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Abstract

In this paper, we introduce a new agglomerative clustering algorithm in which eadl pal.tcIIi duster is
represented by a collection of fmzy hyperboxes. Initially, a number of such hyperboxes arc calculated to
represent the pattern samples. Then, the algorithm applies multi-resolution techniqlle.'i to progressively
"combine~ these hyperboxes in a hierarchial manner. Stich an agglomerative scheme has been found to
yield encouraging results in real-world clustering problems.

1 Introduction

Clustering is a fundamental procedure in pattern recognition. It can be regarded as a form of unsupervised
inductive learning that looks for regularities in training exemplars. It finds applications in unsupervised con­
cept learning, human sensory processing, discovery, and provides a convenient representation of the input
pattern domain. Clustering thus reveals associations between individuals of a population. The clustering
problem [2, 5J can be formally described as follows:

Input A set of patterns X = {Xl,X2,X3,""Xn }

Output A c-partition of X that exhibits categorically homogenous subsets, where 2 ~ c ~ II

Different clustering methods have been proposed that represent clusters in different ways - for example,
using a representative exemplar of a cluster, a probability distribution over a space of attri bute values, neces­
sary and sufficient conditions for cluster membership etc [2]. To represent a cluster by a collection of training
exemplars and to "assign" new samples to existing clusters, we use some form of a utility measure. This is
normally based on some mathematical property such as distance, angle, curvature, symmetry, intensity that
are exhibited by the members of X. H has been recognised [11] that no universal clustering criterion can
exist and that selection of any such criterion is subjective and depends on the domain of application under
question.

Clustering techniques can be divided into three categories [2, 11,3]: (i) Hierarchial Methods, (ii) Graph­
Theoretic Methods and (iii) Objective Function Methods. The hiearchial methods are based on agglomerative
and divisive ideas to partition the pattern space and are characterized by their computational simplicity. The
graph-theoretic methods represent the pattern exemplars by nodes on a weighted graph and edge weights
are based on similarity measures between pairs of nodes. The most common of clustering methods are,
however, the objeclive function clustering methods that attempt to minimize some function based on a
distance measure to obtain the desired partition. The choice of a clustering criterion is, thus inherently

"TIus work '1'115 supporlcd in parL by NSF' awards ASC 9101859 and CCR 9202536, AFOSR award F4962Q-92-J-0069 and
ARPA ARO award DAAHO<\-91-G-OOIO
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problematical and each algorithm provides a different partition of the pattern space. Also, few of these
techniques take into account the uncertainty inherent in the pattern samples in the domain i.e., the clusters
formed are hard and don't address the problem of imprecisely defined categories.

In this paper, we describe a fuzzy agglomerative approach to the clustering problem. Section 2 details
the use of fuzzy techniques to aid clustering. Section 3 outlines our algorit.hm in detail. We address the
performance of this algorithm in Section 4 by applying it to real world problem sets. Section 5 concludes by
summarizing the developments.

2 Fuzzy Clustering

Fuzzy clustering techniques have been shown to have considerable advantages over conventional methods.
They serve as a natural basis for pattern recognition in cases where an object belongs to a cluster not in
a binary fashion, but to a certain "degree". The first use of fuzzy sets as a basis for clustering was in
[1]. A systematic and extensive analysis of the usc of fuzzy sets in clustering was made by Ruspini [II].
Further clustering techniques are dealt with in detail in [2]. Each technique differs in the kind of method it
uses to partition the pattern space, the type of partitions generated and the shapes of clusters that it can
detect. But many of these techniques are also similar in that. they iteratively minimize an objecl.ive function
to obtain the final clustering. The Fuzzy C-Shells (FCS) algorithm [3] uses n-dimensional hyperspherical
shells to represent cluster prototypes. A variant of this is the Fuzzy C Spherical Shells Algorithm (FCSS)
[9] that first identifies good clusters, merges compatible clusters and eliminates spurious ones to obtain the
final partition. The Adaptive Fuzzy C-Shells algorithm (AFCS) [4) extends the FCS algorithm to detect
clusters that can be hyperellipsoidal shells. All these techniques assume that the underlying cluster shapes
arc hyperellipsoidal shells.

