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Abstract

Relocation adjusts machine instructions to account for changes in the
locations either of the instructions themselves or of external symbols to
which they refer. Standard linkers implement a finite set of relocation
transformations, suitable for a single architecture. These transformations
are eIlumerated, named, and engraved in a machine-dependent objcct
file format, and linkers must recognize them by name. These names and
their associated transformations are an unnecessary source of machine
dependence.

The New Jersey Machine-Code Toolkit is an application generator. It
helps programmers create applications that manipulate machine code, in
cluding linkers. Guided by a short instruction-set specificatioD, the toolkit
generates the bit-manipulating code. Instructions are described by con
structors, which denote functions mapping lists of operands to instruc
tions' binary representations. Any operand can be designated as ''relocat
able, M meaning that the operand's value need not be known at the time
the instruction is encoded. For instructions with relocatablc operands,
the toolkit computes relocating transformations. Tool writers can use the
toolkit to create machine-independent software that relocates machine in
structions. mld, a retargetable linker built with the toolkit, needs only
20 lines of C code for relocation, and that code is machine-independent.

The toolkit discovers relocating transformations by currying encoding
functions. An attempt to encode a rclocatable operand results in the
creation of a closure. The closure can be applied when the values of
the relocatable operands become known. Currying provides a general,
machine-independent method of relocation.

Currying rewrites a single A-term into two nested A-terms. The stan
dard implementation has the first Aallocate a closure and store therein its
operands and a pointer to the second A. Using this simple strategy in the
toolkit means that, when it builds an application, the toolkit generates
code for many different inner A-terms-one for each instruction that uses
a relocatable address. Hoisting some of the computation out of the sec
ond A into the first makes many of the second ..\s identical-a handful are
enough for a whole instruction set. This optimization reduces the size of
machine-dependent assembly and linking code by 15-20% for the MIPS,
SPARC, and PowerPC, and by about 30% for the Pentium.
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1 Introduction

Compiling whole programs is slow; compiling units separately and linking the
compiled units into a program speeds up the edit-compile-go cycle. For sepa
rate compilation, a compiler must be able to emit instructions and data without
knowing the exact locations either of the instructions and data the compiler
itself emits, or of the instructions and data emitted by other compilations. Us
ing assembly language makes this task easy, because in assembly language all
locations arc represented symbolically. Symbolic, assembly-like units can be
linked to form programs (Fraser and Hanson 1982; Jones 1983), but the linker
or loader must translate all units from symbolic form into the binary represen
tation required by the target hardware. It is believed to be morc efficient to
translate each unit separately into a binary form called relocatable object code.

Object code must contain more than just instructions and data. To support
delayed binding of locations, it must also represent

• The symbols defined in the object file and the locations to which they are
bound.

• The symbols imported from other units, i.e., external symbols.

• The transformations that must be applied to the instructions and data to
account for its eventual placement at an absolute address and also for the
placements of the external symbols on which it depends.

Applying these transformations is called relocation.
Current object-code formats force tool writers to handle relocation in a

machine-dependent way. For a particular architecture, a human being examines
the instruction set and determines which operands can be relocatable addresses
and what relocating transformations are needed. Each transformation is named,
and linkers and other tools must recognize transformations by name. The names
are informal and machine-dependent, so retargetable tools that manipulate ob
ject code must recognize each set of names on each machine.

This paper makes several contributions. It presents a machine-independent,
automatic method of discovering relocating transformations. It presents an
optimization that makes the cost of the automatic method comparable to the
cost of hand-implemented methods and makes the discovered transformations
equivalent to the transformations used in standard object-file formats. Finally,
the paper gives a machine-independent representation of the transformations.

This new technique for relocating machine instructions is an enabling tech
nology for building machine-independent tools for static, incremental, and dy
namic linking. It will also simplify the construction of retargetable tools that
implement object-code transformations. Object-code transformation, which is
growing in importance, is used for profiling and tracing (Ball and Larus 1992),
testing (Hastings and Joyce 1992), enforcing protection (Wahbe et al. 1993), op
timization (Srivastava and Wall 1993), and binary translation (Sites et ai. 1993).
There are even some frameworks for creating applications that transform object
code (Johnson 1990; Larus and Schnarr 1995; Srivastava and Eustace 1994).
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The techniques presented here build on the New Jersey Machine-Code Toolkit
(Ramsey and Fernandez 1995), which reads a compact machine description and
generates functions that encode instructions. The machine description relates
two representations of instructions: a symholic representation akin to assembly
language and the binary representation used by the hardware. The symbolic
representation of an instruction includes its name, a list of operands, and a sug
gested assembly-language syntax. The author of the machine description indi
cates which operands are relocatable addresses. Currying the encoding function
with respect to those operands results in a relocating transformation.

