
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1995

Parallel ELLPACK Elliptic PDE Solvers Parallel ELLPACK Elliptic PDE Solvers

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

S. B. Kim

S. Markus

P. Wu

N. E. Houstis

See next page for additional authors

Report Number:
95-042

Houstis, Elias N.; Kim, S. B.; Markus, S.; Wu, P.; Houstis, N. E.; and Weerawarana, S., "Parallel ELLPACK
Elliptic PDE Solvers" (1995). Department of Computer Science Technical Reports. Paper 1217.
https://docs.lib.purdue.edu/cstech/1217

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Authors Authors
Elias N. Houstis, S. B. Kim, S. Markus, P. Wu, N. E. Houstis, and S. Weerawarana

This article is available at Purdue e-Pubs: https://docs.lib.purdue.edu/cstech/1217

https://docs.lib.purdue.edu/cstech/1217

Parallel ELLPACK Elliptic PDE Solvers

E.N. Houstis, S.B. Kim, S. Markus,
P. Wu, N.E. Houstis, A.C. Catlin and

S. Weerawarana
Computer Sciences Department

Purdue Unlversity
West Lafayette, IN 47907

CSD-TR-95-042
June, 1995

Parallel ELLPACK Elliptic PDE Solvers

E.N. Houstis, S.B. Kim, S. Markus, P. WU, N.E. Houstis, A.C. Catlin, S. Weerawarana·
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907, USA.

T. S. Papatheodorou
CTI

Greece.

June 19, 1995

Abstract

Parallel ELLPACK [35, 61] is a machine independent problem solving environment (PSE)
that supports PDE (partial differential equations) computing across many hardware plat
forms. In this paper we review parallel methodologies based on the "divide and conquer"
computational paradigm and their infrastructure for solving general elliptic PDEs. Partic
ularly, we describe those that have been implemented and tested in the parallel ELLPACK
PSE. Moreover, we describe two parallel frameworks that allow the reuse of the discretization
part of the sequential elliptic PDE solvers. Numerical results indicate the effectiveness of the
reuse frameworks implemented.

1 Introduction

Computational models based on partial differential equation (PDE) mathematical models have been
applied successfully over the last 50 years to study many physical phenomena and design a variety of
artifacts. The overall quantitative and qualitative accuracy of these computational models in represent
ing the physical situations or artifacts that they are supposed to simulate, depends very much on the
computer resources available. The recent advances in high performance computing technologies have
provided an opportunity to speed up significantly these computational models and increase dramatically
their numerical resolution and complexity. The purpose of this paper is a) to review the various par
allelization techniques proposed to speed up the existing computational PDE models, that are based
on the "divide and conquer" computational paradigm and involve some form of decomposition of the
geometric or algebraic data-structures associated with these computations and b) to formulate parallel
methodologies that are capable of reusing parts of the sequential PDE solvers. For simplicity of this
exposition we focus on computational models derived from elliptic PDE models and implemented in the
Parallel ELLPACK PSE. Most of the parallelization techniques presented here are applicable to general
semi-discrete and steady-state models. Specifically, we consider PDE models consisting of a PDE equa
tion (Lu = f), defined on some region and subject to some auxiliary condition (Bu = g) on the boundary
of (0 (= an». It appears that one can formulate many (thousands) computational models to simulate
the above general mathematical model, depending on the approximation technique selected to discretize
the domain of definition, the PDE equation and boundary conditions, or the PDE approximate solution.

·This work was supported by NSF granls 9123502-CDA and 92022536-CCR, 620-92-J-0069 and ARPA g:riLllt DAAH04.
94.-G-OOIO.

1

In this article, we have selected to review parallel computational models based on the most popular
discretization techniques, such as finite difference approximations of Land B and piecewise polynomial
(finite element) approximation of the solution u. In the parallel computational models considered, the
continuous PDE problem is reduced to a distributed sparse system of linear equations. Depending on the
type of the PDE operators Land B and the simplicity/regularity of the PDE region, the corresponding
finite difference or finite element system of equations can be solved by general or rapid parallel algebraic
solvers. Following, we discuss the various proposed parallel methodologies for the implementation of
these two classes of PDE solvers on a virtual parallel machine environment. We have selected to cite the
associated research results that have already led to some parallel implementations that are available, or
very close to appear, in the form of commercial or public domain software.

