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Regular Algebraic Curve Segments (IT) —Interpolation
and Approximation

Guoliang Xu " Chaendrejit L. Bajaj 1
Institute of Computational Mathematics, Department of Computer Science,
Chinese Academny of Sciences, Purdue University,
Beijing, 100080 West Lafayette, IN 47907
Abstract

In this paper (part Lwo of the trilogy) we introduce three classes of reduced form
regular algebraic curves that are defined in the part one paper. The approximated
curves classes by the reduced form curve classes are described and the interpolation
and approximation problems of the curves in the approximated curves classes by Lhe
curves in the reduced form curve classes are solved. Explicit formulas and error bounds
of the curve interpolations and approximations are also given.

1 Introduction

In the first part of this trilogy of papers[8], we introduced the concept of a discriminating
family of curves by which regular algebraic curve segments are isolated. Using different
discriminating families, several characterizations of the Bernstein-Bezier (BB) form of the
implicitly defined real bivariate polynomials over the plane triangle and the quadrilateral
are given, so that the zero contours of the polynomials define smooth and single sheeted
real algebraic (called regular) curve segments. In this part of the trilogy of papers, we shall
use the reduced form regular algebraic curve segments to interpolate the given data and to
approximate a given function. By reduced form, we mean thal the most coefficients of the
BB form of the curve are zero, which make the interpolation and approximation problem
by the zero contour of the bivariate polynomial as easy as the problem ol one variable
polynomials or rational functions.

It is well known that data interpolation and function approximation by one variable
polynomial or rational function is a classical and very well developed area in the fields of
approximation theory as well as CAGD. In contrast to this, interpolation and approximation
by the zero sets of bivariate polynomials is rather new [1], [2], [6], [4]), [5], and [7] and
relatively less results are available at Lthe present time. After overcoming the difficulties of
having singularities and discontinuity properties of the implicitly defined curves in part I
of this trilogy of papers, our main results in part II are the existence and uniqueness of the
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interpolation and approximation solutions, and explicit error bounds on the approximation.
The reduced form real algebraic curves we use in this paper have the following advantages:

1. They are non-singular and without discontinuities

2. The curve (that is the polynomial coefficients) can be generated as easily as the
classical polynomial or rational function.

3. Unlike the polynomial rational functions, the curves are always located in the given
domain. Hence the approximation errors are controllable within the domain of interest. This
is significant and in contrast to the Runge phenomenon of classical polynomial interpolation.

In sectior 2 of this paper, a concept of transversal family corresponding to the concept
of discriminating {family of paper I is introduced and some transversal families are given.
This concept is important because a pair of discriminating family and transversal family
serves as an zy coordinate system within the domain of interest In section 3, we introduce
three reduced form curve classes which are subset of the regular curve segments introduced
in [8). Then in section 4, we find the corresponding three classes of smooth curves which
can be approximated by the reduced form curves. In section 5, we reduce the interpolation
and approximation problems to the classical ones, and hence every problem proposed above
has rational polynomial-like solutions. Section 6 gives explicit formulas for the solution of
the interpolation and approximation problems. The last section consider the error bounds
of the approximants.

2 Definitions and Preliminaries

We introduced the concept of discriminating family in the earlier paper [8]. Corresponding
to this concept we now introduce the concept of a transversal family.

Definition 2.1. Let D(R, Ri, R») be a given discriminating family, and T(R, R}, R}) =
{T(z,y) = p(z,y)~tv(z,y) = 0: t € (—o0,00)} be an algebruic curve family with ¢ being a
linear parameter, v(z,y} > 0 on B\ {Ry, H} and R] and R; being two open(no end poinis)
boundaries of R. If .

1. 3R\(R1 URz) = Ri URE and R'; ﬂR’z =0.

2. Each curve in 1" passes through I} and Rj.

3. Each curve in T is D(R, Ry, Rp) regular.

4. For¥p € B\{Ry, Iz}, there ezists one and only onet € (—o0,0) such that Ty(p) = 0.
Then we say T(R, By, Ry) is a lransversal family of D(R, Ry, R;), where O stands for the

boundary.

The following are transversal families corresponding to the discriminating families Dy, Ds
and D; introduced in [8]:

(A) Ty([pop1pal, (pop2), (P1p2)) = {Bf(aa)t — Bi(es) + Bi{az) = 0:t € (—oo, o)} is a
transversal family of Dy([popip2], P2, [pop1])(see Figure 2.1(a)).