A more general technique for pattern clustering is Simpson's fuzzy min-max neural network [12] that
uses groups of fuzzy hyperboxes to represent pattern clusters. We briefly describe this algorithm next. A
hyperbox is used to represent a region in pattern space and all patterns completely contained within the
hypcrbox have full cluster membership in it. Clustering in this approach occurs by placing and adjusting
these hyperboxes. For each new pattern, it looks for a "close enough" hyperbox and if it finds one, adjusts
the hyperbox to contain the given pattern. If there exists no hyperbox "close enough" ) it creates a new
hyperbox for the pattern. Further, a limit 8 is imposed on the size to which a hyperbox can expand. If the
size of the hyperbox extends beyond 8, a new hyperbox is created to accomodate the given pattern. This
algorithm has been shown to perform very well on classical pattern recognition problems.

Each hyperbox fuzzy set Bi is described as the 3-tuple

Bi = {Vj, Wi'c} (1)

where Vi denotes the min-point in n-space, Wi represents the max point in n-space and c denotes the class
to which the fuzzy set Bi corresponds. The membership function mi for the jlh hyperbox satisfies

and measures the degree to which the k1h pattern, XI:, falls inside the lh hyperbox. Simpson choses this
function to be

where

1 "
mj (XI:) = 1 - - 1)f(XI:, - Wj,) + f(vi' - Xk,)]

n ;=1

[(x) = max(O, minh'x, i))

(2a)

(2b)

f(x) is a squashing function and the sensitivity parameter l' represents the rate at which the membership
function varies as the distance between Ak and Bi varies. Thus hyperboxes, defined by pairs of min-max
points, and their membership functions are used to define fuzzy subsets of the n-dimensional pattern space.
The bulk of this processing involves the finding and fine-tuning of the boundaries of the clusters.

Simpson's clustering algorithm, however, results in a large number of hyperboxes (clusters) to represent
the given data adequately. Also, t.he clustering performance depends to a large extent on the maximum
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(4")

(4b)

allowed size of a hyperbox. In other words, 8, the maximum hyperbox size influences the number of clus­
ters formed, and in turn, the clustering accuracy. Simpson also desires the clusters to be "compact" and
hence, performs a compaction procedure that eliminates overlap between hyperboxes in all dimensions. The
disadvantage of this is that the algorithm requires more than one run through the data in order to achieve
"cluster stability" and hence discourages single-pass clustering.

3 Agglomerative Fuzzy Clustering

We propose a multi-resolution scheme, similar to computer vision (7], to partition the data into clusters. For
clustering at the base of the multi-level pyramid, we use Simpson's algorithm. Then, we operate at different
"zoom" /resolution levels to obtain the final clusters. This approach has led to encouraging results from
clustering real world data sets.

The parameters into this algorithm are 8 - the maximum hyperbox size and Z - the zoom factor. The
user specifies the zoom factor as the extent to which the algorithm should "focus" on the data in the pattern
space. 'We also enhance the fuzzy hyperbox data structure as follows:

B j = {Vj, Wj,c,.1ltIj ,6} (3)

Vj , Wj and c are the same variables as defined in eqn. (1). Mj denotes the "center-of-mass" of the pattern
samples represented by the hyperbox and 0 represents the number of pattern samples represented by the
hyperbox.

For example, when a hyperbox Bj is first created for pattern Xi, Yj = Wj = x. (i.e., the min and the max
point both correspond to the pattern sample). Now, Mj is set to Xi as Xi is the only pattern "represented"
by Bj and 6 is set to 1. When B j is expanded to represent an additional pattern sample Xi+l, in addition
to Vi and Wj getting updated by Simpson's algorithm, we update Mj and 6 as follows:

_ oMj + X.+l
Mj 6+ 1

6=6+1

In other words, !vIj is updated to reflect the new "center-of-mass" of the pattcrn samples represented by
13j.

Our proposed algorithm operates as follows:

1. Initial clusters are formed from the pattern data by placing and adjusting the hyperboxes. At this
stage, the number of clusters equals the number of hyperboxes. In our implementation, we havc used
Simpson's fuzzy min-max neural network, but any similar technique for such clustering can be used.