2 General Elliptic PDE Solvers

The plethora of numerical elliptic PDE solvers can be distinguished and classified by the levels of
grid(s)/mesh(es) used to approximate the continuous PDE model (i.e. single or multi-level), the
refinement of the grid as a function of the discretization error in an intermediate computed solution (i.e.
static or dynamic (adaptive)), and the implementation structure of the PDE software (i.e. multi·
segment or single-segment). In this article we have selected to review the parallelization techniques
proposed for single-level grid elliptic PDE solvers implemented in multi-segment (general case) and
single-segment form (rapid case). Some of the parallelization approaches presented here are easily ap
plicable to multi-level elliptic PDE solvers. An overview of parallel multi-level methods can be found in
[8], [9), [48]. The parallelization of adaptive elliptic PDE solvers is a much harder problem. A discussion
of the issues and results related to parallel adaptive techniques for elliptic, parabolic and hyperbolic
problem can be found in [22] and [23]. The following discussion is focused on parallelization techniques
that allow both to reuse existing ("legacy") PDE software parts and provide a template or framework
to build new parallel PDE software.

2.1 Parallelization Methodologies for "Legacy" Elliptic PDE Software

There is significant state-of-the-art "legacy" software for elliptic and parabolic PDEs. It represents
hundreds of man years of effort which will be unrealistic to expect to be transformed by "hand" (in
the absence of parallelizing compilers) on some virtual or physical parallel environment. The "legacy"
software can be classified in two large classes. The first class contains customized PDE software for
specific applications. An example of a such software is PleES. This software is usually difficult to
be adopted for the simulation of an alternative application. The second class contains PDE software
that supports the numerical solution of well defined mathematical models which can be used easily to
support the simulation of multiple applications. The first class tends to be application domain specific,
thus the parallelization efforts and results appear in many diverse sources. In this article we review tile
parallelization techniques proposed for the second class of PDE software. Table 1 lists some of the public
domain "legacy" software that is available in the parallel ELLPACK system (36]. It's worth reminding
the reader that the majority of the code of each PDE system is implementing the geometric and the
PDE model discretization phases. This tends to be the most knowledge intensive part of the code. The
rest of the code deals with the solution of the discrete finite difference or finite element equations. This
phase is well understood and many alternative solution paths exist. We review those efforts that have
already been implemented in the form of software. In Table 2 we summarize the above observations
and in its last column we estimate the parallelization effort needed to convert or re-implement the
components of the "legacy" PDE code into some parallel environment "by hand" From this analysis,
it is clear that any parallel methodology that attempts to reuse the PDE discretization software parts
is well justified. Following, we describe three parallel methodologies that are based on some "optimal"
partitioning of the discrete PDE geometric data structures (Le. grids and meshes). Figure 1 depicts
these three decompositions approaches for a two dimensional region and message passing computational
paradigm. The two left most paths in Figure 1 depict methodologies that support the reuse requirement.

2

Name Reference
ELLPACK [52]
//ELLPACK [34, 35J
FIDISOL [55]
VECFEM [30]
CADSOL [54J
PDEONE [60J
PDECOL (43)
PDETWO [59]
MGGHAT [49]

Table 1: POEpack: Public domai.n "legacy" POE software

The third path provides a framework to develop new customized parallel code for the discretization
part of the POE computation. All three approaches assume the availability of parallel linear solvers
implemented on distributed algebraic data structures obtained through an "optimal" partitioning of the
corresponding PDE geometric data structures. In this article we have selected to review compatible
linear parallel solvers that correspond to a parallel implementation of existing sequential counterpart
on the assumed distributed data structures. Next, we elaborate on these approaches and indicate the
required infrastructure.

2.1.1 An Off-Line Reuse Parallel Methodology for "Legacy" PDE Software

Figure la depicts an off-line approach, referred to as M+ , which assumes that the discretization of the
POE model is realized by an existing sequential "legacy" POE code, while it goes off-line to a parallel
machine to solve the system of discrete equations. For the parallel solution of the discrete POE equations,
a decomposition of the sequentially produced algebraic system is required. It can he either implicitly
obtained through a decomposition of the mesh or grid data or explicitly specified by the user. Then, the
partitioning system is down-loaded on the parallel machine. This is the most widely used methodology,
since it allows for the preservation of the most knowledge intensive part of the code and for speeding
up the most computationally intensive one. The obvious disadvantage of this approach is the memory
bottleneck of the sequential server. To address this problem various off-line pipeline techniques have
been proposed. The current version of the parallel ELLPACK system includes a software tool to support
this methodology for the "legacy" software listed in Table 2. The tool is self contained and can be used
for any PDE software and virtual parallel machines supported by standards such as MPI [29]. The input
to this tool consists of the linear system and a partitioning of the associated matrix. The partitioning of
the matrix. problem can be obtained either explicitly by decomposing the matrix graph or implicitly by
decomposing the discrete geometric data (i.e. mesh or grid). A comprehensive overview of the explicit
matrix partitioning techniques and their performance evaluation can be found in [15]. Earlier results on
the mapping of matrix system computations to parallel machines are reported in [27] and [3]. In section
4, we review a number of geometry partitioning strategies used to implicitly decompose the PDE matrix
problem.