(B} T3([pop1paps), (pop2), (pips)) = {Bi(u)t — Bi(u) + Bj(u) = 0 : t € (—c0,00)} is a
transversal family of Da([pop1p2pal. (Pop1], [P2pa])(see Figure 2.1(b)).

(C) Ta([pop1p2pal, (Pop1] U [p173)s (Pop2] U p2ps)) = {[u(l—v)+ (1 —w)o)t ~(1—u—2) =
0: 1€ (—o0,00)} is a transversal family of D4([pop1p2psl, po, p3)(see Figure 2.1(c)).

For the discriminating family D1([pop1p2], 1, p2); To([poprpe], (pop1), (pop2)) = {(0f +
maz)t — a3 + af = 0:¢t € (—00,00)} is one of its transversal families. However, we do
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Figure 2.1: Discriminating and transversal families.

not use the D3 regular reduced form curves, since the Iy D3 and Dy regular reduced form
curves provide enough choice in the applications.

Given a discriminating family D = {A;(z,y) = 0} and its transversal family T =
{B«(z,y) = 0}, we are given in fact a map between R\ {&;, R;} in zy-plane and the strip
[0,1] X (—00,00) in the si-plane. Since s and ¢ are linear parameters in A,(z,y) = 0 and
By(z,y) = 0, respectively, they can be written as

= ol = 724

8(x,2 2.1
Bz, y) = %ﬁ—ﬁ% (1)

where o and § are well defined rational functions on R\ {R;, Ry}. For our three pairs of
families we have the following transform:
(A). M(D1([poprp2], 22, {pop1])s Ta([pop1p2), (Pop2), (P172))) is given by

an

M(D,T):{ :

Bh(en) = Bien) (22)

i
B} ()

and its inverse M( Dy([pop1p2], p2, [pop1]), Ti([pop1p2), (pow2), (p1p2))) ! is given by

wols,8) = (1—s) (1 _ 1 )

\/11 +£2 411
ai(s,t) = 3(1— TR 12 (2.3)
w0 = eEm i
(B). M(Ds([pop1p2pal, [pop1]: [p223)]): Ta([pop1p2pals (Pope), (m1p2))) :
: ; Bi(u) - Bi(u) (2.4)

B}(u)

and M(Da([pop1p2ps]: [Pop1), [p2ps]), Ta([pop1p2pa), (Pop2), (p1p3)))~2 is given by

1
{u(s,t) T VIrg+l-d (2.5)

v(s, 1) =




(C). M(Das([pop1p2p3], Po» P3), Ta{[pop1p2p3], (Pop1] U [p1p3), (Pop2] U [p2ps))) ¢

u(l — v)
u(l— 'u) + (1 —u)v (2.6)

l-u—-w

w(l—v)+(1—u)w

M(Da([pop1p2p3); Po» p3), Ta([pop1p2ps]: (Pop1] U [p12a), (pop2] U [p2pa))) ' is
2s

t+25+ \/12('{- 45381 - 5) (2.7)

"ot = a9+ BT EI)

where (u,v) are defined by the limit when s = 0 or s = 1. That is

w(0,8) = 0 _ ¢
1 itz Ut = 7 it 1< (2.8)
v(0,1) = PERE »(0,1) = 1,
and 1 (1,1)
_ u(l,1) = 1
wl,l) = 3 it 1> 0; o if t<0 (2.9)
v(1,1) = 0, oL, =

3 Reduced Form Algebraic Curve

The reduced form algebraic curves are a special form of the regular algebraic curve segments
discussed in [8]. In this special form, we take most of the BB-form coefficients to be zcro
and arrange the nonzero coefficients on the horizontal lines(see the dots in Figure 3.1(a))
or on the vertical lines(see the the dots in Figure 3.1(b)) or on the diagonal lines(see the
dots in Figure 3.1(c)). That is, we deline three reduced form curve classes: horizontal form,
vertical form and diagonal form.