Currying rewrites the encoding function into two nested A-terms. In the
standard implementation, the outer A allocates a closure and stores therein its
operands and a pointer to the inner A, which uses the contents of the closure to
encode (relocate) the instruction. The inner AS are the relocating transforma
tions discovered by the toolkit, and the closures take the place of "relocation
entries" in traditional object files.

Using the standard implementation of currying, the toolkit generates code
for many different inner A-terms---one for each instruction that uses a relocat
able address. Hoisting some of the computation out of the inner ..\ into the
outer makes many of the inner .\s identical-a handful are enough Cor a whole
instruction set. This optimization is closely related to fully lazy lambda-lifting
(Peyton Jones 1987). It reduces the size of machine-dependent assembly and
linking code by 15-20% for the MIPS, SPARC, and PowerPC, and by about 30%
for the Pentium. It also makes the relocating transformations discovered by the
toolkit equivalent to those that are now implemented by hand. To support
machine-independent use of these transformations, the toolkit associates each
one with a string that can be interpreted to have the effect of applying the trans
Cormation. These strings can be used in an object file as meaningful, Cormal,
machine-independent names.

2 Describing instruction encodings

The New Jersey Machine-Code Toolkit describes the binary representation of
an instruction as a sequence of tokens. On a RlSC machine, each instruction
is a single 32-bit token. On a machine like the Pentium, formats vary; for
example, the instruction add 612 [DX]. 33 has an 8-bit opcode token, followed
by another 8-bit token that has both opcode and address-mode bits, followed
by an the 32-bit displacement 612 and the 8-bit immediate operand 33.

Each token in an instruction is partitioned into fields; a field is a contiguous
range of bits within a token. Fields contain opcodes, operands, modes, or other
information. Opcodes and operands can be distributed among multiple fields.
On RlSC machines, different instruction formats are represented by different
partitions of the instruction token.

Patterns constrain the values of fields; they may constrain fields in a single
token or in a sequence of tokens. They can be used to describe binary represen
tations of opcodes, of whole instructions, and of groups of instructions.
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Constructors connect the symbolic and binary representations of instruc
tions. At a symbolic level, an instruction is an opcode (the constructor) applied
to a list of operands. The result of the application is a sequence of tokens, which
is described by a pattern. For each constructor, the toolkit derives an encoding
function that emits the constructor's binary representation. We get relocating
transformations by currying the encoding functions. The encoding functions
generated from a machine description form part of an application-program in
terface (API) to an assembler for that machine. The toolkit includes a library
of other functions that complete the API.

Tokens and fields

A machine description includes the names, sizes, and positions of the fields
used to fonn tokens. The information can be found in architecture manuals.
For example, the MIPS manual (Kane 1988, p A-3) gives this informal field
specification:

" 211 25 21 20 16 15 0

I op I ro I r< I iDmediate I
" 26 25 0

I op I target I
" 211 25 21 20 16 15 11 10 " 0

I op I ro I r< I rd I shamt Ifunct I
This informal specification can be formalized in a machine description as follows:

fields of instruction (32)
op 26:31 rs 21:25 rt 16:20 rd 11:15 shamt 6:10 funct 0:5
target 0:25 iDmed 0:15 offset 0:15 base 21:25 cond 16:20
breakcode 6:25 ft 16:20 fs 11:15 fd 6:10 format 21:24

This declaration defines not only the fields used in the formats pictured above
but also offset, cond, and other synonyms that appear in the MIPS manual.

Patterns

Patterns constrain both the division of streams into tokens and the values of
the fields in those tokens. They are composed from collstmints on fields. A con
straint fixes the range of values a field may have. The typical range has a single
element, e.g., op = 1. Patterns may be composed by conjunction (&), concate
nation (;), or disjunction (I). Conjoining patterns constrains fields within a
single token; concatenating them constrains a sequence of tokens. In this paper
we use patterns that constrain all the bits in a sequence of tokens; such patterns
are equivalent to binary representations.