2.1.2 A Parallel Framework for Building New PDE Software

Figure Ic corresponds to a framework for developing customized POE software. It is defined by a set of
pre-defined decomposed geometric and algebraic data structures and their interfaces. The decomposition
of the PDE data structures is chosen so that the underlying computations are uniformly distributed
among processors and the interface length is minimum. Later, we review the proposed geometric and
matrix decompositions to support this framework. This parallel framework has been used by many
researchers to implement POE based applications [1], [20J, [31], [46], [50], [58]. Also, this framework

3

DeC:O~08e
]);:mmin

Disc:retiz.e PDE problem
Sequentia.lly

Matrix Partitioning
U,ing M+

DiBcretize PDE problem
U,iog Dr Mei:lDdology

Parallel diacretiz.a.tioD
Fmrnework

Excha.nge: Inmrfac:e Algebm:ic; Infcm:etion

Solve
Linmr SjIlrern f--,

in Pamllel

Figure 1: Three domain decomposition based parallel methodologies for elliptic PDEs. The left path
(a) depicts an off~line parallel approach for solving the sequentially generated PDE equations, the center
path (b) depicts an on-line non-overlapping domain decomposition approach capable of reusing existing
discretization PDE software, and right path (c) depicts a framework for developing new parallel PDE
software.

4

Components Computational Intensity Knowledge Intensity Paralfelization effort
Geometric discretization D(N) Very High Significant
PDE model discretization D(N) Very high Significant
Solution D(Na), l < a ~ 3 Well understood - High Relative easy
Solution graphical display D(N) High Specialized hardware

Table 2: The complexity of the elliptic PDE software parts and an estimate of the parallelization effort
needed to implement them in some parallel environment, where N denotes the size of the discrete problem

was used for developing general PDE software [36]. The parallel PDE solvers implemented on the above
framework are distinguished primarily by the way they handle the interface equations and unknowns.
An overview of the various parallel solution strategies proposed for handling the interface and interior
equations can be found in [I8].The simplest of these parallel strategies caUs for the implementation of
efficient sequential algebraic solvers on the framework data structures through the use of parallel sparse
BLAS [11] that employ message passing primitives to exchange or accumulate interface quantities and
carry out matrix-vector and vector-vector operations. The advantage of this approach is the fact that
no new theory is required. Such parallel PDE solvers based on certain instances of finite difference and
finite element schemes for elliptic PDEs can be found in / /ELLPACK system [36], [35]. These PDE
solvers are described in [40] together with their performance evaluation. This study indicates that they
can deliver significant speedups even for moderate size problems.

2.1.3 An On-Line Reuse Parallel Methodology for "Legacy!! PDE Software

In Figure Ib we illustrate a third methodology for developing parallel PDE software that supports the
reuse of existing PDE codes and attempts to address the shortcomings of the previous two. It is referred
to as D+. The basic idea of this approach is to use the mesh/grid decomposition to define a number of
aU,l\.iliary PDE problems that can be discretized independently using the "legacy" PDE codes. Depending
on the PDE operator and the approximation scheme used appropriate continuous interface conditions
must be selected to guarantee that the parallel on-line generated system of equations is complete and
equivalent (apart from round-oIT error) to the sequential discrete algebraic system. In some instances
a data exchange among processors might be required to complete the system of algebraic equations.
A software environment that supports the D+ approach for elliptic PDEs is available in / /ELLPACK
system.

