hypo
I corresponds to 8; = % with by = oo, ¢y = —rsiny and the ellipse in question becomes a
pair of straight lines parallel to the real axis. The cusped hypo II corresponds to 857 = 0
with by = rcosy), ajr = oo and is a similar pair parallel to the imaginary axis. So, we
can consider the ellipses through P as shortened hypos and the elements of their associated
optimal SORs can be obtained by our theory or by the theory described in [24]. There are
also two limiting cases corresponding to % = 0 and 9 = —7 that give degenerate ellipses
(double straight line segments) along the real and the imaginary axes, with b=7r, ¢ = 0
and b = 0, a = r, respectively. Using (4.6), (4.5), and either of (3.2), the well-known op-
timal SOR formulas and results associated with the degenerate ellipses are readily recovered.

5 Algorithm and Numerical Examples

Having completed the analysis in the previous sections we can now give in pseudocode an
algorithm which will allow us to solve computationally the one-point problem in the general
case.

THE ALGORITHM
Given the (polar) coordinates of the point P as in Sections 2, 3 and 4;

Determine 8; from (2.10) and then b;; from (2.4);
if by > 1 then

NO CONVERGENT SOR EXISTS; stop;
endif; N
Determine @ := 0; from (2.8) and then &; from (2.4);
if & > 1 then

Determine 8¢ gy from (2.4) by setting b = 1; Set §:= (1,005
endif; N
Determine 8 € (8;1,8) from (4.13);
Determine Z from (4.12);
Determine b and @ using 8 {rom (2.4);
Determine & := ﬁ%, p(Lg) =77

end of ALGORITHM;

The algorithm just presented is applied to a number of numerical examples for the values
of p = 3,4,5. For each p three different cases have been worked out. All the input and
the output information is presented in Table 2. In the very first case, p = 3, P(0.5, —35)
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it is found that by; < by < 1 so that for all & € [y, b5} all shortened and cusped hypos
through P lead to convergent SORs. For the optimal hypo it is b > & (hypo I) that gives
@ > 1 (see (3.2)). In the second case, p = 3, P(1.0,—Z), it is byy < 1 < by hence for
all b € [byr,1) all shortened (and cusped IT) hypos through P are associated with conver-
gent SORs. Since b < @ (hypo II), @ < 1. Finally, in the third case p = 3, P(1.5,—5%),
it is by > 1 so that no convergent SOR, yielded by a shortened {(cusped) hypo through P,
can exist. All the other examples illustrated in Table 2 can be explained in an analogous way.

Table 2: Numerical examples

p|  P(r,¥) bty b; arg af b i & o(L3)
P{0.5, —-%) ABNT8Y4 9881485 1.442350 .3293827 5380996 .3995527 1.015969 10806300
(1.0, —-%) 0615669 1.976207 2884700 6587655 .9699653 1.109681 .8251402 .94630350
P15, -—-%} 1.442350 NO CONVERGENT SOR EXISTS
{0.5,-%) | 4237433 1.271230 1.271230 4237433 .4882581 .5133052 .99683889 .12441870
3| P(1.0,—%) | 8474866 2.542460 2.512459 8474866 .B764933 1.345895 .8326846 .79215710
P(1.5, %) [ 1.271230 NO CONVERGENT SOR EXISTS
P{0.5,-%) | 3293827 1.442351 .9881483 .4807834 .3822809 _55518R8 .0820156 .09752972
P(1.0,—=) | 6387655 2.884701 1.976207 .9615668 .7048243 1.232513 .8486724 .55557940
P(1.5,~-2%) | 0881483 4.327052 2.964445 1.442350 9884788 2.81174% 5246571 .99075340

P(0.5,—3Z) | .3806604 9742557 .7613200 .4871286 .1178384 5367081 .0936990 .05059268
4 | P(1.0,—-3%) | .7613208 1.948511 1.522642 .9742572 .7876535 1.168118 .88B8338 .57108530
(1.5, —:lfﬁ—; 1.141981 NO CONVERGENT S50 EXISTS
P(0.5,—32) | 080800 .8172027 .G801333 .4903212 4360032 .5274884 .0975731 .02575377
5| P(1.0,—-22) | 8161599 1634405 1.360267 .9806423 .8342583 1.131831 .9122255 .57993250
P(1.5, —-55) | 1.224240 NO CONVERGENT SOR EXISTS

We conclude the present work by noting the various difficult issues one had to address
and resolve for the solution of the "one-point” problem to be accomplished. However, the
solution of this problem may undoubtedly constitute the basis for one to attack the more
challenging and the much more complicated “two-point and "many-point” problems, in the
general case, which still remain open.
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