Constructors

A constructor connects the symbolic and binary representations of an instruc
tion by mapping a list of operands to a pattern. The left-hand side of a con-
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structor specification resembles the assembly-language syntax of the instruction
specified. The right-hand side contains a pattern that describes the binary rep
resentation of the instruction. That pattern may contain free identifiers, which
refer to the constructor's operands. For example, the following constructor de
scribes the MIPS add instruction:

conetructors
add rd, re, rt is op = 0 It funct = 32 It rd It rs It rt

where, on the right-hand side, rd is an abbreviation for the pattern constraining
the field rd to be equal to the first operand, and similarly for rs and rt.

Some instructions have operands that cannot be used directly as field values.
The most common are PC-relative branches, in which the operand is the target
address, but tbe corresponding field contains the difference between the target
address and the program counter. Constructor specifications may include equa
tions that express relationships between operands and fields. For example, the
specifications for the MIPS bne and bltzal instructions are:

constructors
bltzal rs, addr

{ addr = L + 4 • offset! } is op = 1 k cond = 16 It rs k offset; L; epsilon
bne re. rt. addr

{ addr =L + 4 • offset! } is op = 5 k re k rt It offset; L; epsilon

epsilon is the pattern specifying the empty sequence of tokens. Here it serves
only as an anchor for the label L, which is bound to the location ofthe instruction
following the branch. The exclamation point in offset! is a sign-extension
operator. The equation in braces specifies the relationship between the target
address addr and the offset used in the instruction's binary representation:

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, [sign-extended
and multiplied by -Ii (Kane 1988, p A-23).

The toolkit solves this equation to compute offset as a function of addr and the
program counter. The equation has a solution only when the target address and
the program counter differ by a multiple of 4 and when the computed offset
fits in 16 bits, and the generated encoding function checks these conditions.

3 Instruction encoding and relocation

The toolkit uses the field locations and constraints to figure out the bit manip
ulations needed to encode an instruction. If addr and the program counter are
known at the time a bltzal, for example, is encoded, we can emit the binary
representation directly by using the following function:1

A(r>, addr).emi'(I« 26116 « 161 ((addr - PC - 4)>> 2) & (2" -I) 1r>« 21),

ITo simplify the presentation, I have omitted such details as the check that the target
address and program counter differ by a multiple of 4.
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where I have used C notation for bit manipulation. PC, the program counter,
represents the address at which the instruction is to be located. If PC and addr
are unknown, we can't emit the instruction; we must create relocation infor
mation instead. A typical compiler or assembler emits the instruction with the
displacement bits set to zero, along with "relocation information" that tells the
linker how to adjust the displacement bits when the relevant locations become
known. The relocation information names the instruction, the address on which
it depends, and the transCormation needed to adjust the displacement bits.

We can discover relocation transfonnations from the toolkit's description of
an instruction. The description tells us how an instruction's operands determine

. its final, binary representation after relocation. Vlhen called upon to emit an
instruction referring to an unknown location, an assembler must delay encoding,
emit a partial instruction, and record a relocation transformation that can be
used to compute the final instruction once the location is known. This procedure
amounts to currying the relocation function. We must know which operands
are relocatable addresses, since these are the operands the values of which may
not be known when an object file is created. The:MIPS specification contains
the directive relocatable addr, which specifics that all operands named addr
are relocatable addresses.

Here is a curried version of the bltzal encoding function:

Ars.Aaddr.emit(I« 26116« 16] «addr - PC -4»> 2) & (216 -1) 1rs« 21).

Vlhen applied to a particular rs, this encoding function returns a closure con
taining T"S and the inner A-term. To generate C or Modula-3 code, it helps
to convert to an explicit closure-passing style (Appel 1992, Chapter 10). Con
verted functions, i.e., function values, are represented by closures. A closure is a
record containing a A-term, which represents the function's algorithmic content,
and the values of the function's free variables. In the A-term, the function's free
variables are replaced by references to the closure, and the closure becomes an
explicit argument to the term. After the transformation, the A-term has no free
variables. Different applications of the outer function create different closures;
these closures share a A-tenn, but they differ in the other contents of the closure
record-the values of the free variables. For example, every bltzal closure has
the Corm

R.,,,ol ~ ('\(R, add,).cnti'(1«261'6«161((add,-PC-4)>>2)&(2"-1)IR[lj«2'), "),

but different closures may differ in the value of rs.
Closure conversion also changes the way functions are invoked. In the origi

nal form, we could invoke a relocation closure R. = Aaddr. ... by simple function
application n addr. After closure conversion, we must Cetch the A-tenn out of
the closure and pass the closure as an extra argument. If the closure-converted
version is nbl't1:o.l, we invoke it by nbhzo.l[0j('R.blt1:ll.h addr).