3 Parallel Linear Algebraic Solvers for PDE Equations

All three parallel methodologies depicted in Figure 1, assume the existence of efficient parallel linear
sparse solvers implemented on a set of distributed algebraic data-structures. It appears that there are
many alternative parallel solvers that have been proposed and studied in the literature. Their detail
exposition is beyond the scope of this article. Some review articles already exist on this subject. Instead,
we discuss and reference those that are already available in the form of software and have been tested
for the parallel solution of PDE equations. One class of such solvers consists of the classical stationary
iterative methods. A software system realizing these solvers on portable message passing interface for
solving sparse systems arising from finite element and difference approximations is the / /ITPACK [39J.
The system consists of seven modules implementing SOR, Jacobi-CG, Jacobi-SI, RSCG, RSSI, SSOR
CG and SSOR-SI under different indexing schemes [41] and it is integrated in the / /ELLPACK system.
The code is based on the sequential version of ITPACK which was parallelized by utilizing a subset
of sparse BLAS routines [40]. The interfaces of the parallel modules, the assumed data structures
and its performance on several MIMD machines are presented in [40]. The system has been proven
to be very efficient for elliptic PDEs. Another class of iterative solvers are based on preconditioning

5

•
"".

I>

T = 450

-tVT.n = 0.1 (T-SO)
[Hr2~Flu:t]

Steel Concrete

VT· n= 0 [iUlul&1ed l

•
""•

Figure 2: Steady-state heat diffusion in a reactor

conjugate gradient (PCG) method. Several realizations exist in public domain. One such system is the
MPPCGPACK. Its modules are described in [56] together with their performance evaluation on 1024
nCUBE II machine. The software is commercially available through Scientific Associates Inc. It contains
parallel PCG based solvers for symmetric and non-symmetric systems for MIMD machines.The system
is integrated in j jELLPACK. Another PCG based software system for solving systems of sparse linear
algebraic equations methods on a variety of computer architectures is reported in [37]. This software is
designed to give high performance with nearly identical user interface across different scalar, vector and
parallel platforms as well as across different programming models such as shared memory, data parallel
and message passing programming interfaces. A template for the implementation of PCG methods on
a variety of machines is realized by the PIM 1.1 software system (16]. In this template, the user is
expected to customize the basic matrix-vector and vector-vector operations needed in the algorithm on
the intended target parallel environment.

4 The Performance of Three Parallel ELLPACK Solution Frame
works

In this section we attempt to estimate the overhead of the three parallel frameworks depicted in Figure
1. For this we have selected the following elliptic PDE problem.

The temperature distribution on a two dimensional slice of a reactor with a steel dome and concrete
base (Figure 2) is computed. The inside surface of the dome is initially 4500 K and the ambient temper
ature around the reactor is SO°K. It is assumed that no heat is lost through the bottom surface of the
dome or base. Since the problem is symmetric, we consider only the right half of the slice. We want to
find the temperature T such that,

V· k\lT= O,x E 0

Here k is the thermal conductivity, k = 30.62 in fh (steel) and k = 0.79 in O2 (concrete). The boundary
conditions for the interior and exterior surfaces are as follows:

VT·n=O

T=450

-k'VT· n = 0.7(T- 80)

where n is the exterior unit outward normal to an.
This problem was discretized by a linear finite element method (FEM) based on triangular meshes

and the system of the discrete equations was solved by JACOBI-CG parallel ITPACK solver (39]. Table

6

Reuse Machine Configuration
Approach 1 2 4 8 16 32

D+ (on line) 1.03 1.03 1.03 1.04 1.05 1.06
M+ (off-line) 1.03 2.03 3.96 7.63 14.20 26.77

Table 3: The disretization time ratios of the "on-line" and "off-line reuse BiLinFEM implementations
with respect to customized parallel BiLinFEM for different machine configurations.

1 shows the ratios of the discretization D+ and M+ times with respect to the customized paraUellinear
FEM method (BiLinFEM).

The data in Table 1 suggest that the D+ BiLinFEM reuse approach is as good as the customized
one. In the case of M+ reuse BiLinFEM, it is clear that the overhead depends on the performance of
the off-line computational server used. Its obvious advantage is that it requires zero-programming.

5 Discrete Geometric Data Partitioning Strategies

The parallel methodologies considered in this article are based on some decomposition of the PDE
discrete geometric data (i.e. grid or mesh). Without loss of generality, we discuss the various proposed
decomposition strategies in terms of finite element meshes. The conversion to the grid case is straight
forward. The formulation and implementation of this phase of the proposed parallel methodologies is
often done at the topological graph of the finite element mesh G = (V; E) of a domain il, where V
denotes the set of elements or nodes and E is the set of edges of G that represent the connectivity of
the vertices V with its neighbors. Throughout, we denote by d" the number of adjacent vertices to each
vertex v of V, D = {Di} the partitioning of G or domain il, N, the set of subdomains in D, and IVI = Nn