2. The bounding box formed by the patterns is calculated and we partition this region based on the zoom
factor. In effect, this partitions the total pattern space into several levels of windows/regions. A zoom
factor of Z implies that there exist Z levels above the bottom of the pyramid. The jl h level above
the base level partitions the total region into 4(Z-i+l) sub-regions. For example, if we choosc a zoom
factor of 2, the first level above the base has 16 sub-regions and the next level has 4 sub-regions.

3. We then assllme the highest zoom factor (i.e., which causes the window regions to assume the smallest
size) and then examine the hyperboxes inside each window. If they are "sufficiently close by", we relabel
them so that they indicate the same pattern cluster. The criterion for such combination is a function
that depends on 0, Z, the size of the bounding box and the actual distance between the hyperboxes. A
good choice for such a heuristic (after empirical trial and error) was found to be d < D/2 + 8, where
d is the actual distance between the hyperboxes and D is the diagonal of the current bounding box.
Thus D represents the effect of the zoom factor Z on the pattern clustering. d, the distance between
hyper boxes is defined as the distance between the centers of masses of the two hyperboxes. In other
words, if hyper boxes Bi and Bj are candidates for such "combination", then

The hyperboxes are combined if the distance condition is satisifed.
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4. After we are done with all regions of a zoom factor, we zoom up and view these newly grouped
hyperboxes at a higher level. The same procedure is repeated till no more hyperboxcs can be relabeled.

5. In effect, we form the hyperbox clusters initially, then we zoom into the pattern space and progressively
relabel them, zoom out accordingly and repeat the algorithm.

Another subtle point is deciding on the method to relabel clusters - Does hyperbox H; take on the class of
H j or vice versa? The 8 parameter of the hyperboxes aid us in this decision. Ir the 8 of B; is greater than
that of Bj, then Bj assumes the class of B i and vice versa.

4 Experimental Results

We have implemented this algorithm and used it on some classical pattern recognition problems like the Iris
data set and the famous soybean disease database (from the machine learning repository at the University
of California, Irvine [10]), as well as on some new data sets from the domain of scientific computation, which
we describe below.

4.1 PYTHIA

PYTHIA is an intelligent computational assistant [8] that we have developed to automate selecting methods
to solve Partial Differential Equations (PDEs). PYTHIA attempts to solve the problem of determining
an optimal strategy (i.e., a solution method and its parameters) for solving a given problem within user
specified resource (i.e., limits on execution time and memory usage) and accuracy requirements (i.e., level
of error). While the techniques involved arc general, our current implementation of PYTHIA operates ill
conjuction with systems which solve (elliptic) partial differential equations (f/ELLPACK [6]). The strategy
of PYTHIA is to compare a given problem to the ones it has seen before, and then usc its knowledge about
the performance characteristics of prior problems to estimate those of the given one. For the class of linear
second order elliptic PDEs, PYTHIA's population consists of fifty-six linear, two-dimensional elliptic PDEs
defined on rectangular domains. Forty-two of the problems are parameterized which leads to an actual
problem space of more than two-hundred and fifty problems. Many of the PDEs were artificially created so
as to exhibit various mathematical behaviors of interest; the others are taken from "real world" problems in
various ways. The population has been structured by introducing measures of complexity of the operator,
boundary conditions, solution and problem. The database created using this problem population contains
information about the properties of the problems plus performance data for about 15, 000 computations to
solve one of the PDEs. From this population, five non--cxclusive classes are defined.

The clustering problem in the PYTHIA domain is further complicated by the fact that the classes are
not mutually exclusive. For example, a given PDE can be both analytic and oscillatory. Ideally, to detect
such clusters, we require that the fuzzy min-max neural network allow some hyperbox clusters to overlap so
that each data point gets associated with only one cluster.

4.2 IRIS

The next data set comprised the Fisher iris data [5] . This is a very popular data set and there is a wide
range of classification results that can be used to provide a good measure of realtive performance. The data
set consists of 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is
linearly separable from the other 2 but the latter are not linearly separable from each other. 25 randomly
selected patterns from each class were used for training and the remaining 75 patterns were used for testing.
In this case, each pattern belonged to an unique class and hence the clustering algorithm did not run into
the problems as in the case of the PYTHIA domain.