The implementation of closure conversion is straightforward. We add a clo
sure argument to each function. We discover the free variables in the body of
the function and put each in the closure, and we replace each occurrence of a
free variable in the body with code to get its value from the closure.
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4 Optimizing relocation closures

In the scheme outlined above, each relocatable instruction needs its own closure
function. Compiling these functions takes time, and they take up space in an
application or an object file. We can reduce the number of closure functions
by moving computation from the inner>.. to the outer >.. I call this move
ment hoisting, by analogy with the CPS transformation that moves variable
definitions from one scope to another. It simplifies the inner >.s, creating op
portunities for them to be shared. Hoisting is very closely related to fully lazy
lambda-lifting (Peyton Jones 1987, Chapter 15), and the analysis required to
implement it is reminiscent of the binding-time analyses used in partial eval
uation (Jones, Sestoft, and S~ndergaard 1989). Unlike these other techniques,
hoisting is not intended to make programs run faster. Hoisting might result in
marginally faster linking, but its purpose is to reduce the number of different
-"-terms needed to implement relocation.

Hoisting is implemented by a variation on closure conversion. Operands of
outer -"S are available before those of inner -"S. If we think in terms of binding
times, -"-bound arguments are always "late," i.e., not available to compute with
until the function is applied. Free variables are always "early," i.e., available to
compute with when the closure is created. In ordinary closure conversion, free
variables are replaced with references to the closure. To perform the hoisting
transformation, we want to replace not only free variables to be early, but also
terms that depend only on free variables. Such terms are called free expressions
in Peyton Jones (1987), and a free expression that is not a proper subexpression
of another free expression is said to be maximal. FUlly lazy lambda-lifting
rewrites -"-terms to make the maximal free expressions additional operands;
hoisting moves them into the closure. For example, to convert' the function
Ac.a+b+c, we hoist a+b, creating a closure of the form (>.(n, c).n[l] +c, a+b).

We can implement closure-conversion with hoisting by rewriting a function's
abstract syntax tree in a bottom-up walk:

• Leaf nodes are free expressions unless they are variables bound by the
innermost enclosing A-abstraction.

• Internal nodes are free expressions if and only if all their children are
free expressions. To simplify the computation, replace each free internal
node e = fCel, e2," .en) with a fresh variable v, which is free by defini
tion. To remember what v stands for, create the substitution cr = v I-}

fCel, e2,··· en). Compose these substitutions during the tree walk.

When we reach a A-abstraction, all free expressions have been replaced with
variables, and since no variable can be a proper subexpression of another, the
free variables represent the maximal free expressions of the original A-term. We
could recover the original body of the A-term by applying the substitution cr to
it, but instead we closure-convert the rewritten form, then apply the substitution
to the closure. Thus, in the example given above,

1. We begin with Ac.a + b + c.
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2. We rewrite it to Ac.v + c, with substitution cr = v H a + b.

3. By ordinary closure conversion, we get n = (A(n, c).n[lJ + c, v).

4. We apply cr to the closure, producing n = (A(n, c).n[l] + c, a + b). We
can save a minor computation by applying cr only to the variables in
the closure; applying it to the A-term has no effect since after closure
conversion the A-term has no free variables.

To get better results with closures for machine instructions, we rewrite ex
pressions involving associative and commutative operators to bring free expres
sions togetber. This rewriting step can reduce the number of maximal free
expressions, resulting in simpler AS and smaller closures. The relevant opera
tors include integer addition, assuming that it does not overflow, and bitwise or.
Briggs and Cooper (1994) describes a related but more sophisticated technique
used to improve the effectiveness of partial-redundancy elimination in a tradi
tional optimizing compiler.

Rearranging associative and commutative operators gives the foUowing re
location closure for bltzal:

n"..", = (>.(n, sddr).emit(n[11I((sddr-Pc+n[2j)>>2)&(2'"-I)), 1«26116«16IrK<21, -4).

The new A-term can be shared with other relative-branch instructions, since
all information about the opcode and about the register argument ,-s has been
hoisted out of the A-term and into the closure.