A. Horizontal Form HT,,. This class is a subset of D1([pop1p2], p2,[pop1]) regular curves
defined by:

HTyn ={ F(aﬂsaha2) =0 : (ag, @1, 2)7 € [pop1p2] \ {p2, [Pop1]},

2 m—1
= m+1 m
Zﬂ Bm_ilill(an, al,a2) m(m + 1) z wi Bm 11—t ‘2(“03 o, 32)
m+1 m—1 ; C-"' C ~ .
+ Z ’Bzii —f,t, 0(050,051,(1'2), z w:'B?l_I > 0, w: = Z __L__Z___J }
1=0 =0 PP n+1

Where w} are given by degree elevation formula so that 30! w; B~ = Sl ol g+t

Then by Theorem 3.1 of [8], we know that F(ag, a1, a;) = 0 is a Dy([pop1p2), P2, [Pop1])
regular curve in the triangle [popipe] for any f;, ¢ = 0,1,...,m. The curves in HT,, are
between p; and [pgp;] and away from them(see the curve in Figure 3.1(a)).
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Figure 3.1: Reduced {form algebraic curves

B. Vertical Form V.5,,. This class of curves is a subset of Da([pop1p2ps), [pop1], [p2p3])
regular curves defined by:

V8a={ Flz,v)=0:0<u<l, 0<v<1, F(u,v):Bf(u)iﬁ;B}“(v)

HBR() - B - wiBr (o), 3w >0 )

It follows from Theorem 3.3 of [8], the curve F(u,v) = 0 is Da([pop1p2pal; [pop1], [Pap3])
regular. The curves in this set are between {pgp:] and [papa] and away from them(see the
curve in Figure 3.1(a)).

C. Diagonal Form DS,,. This class of curves is a subset of Dy{[pop1p2pa], po, p3) regular
curves defined by:

DS8m ={ Fu,v)=0:(u2)7 #0,07,(0,1)7, Fz,0)= iwﬂsBE"(u)Bﬁ_;(v)

m—1 m—1 m—1
=Y bwi B (w) B i1 (v) + D mwiBh (w)Bm_i(v), D wi BT >0}
=0 1=0 1=0

where v; = 1/CL, §; = CL_,/(CICL), m = C_, /(CHC™=1), By Theorem 3.4 of [8],
the curve F' = 0 is D4([pop1p2ps], po, pa) regular. The curves in DS, are between py and
p3 and away from these two points(see the curves in Figure 3.1(c)).

In the definition of these curves families, the parameters §; are free but 320" w; B/*(s)
> 0 on [0,1]). If we cannot guarantee this condition in the interpolation and approximation
problems, we can simply take w; = 1. However, we then lose m — 1 degrees of freedom.

4 Approximation of Curve Classes

We have defined three classes of regular algebraic curves in §3. Each of them have different
features from the other. These different features make each of them suitable for approx-
imating different curve classes. In this section, we define these curve classes. We assume
that the curves we consider are always smoolli. Thal is we always assume the function
f(z,y) is C! continuous in some region R in which the curve f{z,y) = 0 lies.
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Let D(R,R1,R;) be a given discriminating family. Then the approximation class
corresponding to D(R, R, Ry) is the collection of curves that intersects each curve in

D(R, Ry, R;) once and only once. Denote this class by A(R, Ry, B2). The curve in A(R, Ry, R3)

has the following features:

1. It is smooth in B\ {R1, R2}.

2. It is away from R; and Rj.

3. If the point p in R\ {R;, Rz} is on the curve a(z,y) = 0 € A(R, Ry, ;) and the
curve d(z,y) = 0 € D(R, Ry, R;), then the two curves are not tangent at p.

For a given curve e(z,y) = 0 in A(R, Ry, #2) there may be infinitely many functions
e(z,y) that have the same zero contour. We shall show that all these functions can be
represented by one single function f € C'[0,1]. We say a(z,y) and f(s) are cquivalent in
defining the curve. Here C1[0,1] is the set of all C! continuous functions on [0, 1]-
Theorem 4.1. Lel D(R, %), Ry) = {s = a(z,y) : s € [0,1]} be a discriminating family.
T(R, R}, R) ={t = B(z,y) : t € (00,00)} be a transversal family of D(R, R1, R2). Then
a(z,y) = 0 € A(R, Ry, R3) if and only if there ezisis an unique f € C1[0,1] such that the
curve a(z,y) = 0 is equivalently defined by B(z,y) — f(a(z,y)) = 0.