4.3 Soybean Disease Database

The final data set that we used to test the algorithm was Michalski's famous Soybean Disease Database [10].
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4.4 Observations

1. We obtained encouraging results for all the data sets considered in this experimenl. The number of
samples that were clustered with other samples (that were known to belong to the same class) was
taken to be a measure of performance. While performance on the Iris and soybean databases was of the
order of 90-97%, that on the PYTHIA data set was only 85%. This can be attributed to the fact that
the PYTHIA classes do not confirm to a neat clustering as the PDE pattern classes arc not mutually
exclusive. The fuzzy min·max neural network algorithm does not allow hyperbox clusters to overlap
and hence, each data point gets associated with only one cluster. This causes the accuracy to drop
down.

2. It was observed that we need not zoom down to less than two levels below the main region. However,
this could be an adifad of the data sets chosen. More empirical evidence is required to support this
belief.

3. The clustering accuracy did not vary with the hyperbox size 8 as much as in the case of Simpson's
original fuzzy min-max clustering algorithm. However, a greater accuracy was observed at small values
of 8.

4. We generate confusion matrices for the clustering wherein we compare the physical clusters formed
with the actual clusters that exist in the pattern space. The rows of the confusion matrix represent
the clusters detected by the algorit.hm. The columns denote the actual clusters known to exist in the
data. An entry in the (i, j) th position of the table represents the degree to which cluster i faithfully
represents the actual data in cluster j. Such a matrix for t.he PYTHIA domain is given in the table
below (8 = 0.0125):

Singular Analytic Oscillatory Boundary Boundary Conditions
Layer Mixed

Cluster 1 100%
Cluster 2 94.28% 5.7%
Cluster 3 8.8% 91.17%
Cluster 1 84.37% 15.6%
Cluster 5 20.2% 78.37%

In the above table, the clusters 1-5 represent the clusters identified by the fuzzy min-max algorithm.
(Each cluster is a group of hyperboxes at the top level suitably relabeled so that they represent the
same class.) Class informat.ion was not. provided until after the clusters were formed. A routine
analyzes these hyperboxes and decides what physical dusters they actually represent. In other words,
each duster (hyperbox group) detected by the algorithm is analyzed as to which physical cluster is
maximally represented by it. Thus, Cluster 1 has been identified to represent the Singular class of
PDEs in its entirety. We realize that there exist some errors associated with the recognition of other
clusters. Nevertheless, this shows that there indeed exists some kind of ordering about the PYTIIIA
data. It can be easily seen that the ent.ries in the matrix sum up to 100% computed row-wise.

A similar matrix for the IRIS data set is shown below (0 = 0.1):

Class 1 Class 2 Class 3
Cluster 1 100%
Cluster 2 96% 4%
Cluster 3 10% 90%

Thus, for t.he IRIS dataset, the diagonal entries in the confusion matrix were nearly 100% and other
off-diagonal entries were negligible. For want of space, we only provide the main-diagonal elements for
the soybean dataset:

(100%,100%,80%,96%,85910,100%,80%,100910,80%,75%,80%, 759'0, 70%,91%,989'0)
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Considering that we "combine" (and hence, refine) previously discovered clusters, our algorithm works
out to be beUer than Simpson's original algorithm that didn't use the multi-resolution technique and
counted on an iterative scheme to achieve cluster stability. Also, the other fuzzy clustering algorithms
such as FCS, FCCS and AFCS cannot cater to the situation because they recognise only clusters that
are hyperelliposidal and hyperspherical in shape. Our agglomerative clustering algorithm performs as
well as other conventional clustering algorithms.

5. We were able to achieve single-pass clustering and the clusters formed were found to be compact.

6. Our multi-resolution formulation can exploit parallelism where available, since the different regions of
a zoom level can be processed concurrently.

5 Conclusion

In this paper, we have introduced an agglomerative approach to pattern clustering. Initial clusters are formed
by Simpson's fuzzy min-maxhyperbox algorithm. Then, our algorithm borrows ideas from computer vision
to progressively relabel existing pattern clusters. This results in the refinement of the previously discovered
clusters. The performance of the algorithm was also found to not vary drastically with the variations in the
values of the controlling parameters. Such an algorithm was found to be more useful for real world pattern
recognition problems than traditional approaches.
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