or Ne the size of the mesh or graph G. The mesh decomposition is usually defined in terms of several
optimality criteria [14}, [18], [63]. They include load balancing (the subdomains are of almost equal size),
minimum interface length (minimum number of common edges or nodes between subdomains), minimum
subdomain connectivity (minimum number of neighbor subdomains), minimum bandwidth of the local
matrix problem, and optimal aspect ratios of the subdomains (local matrix problem well conditioned).
The problem of graph partitioning based only on the first two criteria has been extensively studied and
found to be "hard". Thus, most of the proposed partitioning strategies are approximate (i.e. heuristic)
in nature. These heuristics have been found to be very costly even for moderate size PDE problems [40].
Two ''fast'' alternative strategies have been formulated for grid [40] and mesh [63] respectively which we
review later.

5.1 General Mesh Partitioning Heuristics

First, we discuss a set of well known and tested heuristics for the automatic partitioning of meshes
subject to the above listed optimality criteria and review some software tools available to assist the PDE
geometric data decomposition.

Neighborhood Search Schemes The first class consists of heuristics that are based on some neigh
borhood search scheme utilizing the connectivity information of the mesh graph G. For these schemes,
the partitioning of G is equivalent to the construction of a traversal tree from graph G. Two well known
neighborhood search schemes are based on depth-first search and breadth-first search [4]. If the traversal
order scheme remains fixed for the entire mesh graph G, then the searching strategy is called strip-wise.
In case the traversal order is allowed to change after the formulation of each subdomain Di, then the
search is called domain·wise [17]. The optimality of these searching strategies depends on the starting
vertex. It is usually selected as the one with minimum degree of connectivity that usually coincides with
a boundary node or element. It. has been observed that this selection effects the bandwidth (w) of the
coefficient of the associated finite element matrix. Moreover, it has been shown [19] that the maximum
partitioning interface C is given by the relation C = (N. *w)jNn . Another set of neighborhood search

7

heuristics are the ones used for bandwidth reduction of a matrix. They have been used by several re
searchers [26] ,[28], [45J, [51] to solve the mesh partitioning problem. One of the common disadvantages
of the neighhorhood searching strategies is that they often produce disconnected subdomains. One way
to prevent this from happening is to follow a traversal order that is based on the degree of connectivity of
the graph G. A well known such ordering scheme is the so called Reverse Cuthill-McKee [10], [25]. Other
graph-based mapping heuristics and their performance are presented in [3] and [53]. Various implemen
tation of these heuristics for finite element meshes and grids together with their performance evaluation
a<e ,epo,ted in [2], [11], [12], [13], [17], [63].

Spectral Search Heuristics According to these search schemes the vertices V are visited (sorted)
in the order defined by the size of the components of an eigenvector or combination of eigenvectors
of the Laplacian matrix L(G) of the graph G. The elements Li,j(G) of L(G) are defined [5] to be
+1 if (Vi, Vj) E E, -d; if i = i, and 0 otherwise. These approaches depend on the choice of the
eigenvector(s) of L(G). Fiedler [21] observed that the second eigenvector of L represents a good measure
of the connectivity of the graph G. A recursive implementation of this search scheme, referred to as
recursive spectral bisection (RSB) based on Fiedler's eigenvector was introduced in [57]. RSB was found
to be computationally very expensive. To improve its performance a multilevel version of RSB was
developed [6J. Other spectral heuristics combining several eigenvectors with quadrisection and oetasection
implementations are proposed and discussed in [32]. The performance of spectral heuristics is presented
in [5J, [6], [32], [63].

Coordinate Axis Splitting This is another class of enumerative schemes whose main characteristic
is that they ignore the connectivity information of the mesh graph G. They are based on coordinate sorting
and partitioning along cartesian, polar, and symmetric inertial axis of the graph G. A comprehensive
evaluation of these heuristics is reported in [63]. Following we review the underlying ideas of these
strategies.

Cartesian axis splitting: In these schemes the cartesian coordinates of the mesh nodes or the element
center of mass are sorted and split along each axis. There exist non-recursive and recursive implementa
tions in both strip-wise and domain-wise form [44], [63]. In the case of recursive schemes the bisection
direction can vary for each recursive step. One can choose this direction by splitting along the longest
expansion which can be easily determined [44]. An alternative implementation is the one that compares
the communication cost of the produced partitioning in both possible directions and chooses the one
corresponding to less cost.