Proof. Let a{z,y) = 0 € A(R, R1, R2). Then by the definition of A(R, R;, Rs), we know
that for any s € [0, 1], the curve s = a(z,y) € D(R, R1, R2) will intersect with a(z,y) = 0
only once in R\ {Ry, R2}. Let (z(s),y(s))T be the intersection point. Then by implicit
function theory, z(s) and y(s) are C! continuous functions of s and (z(s), y(s))¥ &Ry U R;.
Let f(s) = B(=(s),¥(s)). Then f € C1[0,1]. Now for this f, 8(z,y) — f(a(z,y)) = 0 define
the curve a(z,y) = 0 since (z(s), 7(s))7T satisfies the equation. It is easy Lo see that this f
is unique. Hence the necessary part of the theorem is proved.

Let f € C[0,1], then a(z,y) = B(z,v) — f(edz,y)) is clearly C? continuous on R \
{R1, R2}. For any given s € [0,1) the curve 3 = a(z, y) intersects with e(z,y) = 0 at a point
(z,7)7 that satisfies (2.1) with ¢ = f(s). Hence, there exist unique (z,y)7 € R\ {Ry, R2}
that satisly (2.1). Since

Va=Vg-Vaf (4.1)

then by the definition of the transversal family, we know that Va # 0. That is the curve
a(z,y) = 0 is smooth. Since Va and V3 are linear independent, (4.1) also implies that Va
and Ve are linear independent. That is the.intersection is only once. Therefore a(z,y) =
0 € A(R, Ry, Rp). ©

This theorem gives an invertible mapping from A{R, R, Rz) to C'[0,1] that maps a
zero contour ae{z,y) = 0 € A(R, R1, R2) to a function f € C[0,1]. We dencte this map by
M(e=0)= /.

Tor the three cases we considered, that is the horizontal form on a triangle, the vertical
[orm on a square and the diagonal form on a square, we denote A(R, Ry, R3) as HT, V5,
and DS respectively.

5 Interpolation and Approximation

We consider now the main problem: interpolation and approximation by the reduced form
algebraic curves. By interpolation, we mean that we are given a set of data points, we wish
to construct a curve to interpolate (or approximate) these points. For ihe approximation




problem, we are given a smooth curve in A(R, R, R;) and then wish to construct an alge-
braic curve to approximate it within some eror norm. The interpolation and approximation
for a given curve a(z,y) = 0 € A(R, Ry, R;) will be realized by the following steps:

1. Find f € C'[0,1], such that M({a=0) = f.

2. Determine the interpolant or approximant ¢ € C'[0,1] of f in C[0,1).

3. Determine b = 0 € A(R, I, Ry) such that {b(z,y) =0} = M~ (b=0)=g.
Then & = 0 is the approximation of the curve @ = 0. As we shall see in the following, the
problems of determining g in the second step will be led to a rational polynomial problem.
That is, determine the coefficients 8;,¢=0,1,...,m and w;, ¢ =0,1,...,m — 1, such that

21 BBl (s)

o wiB(s)

= 1(s), (5.1)

approximately on some points or for all s € [0,1] and 2 known function #(s) € C'[0,1).
Now we show how to obtain the problem (5.1) from our reduced form algebraic curve
interpolation and approximation problems.

5.1 Equivalent Problems

A. Horizontal Form HT,,
Using the first equality of map (2.2), curve f(oq, 01, a2) defined in HT), can be writlen
as Fag, a1, az) = (1 — a2)""1G(s, 1) with

G(s,1) = Bf(az)iﬁfBF‘(S) — (Bj(as) - Bﬁ(ﬁz))ﬂi wi B (s). (5.2)

1=0 i=0

Since 0 < @z < 1, the curve F(ap, a1, as) = 0 is equivalently defined by G(s,t) = 0. By
the second equality of the map (2.2), G(s,t) = 0 can be written in the form (5.1} since
B2(ea2) > 0 on (0,1).