Hoisting moves integer literals, like -4 in this example, into closures. Such
literals take up space, and we can improve the closures by using a heuristic: if a
value to be stored in the closure is an integer literal, push it back into the A-term
instead of storing it in the closure. We don't push other constant expressions
into the A-term. The heuristic works because integer literals tend to arise from
address computations, which are typically the same across instructions, but
other constant expressions often come from opcodes, which are different for
every instruction. To preserve the distinction, we delay constant folding until
after hoisting.

Applying the heuristic to the bltzal instruction yields a smaller closure:

n,,,.., ~ (>.(n, sddr).emit(n[I]I«sddr-PC-4)>>2)&(2'"-I)), 1«26116«16Ir5«21).

The literal -4 has moved hack into the A-term.

5 Realizing relocation closures in C

Creating efficient C code to perform relocation by currying requires some refine
ments. There is no need to put global variables in any closure, because globals
are accessible to all functiOns. Therefore, there is no need to convert top-level
functions to closure-passing style, because all their free variables are globals.
This is just as well, since C programmers expect functions in an API to be
implemented in standard C style, not in closure-passing style!

8



(type of closure):::
typedef struct Oi_l_closure {

ClosureHeader h; /. contains lambda-term. etc ...•/
ClosureLo'ation lac;
stru,t { RAddx a1; unsigned ul; } v;

} .01_1_Closure;

(relocating transformation):::
static void _'lofun_1C01_1_Closure _" Emitter emit_at) {

emit_atC_'->lo"
_,->v.u1 I lo,ationC_,->v.al) - p,_lo,ationC_,->loc) - 4 » 2 l Oxffff.
4) ;

}

(closure ,rea!ion):=
{01_i_Closure _c = COl_l_Closure) mallocCsizeof ._,);

static struct closure_header _h = {_'lofun_i, ... };
_c->h = l_hj
(initialize _c->loc with current PC)
_c->v.al = addx;
_c->v.u1 = i « 26 I 16 « 16 I rs « 21;
(salle closure _c fOT future use)

}

Figure 1: Representing closures in C

The encoding functions and relocation closures generated by the toolkit treat
relocatable addresses as values of an abstract data type.2 An address may be
known or unknown, and a known address may be forced to reveal its location,
which is an integer. Tbe address itself is supplied when the instruction is en
coded; what may not yet be available is tbe actual location denoted by the
address. We have to keep track of the address, so we can force it to a location
at relocation time, and the easiest way is to store it in the closure.

Ordinary encoding functions, which create no relocation information, emit
code at a "current location" that is part of the global state of the assembler.
Relocation closures should not emit instructions at the current location, but at
the location of the original encoding attempt. This location, too, is stored in
the closure, and instead of "emit," which emits a token at the current location,
we use "emit..at," which emits a token at a location given explicitly.

The program counter, PC, gets special treatment. It is another name for
the location of the original encoding attempt, and we have to save this location
so we know where to put the relocated instruction. If we handled PC as we
handle other variables, we would store it in the closure, but since it is already

2The toolkiL'S library of machine-independent assembly and linking code represents a re
locatable address as a label plus a constant offset. This representation is adequate for al
most all Unix applications (Szymanski 1978), but applieation writers ,ould Bubstitute another
representation.

9



in a special part of the closure, we rewrite references to PC to refer to that
location.

Applying these refinements to the MIPS bltzal instruction produces an
encoding function that can he represented as follows:

A(", add,).(A(R).emiLa'(R[I],
R[3] 1«fo<ceR[2]- forceR[I] - 4)>> 2) & (2" -1)),

PC,
addr,
1« 26116« 161 TS« 21

).

The rcal encoding function is still more complicated, since it emits the instruc
tion directly when addr and PC are known, and it also checks the multiple-of-4
and fits-in-16-hits conditions.

The closure-converted form is easily represented in C, as shown in Figure l.
As with the other examples, Figure 1 omits all checking code, as well as such
details as converting pointer types and recording the size of the closure. The
C code binds emit_at as late as possible; the late binding enables different
implementations in different applications. The final argument to emit_at is
the size of the token being emitted; that size has been omitted from the other
examples in this paper.