B. Vertical Form V.5,
In V&n, G(s,t) = F(u,v). Hence G(s,t) = 0 can be written in the form (5.1)(see (2.4)).

C. Diagonal Form DS,
By map (2.6), we can write F(u,v) defined in DS,, as

Flu,v)=[e(l —v)+ (1 - u)o]""1G(s,1) (5.3)
where

G, t)=[w(l-v)+(1 - u)v]iﬁ;B}“(s) ~(1-u-9) mz—: w,-B:-“_l (s) (5.4)

=0 =0

and z and v are defired by (2.7). Since (u,v) # (0,0), (1,1), 2(1~2)+(1 —u)v > 0. Hence
F(u,v) = 0if only if G(s,¢) = 0. By the map (2.6), G(s,1} = 0 can be written as (5.1).




5.2 Rational Interpolation and Approximation

We have achieved the problem of determining the coefficients 3; and w; such that (5.1)
holds, where (s,£)7 is related to (z, )T by the known map (2.1). Hence interpolation and
approximation problems can be solved as classical rational ones.

A. Hermite Interpolation. Suppose we are given some points with derivatives in the
domain we are considering:

(=7, v(z3) ¥z, 3% (g3), 7=0,1,...,m (5.5)

or (35, =(y;), zM(y;),..., 2% y;)), 7=0,1,...,n, such that s; = afz;,y;) are distinct
and i
z ki+122m (or m+1if w; are fixed) (5.6)
J=0 )
From the discussion above, s; distinct means thal (z;,y;) is separable by the corresponding
discriminating family. That is, each curve in the discriminating family contains at most
one (z;,y;). Then by (2.1) we can compute the points {s;,#(s;), {1}(s;), ..., tHi}(s;)}, 7 =
0,1,...,n. For example, if (5.5) is given, then

si = als;y(z))), Usi)=Blasu(es) (ss) = |L+ Ly'(e;)] 22
2 2 7 2 i -y T
) = [5R+ 2R e+ BRWG)? + v e)] B+ [+ Bv(en)] B

where g—j, g—zi", ... are determined by differenting s = a(s, y). That is

1= (%2+3y()) &
0 = [a=a+232a '(z;) Bag e W2 Ba . \] Oz Ba 4 Ba ir. 3] 82z
= |8zF 3z039 \Ti) T+ 57 ¥ (=) + Fy ¥ (25) 5s 1T |oz T ay ¥ (z;) 3%

It is clear that g;f is well delined if g—g + %y’(zj) # 0. The geometric meaning of this

requirement is that the curve constructed is not tangent with the curve in the discriminating
family at the interpolating points. Differentiating (5.1) about s, we get a linear system of
equations

d 2i=0 Bi B (s; di(1 55) E:.’l—l w'.B'gnr-l 5. -
( Odse J))= (¢(s; _06':5‘g (J));E:0=1,--.,k_,-,_7=0,1,_._,n

with 5; and w; as unknowns. This is a classical Hermite interpolation problem. Under
condition (5.6) it can be solved in the least squares or Chebyshev sense. If we interpolate
two points, the highest order smoothness we can achieve is C™1.

If the points (5.5) come from a curve that is in the corresponding approximated curve
class discussed in §4, then the interpolation error formula for the function #(s) can be
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used. Of course, some good behavior interpolation scheme, such as Fejér interpolation,
or interpolation on Chebyshev points, can be used here. In summary, there are plenty of
methods and any of the results for rational or polynomial interpolation can be used here.

B. Approximation

Given a curve in the corresponding class defined in §4. Then in each case, the map (2.1)
leads us to a function ¢ = (s) € C[0,1), and the approximation problem is transformed
Lo determine the coefficients, such that (5.1) holds. In any case as discussed before, i(s)
is always a well defined C! continuous function. So we are led to the classical rational
approximation problem, and related methods and results can be used.

Hence we have proved the following theorem:
Theorem 5.1. The interpolation and approzimation problems of the curves in the approz-
imaled curve classes by the curves in the reduced form curves classes always have unique
solutions.

6 Explicit Formulae

After the coeflicients f8;, : = 0,1,...,m and w;, ¢ = 0,1,...,m — 1 are determined by
solving the equivalent problem (5.1), it becomes necessary to give explicit formulas for the
curve F' = 0 in the three cases we discussed. These formulas are important lor the error
estimation in the next section as well as serve for evaluating the curve at several points.

Let tm(8) = TiZo BiBI'(s) /| Tite wiB'™(s).
A. Horizontal Form HT,. From (5.2), it is easy to find that

a;(s) = ai(s,tm(s)), 1=10,1,2 (6.1)
where a;(s,t) is explicitly defined by (2.3).

B. Vertical Form VS,,. Since G(s,t) is in the same form of (5.2}, then we have

1
{ T T G+ L~ t(s) (6.2)
v = s
C. Diagonal Form DS,,. Irom G(s,t) =0, where G(s,1) is defined by (5.4), we can
obtlain
u(s) = u(s,tm(s)) .
{ os) = olsitn(s) G

where (u(s,1),v(s,1))T is defined by (2.7).

7 The Errors of Interpolation and Approximation

TFrom the discussion of Section 2 and Section 4, the interpolation and approximaiion prob-
lems by the reduced form algebraic curves lead to the classical rational interpolation and
approximation problem. We assume some interpolation and approximation method is used
and the error bounded is known. For example, if we do exact polynomial interpolation,




the Lagrange remainder formula can be used. If we do Chebyshev approximation, then
Jackson theorem [3] for the approximation order can be used. If we use Chebyshev series
expansion, then Dini-Lipschitz theorem can be used [3]. Our purpose is to get the error
bound of algebraic curve interpolation or approximation from the known error bound for
rational interpolation and approximation.

7.1 Errors in the Unit Triangle and Square

Note Lhat our original curves considered are on the triangle or quadrilateral, and are trans-
formed into a strip § = [0, 1] X {(—o00, ). The interpolation or approximation is done in
§. So we first determine the error in the unit triangle [0, 0)T(1,0)7(0, 1)T] or unit square
[(0,0)T(1,0)7(0,1)T(1,1)7] for the given error in 5. In § we have the uniform problem
(5.1). Let En(s) = tm(s) — i(s) be the error of (5.1). In order to estimate the error in
the unit triangle or unit square, we need to treat the difference of functions in the form
“\/TT;-IT—:(SEE (2.3), (2.5) and (2.7)). Hence we introduce the following lemma:

Lemma 7.1. Let ¥(y,a,b) = m a>0, b>0. Then ¢/(y,a,b) > 0 achicve ils

; 2 w — 1edfap Va2 / -
mazimal value T Ty at y* = 3(Va?b ab?) and ¥'(y,a,b) decrease to zero mono

tonicitily on (y™, ) and (—00,y") when y — oo and furthermore,

1 a
: 2 17 _ = : 2407 - =
Jm g% (ga.b)= 5, lim y%(y,a,b) = o (7.1)

Proof. Since
bvaty®—y)

Ve + 2(Va+ gt + b —y)?’

we know that ¢'(y,a,b) > 0, and ¥'(y,a,b) — 0 as y — Loo, and (7.1) holds. Now we show
that g~ is the only zero of ¢“(y, a,b) = 0. It follows from %"(y,a,b) = 0, we obtain

ab (\/tm+b—y) =2(y—\/ab+y2)2\/ab+y2 (7.2)

w’(yT a'.! b) =

That is
(ab+ 4y*)\/ab + 42 = ab® + Jaby + 44° (7.3)
Take square, we obtain :
2 _ .2
ab® — a?b? 4 Gab®y + 803> =0, or ¢° + %by + Eb—sa—q =0 (7.4)

2 3 2
Since the discriminate of this equation A = (%é) + (“Tb) = (%}fﬁ) > 0, it has
only one real root 3 (Vs a2h — v abz) = y=. Now we compute ¥'(y",a,b). Since ¢ + y~ =
L(Va2b + Vab?)?, from (7.2) we have
a? 2

4(Vaty?— g Plety)aty? (Va+ VbP

¥ (¥, a,b) =
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Hence the lemma is proven. o

Case 1: In (2.3}, (6.1), (2.5) and (6.2), e = b = 1, then y* = 0 and ¥'(y",a,b) = 1.