The closure shown in Figure 1 has the same information as a "reloca
tion entry" used in standard object-code formats like COFF (Gircys 1988) and
ELF (Prentice Hall 1993a). For example, a COFF relocation entry contains an
r _vaddr that corresponds to the loc field; both store the location of the in
struction to be relocated. It contains an r _symndx field that corresponds to the
v. al field; both store the relocatable address on which the relocation depends.
Finally it contains an r_type field that corresponds to the h field; both identify
the relocating transformation. ELF relocation entries are similar, except ELF
combines r_symndx and r_type into a single word. Relocation entries in stan
dard formats have nothing corresponding to the v. ul field of the closure shown
in Figure 1; instead, they store that information in the space to be occupied by
the instruction after relocation. The toolkit could use this space-saving trick,
which would reduce the "largest closure" numbers in Table 1, but for the time
being it seems more interesting to make relocation closures idempotent. Idem
potent closures should be useful in tools that relocate instructions repeatedly,
like incremental linkers.

A final refinement is needed to write relocation closures to disk. In mem
ory, the relocating transformation is represented as a function pointer, which is
neither machine-independent nor meaningful when written to disk. Instead, we
describe relocating transformations using a subset of PostScript (Ramsey 1992),
extended with special operators to get addresses and values out of closures. The
machine-independent representation of the transformation in the bltzal closure
is:

-4 1 cIa force add cl-loc force Bub
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-2 bitshift 16 narrows 1 clv orb cl-Ioc force 4 emit-at

The toolkit generates a table that associates the function pointer with this
string. The prolixity of this representation is not a problem. Only one copy
of each transfonnation need appear in an object file, and it can go in a string
table. It is true, however, that even a small subset of PostScript is overkill for
such simple computations. Applications might be better served by a customized
bytecode language and an interpreter for that language. Bytecodes would also
yield a space savings; with a suitable choice of bytecodes, it wou1d be easy to
represent the bitzal transfonnation in a space as small as 13 bytes.

6 Experimental results

I have implemented currying and hoisting in the New Jersey Machine-Code
Toolkit (Ramsey and Fernandez 1995). Both the optimized and unoptimized
versions are effective. mld (Fernandez 1995), a retargetable, optimizing linker,
uses encoding functions and relocating transformations generated by the toolkit.
mId needs only 20 lines of C code for relocation, and it uses the same code
on all platforms; the code keeps a list of relocation closures and applies them
when the addresses on which they depend become known. Other applications
that might use the generated encoding and relocating code include assemblers,
linkers, whole-program optimizers, and object-code transformers.

Table 1 shows the amount of space consumed in an application by generated
encoding functions and relocating transfonnations. I used the toolkit to generate
encoding and relocating code for the MIPS, SPARC, and Pentium, as specified
in Ramsey and Fernandez (1994), and also for the PowerPC 604, as specified
by Doug Currie of Flavors Technology. The column labels across the top of
Table 1 name the specifications of the target machines for which object code
can be generated or relocated.

The upper part of Table 1 describes properties of the specifications and of
the generated code. Each instruction accounts for an encoding function, and an
encoding function is also generated for each addressing mode. A "relocatable
instruction" is one having an operand that is or contains a relocatable address.
The next line shows how hoisting reduces the number of closure functions. On
the Pentium, the number of closure functions, without hoisting, is greater than
the number of relocatable instructions, because the toolkit expands addressing
modes inline and generates a different closure for each combination of instruction
and addressing mode. Many instructions on the Pentium use one of 8 possible
addressing modes, of which 5 involve relocatable addresses. The last line in the
top half of Table 1 shows the number of extra words (in addition to the location)
stored in the largest closure.

The toolkit supports cross-architecture assembly and linking. The lower part
of Table 1 shows how much space the encoding and relocating functions take
up for all available combinations of host and target machine.3 Each row label

31 do not have access to a PowerPC to act as a hosL machine.
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Targets

I
MIPS

I
SPARC PPC 604 Pentium

Plain I Hoist Plain I Hoist Plain I Hoist Plain I Hoist

Instructions 167 260 451 645
Relocatable insts. 21 97 56 427

Closure functions 21 3 97 2 56 4 1911 29
Largest closure I 2 0 I I I 4 6

Object (SPARC) 43.9K 37.0K 153.5K 122.IK 101.0K 83.IK 2331.5K 1650.6K

Ratio 1.00 0.84 1.00 0.80 1.00 0.82 1.00 0.71
Object (MIPS) 61.0K 51.3K 207.3K 160.9K 142.9K 117.6K 3063.4K 2098.6K

Ratio 1.00 0.84 1.00 0.78 1.00 0.82 1.00 0.69

Object (Pentium) 27.0K 22.7K 102.0K 81.7K 62.8K 51.2K 1546.5K 1083.8K

Ratio 1.00 0.84 1.00 0.80 1.00 0.82 1.00 0.10

Table 1: Savings from hoisting optimization

identifies a different host machine, on which the relocation code runs. The data
in the table are the sizes as compiled with gee, for code generated with and
without hoisting. The savings from hoisting are shown in bold, as ratios. The
reduction in object-code size ranges from 15-20% on the RISe specifications to
about 30% on the Pentium specification. The savings is higher on the Pentium
because proportionally more instructions take operands that include relocatable
addresses.