Case 2: In the first equation of (2.7) and (6.3), ¢ = 2(1 — s), b = 2s, then ¥y~ =
V(1 - 5)2 = ¥s*(1—s)

Py e, b) = @(s), #(s)=

1
s+ VT=oF

It is not hard to show that + < ¢(s) < 1.
Case 3: In the second equation of (2.7) and (6.3), ¢ = 23, b = 2(1 — s), then 3~ =
AT=9) - YT Vs and $/(3",,6) = 4(s).
Therefore we have the following theorem:
Theorem 7.2. For a given function t(s) € C[0,1], let im(s) be ils approzimation and !
En(s) be the approzimation error. Let ko(a,b,c,d) = maxyerq ¥'(y,0,8), K1(a,b) = i

TFRNTTED )1(1+|b] and xo(a,b) = m“”{ﬂlm’ ﬁm} Then
(t). In HT and HTy,, let Ea;(s) = a;(s,1(8)) — a:i(s, tn(5)), we have

|Eao(s)] < o1, 1,(s), tr(s))(1 — 8) Em(s) < 1;—8Em(s) (7.5)
|Ear(s)] < ko(1,1,2(8), 1n(8))5Erm(8) < > Epn(s) (7.6)
[Bag(s)| < #o(1,1,4s), tml5)) Eun(s) < 3 () (7.7)

(ii)) In VS and V Sy, let Eu(s) = u(s,t(s))—u(s,tn(s)), Ev(s) = v(s,1(s))—v(s, tn(s)), '
Eu(s)] < wo(L,1,4(s), tm(5)) Em(s) < %Em(f‘)a |Ev(s)] =0 (7.8)
(i) In D§ and DS,,, if s € (0,1), we have

|Bu(5)] < Ro(2(1 = 5),25,1(5), tm(5)) Brn() < Eim() (1.9)
| Ev(s)] € x0(28,2(1 — 8),1(8), lm(5)) En(s) £ En(s) (7.10)

Ifs=00rs=1,
|Eu(s)], |Ev(s)| < £1(4(5), tm(8)) Em(s) € En(s) if t(s}m(s) >0 (7.11)
| Eu(s)|, |Ev(s)| £ x2(2(3), tm(8))Em(s) € En(s) if 1(s)ta(s) <0 (7.12)
Proof. (7.5)-(7.7) follows from (2.3) and and Lemma 7.1. (7.8) follows from (2.5) and (7.9)
and (7.10) follows from (2.7). From (2.8) and (2.9), we get (7.11) and (7.12). <
In this theorem, the error in the standard triangle or square are bounded by the error

in the strip with a factor xp or &; or x3. This factor has compression property. That is, kg
and Ry go to zero quadratically as #(s) and ¢,(s) tend to oo while x2 goes to zero linearly.
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7.2 Errors in the Original Domains

Now we consider the errors in the triangle or quadrilateral. For given a domain R, a
discriminating family D(R, RB1, R2) = {s = az,y) : s € [0,1]}. Let A(R, Ry, R2) be the
approximated class. The error between two curves f =0, g = 0 in A(R, R;, Ry) is defined
by
dis(f,g)= sup ER(f,g,s) (7.13)
s€[0,1]

where
ER(f,9,5) = ||ps(s} — py(s)l| (7.14)

and py(s) is the intersection point of f = 0 and s = a(z,y). It is easy to see that dis(f, g) >

h(f,g) where h(f,g) = max{sup,c -ginfoes=0!llp — dl|, suPqeqg=ninfpes=allr — ¢||} is the
Hausdorff distance between f = 0 and g = 0. Now we estimate dis( f, g) for the three cases

constdered,
A. Error in HT. Lel f =0€ HT, f, = 0 € HT,, be the approximation of f = 0. It
follows from (7.5)~(7.7) that

ER(f, fny 8) £ 7(8) Era(4(5), tm(3))

where

1 -
= - — e — T _ [ Po 1 P2
(s) = 4\'/[1 8,8, 1JT7T[1 — s,5,1]7, T_[ 0 PP ]

Therefore

dis(f, fm) < max, 7(s) max | En (3(8), tn{s))]

B. Error in VS. Let f € VS, fn € V&, be an approximation of f. Then the error
estimation in the unit square is provided by (7.8). Now by (2.2) of [8], we have

1
ER(f, fm.8) = Z”(PU + p3 — p1 — p2)s + p1 — pol| | Em(2(s), tm(s))]
and then
) 1
dis(f, fm) < 7 max{llp1 = poll, [lr2 - psll} s[&ao.)iNEm(t(S), tm ()|

C. Error in DS. Let f € DS, fy, € DSy, be an approximation of f. Then by (2.2) of [8]
and (7.9) we have

ER(f, fm) < i(llpo + 23 = 1= pall +llp1 = poll + 1Pz — PolD)| Es(2(5), tm (5))]
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