The encoding fWlctions generated by the toolkit take lots of space because
the toolkit trades space fOr time, generating specialized code for every com
bination of instruction and addressing mode. This tradeoff is a poor one for
the Pentium; the specialized code grows to staggering size because of the inline
expansion of addressing modes. Practical applications, like mid, use a subset of
the full Pentium specification.

The relocating transformations discovered by the toolkit are closely related
to those used in standard object formats. For example, the toolkit discovers
two transformations for the SPARC, and they are equivalent to the transforma
tions named R_SPARC_WDISP22and R_SPARC_WDISP30 in the ELF format for the
SPARC (Prentice Hall 1993b), provided we represent the relocatable address as
the sum of the label S and the offset A. (In ELF terminology, these values are
called the symbol and the addend.) It discovers only two transformations be
cause the toolkit specification for the SPARC designates fewer operands as reia
eatable than the standard SPARC assembly language. We can make the toolkit
discover more transformations simply by making more operands relocatable; for
the SPARC, it requires a 7-1ine change to a 200-line specification. The toolkit
then discovers 253 relocating transformations, which are reduced to 6 by hoist
ing. The new transformations are R_SPARC_13, R_SPARC_22, R_SPARC_HI22,
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and a combination of R_SPARC_HI22 and R_SPARC_L010. Ifwe add constructors
to store relocatable addresses in 8-bit, 16-bit, and 32-bit tokens, the toolkit dis
covers R_SPARC_B, R_SPARC_16, and R_SPARC_32. In the presence of these extra
relocatable operands and the extra relocating transformations, the savings from
hoisting increases from 20% to 30%.

There are transformations the toolkit does not discover. Some are specialized
versions of the ones that are discovered. For example, several ELF transforma
tions are specialized to refer to locations relative to the start of a "global offset
table" or a "procedure linkage table." Some relocation entries in standard object
files cannot be discovered by the toolkit because they represent more than just
transformations. For example, the R_SPARC_GLOB_DAT relocation entry names
the same transformation as R_SPARC_32, but it also instructs the linker to create
an entry in the global offset table.

7 Discussion

Hoisting works well on the RISe machines because most instructions occupy a
single token. It works less well on the Pentium, because the toolkit creates a
single closure for an encoding of an instruction even when that encoding is a
sequence of tokens. The relocating transformation for that closure must relocate
every token in the sequence. To minimize the number of relocating transfor
mations functions, it would be better to create a closure for each token that
depends on a relocatable address, since relocating transformations for single to
kens can be reused more freely than those for sequences. Moreover, by splitting
up sequences, we could emit some tokens immediately, not having to wait until
relocation time. We could go further and create separate closures for different
fields of a single token. This technique would be unlikely to reduce the num
ber of transformations further, but it would make it easy to create idempotent
transformations while using the encoded instruction itself to store part of the
closure.

The abstract view of relocatable addresses has a cost. If we exposed the
"label + offset" representation at code-generation time, we could realize extra
savings. Offsets are always available at encoding time, and they could be hoisted
out of closure functions. Storage requirements would be reduced because a label
occupies no more than half the space of a (label, offset) pair. Exposing the
representation would also make it possible to treat certain labels, like those of
the ELF global offset table and procedure linkage table, as special cases. Such
treatment would make it possible to shrink machine-independent object code
by moving these special labels back into the >.s.

Currying and hoisting make it possible to write efficient, machine-independent
tools that relocate machine instructions. The New Jersey Machine-Code Toolkit
can derive C implementations of relocating transformations from a set of ma
chine descriptions, and a tool writer can incorporate those implementations
to provide efficient relocation on a number of platforms. By including an in
terpreter for a bytecode representation of relocating transformations, the tool
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writer can undertake to relocate instructions for any machine--even a machine
that doesn't exist when the tool is released.
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