Polar/spherical axis splitting: The basic idea is similar to cartesian a.xis splitting schemes. In the
polar/spherical axis partitioning schemes, the sorting of the coordinates of nodes or element center of mass
is done along r, (), and z/a axis. In addition to the available options in cartesian axis splitting schemes,
the origin point can be selected as either center of inertia or center of mass. An implementation of this
scheme is described in [44}. Due to the periodicity of the cartesian to polar coordinates transformations,
these schemes can produce, with high probability, disconnected subdomains. In [63] an implementation
of this scheme is reported that avoids the above shortcoming by appropriate angle shifting.

Inertia axis splitting: This scheme first computes the main symmetry axis from the node coordinates
of the mesh or the coordinates of element mass [44]. Then, it splits the domain into several subdomains
along this axis. It repeats this step until the predefined number of subdomains is reached. The symmetry
axis is obtained by computing the eigenvector corresponding to the largest eigenvalue of the inertia matrix.
I = AT A [62] where A is the matrix. of the mesh coordinates. Implementations of these schemes and
their variations are presented in [18], [44] and [63].

Deterministic optimization heuristics The mesh partitioning problem can be formulated as a
constrain or unconstrained optimization problem. This set of heuristics is applied to solve these associated
optimization problems. The basis of most of them is the so called Kernighan and Lin algorithm (J(- L)
[38]. Several variation of this algorithm have been proposed in order to incorporate most of the mesh
partitioning criteria. A detail review of these class ofstrategies together with the description of an efficient
improvement of the J(- L algorithm for mesh/grid can be found in [14]. Some of these heuristics are
available in the / /ELLPACK system [36].

Stochastic optimization heuristics Another class of heuristics proposed for the approximation of
the solution of the partitioning optimization problem is based on stochastic techniques such as simulated

8

annealing [42] and Hopfield neural networks [33]. Their application and modification for the partitioning
of finite element mesh graph has been studied by several authors [7], [24], [47), [62]. Although these
techniques tend to generate more accurate solutions to the mesh partitioning problem, they also tend to
be computationally very intensive [47], [62J. Similar computational behavior has been observed for the
neural based heuristics.

Software tools for mesh/grid decomposition Several tools have been developed to incorporate
the above algorithmic infrastructure. The / /ELLPACK system has a graphical tool (DOMAIN DE
COMPOSER) that allow users to obtain and display automatic decompositions by a variety of heuristics
for two and there dimensional meshes/grids. The user can either modify interactively these decompo
sitions or specify his own. A description of an earlier version of this system is presented in [12]. The
current version supports both element and node wise partitioning!! using most of the heuristics described
above. This tool is completely integrated with the parallel ELLPACK problem solving environment so it
supports all the parallel discretization and solution modules currently available in / /ELLPACK library.
A similar tool has been developed by Simtllog Inc. [44]. This tool is integrated with their own three
dimensional finite element mesh generator and flow mechanics code. The Simulog tool allows the user to
view the automatically obtained mesh decompositions and it uses primarily coordinate axis decomposi
tion strategies. A third domain decomposition tool is the TOP/DOMDEC [18]. It offers several heuristic
decomposition algorithms including Greedy, RCM, recursive RCM, principal inertial, recursive inertial,
recursive graph bisection, RSB and MRB. The user interface includes three-dimensional graphics, a
parallel simulator, and an output function with parallel I/O data structures.

5.2 Fast Grid/Mesh Partitioning Heuristics

It has been observed that the decomposition of fine meshes can be very costly. In [40], it is reported that
a 64-way MRSB partitioning of 150x150 finite difference grid of an L-shaped domain requires half of the
time to solve the corresponding 5-point difference equations obtained from the discretization of a model
PDE problem using Jacobi-CG on a single processor. Instead of solving the exact partitioning problem, it
is proposed in [40] to extend the matrix problem in the entire rectangular overlaying grid used to generate
the actual grid, by an identity matrix and solve the modified problem in parallel using the decomposition
of the overlayed rectangular grid. This method is referred to as an encapsulation approach. Numerical
results indicate that this approach outperforms all the ones that are based on the partitioning of the
exact grid [40]. Unfortunately, this approach can not be generalized for finite element meshes. A natural
"fast" alternative for mesh decomposition is to integrate the mesh generation and the partitioning steps
[63] and implement them in parallel. This is natural, since most of the mesh generators already use some
form of coarse domain decomposition as a starting point. The numerical results reported in [63] suggest
that this parallel integrated approach can result in the significant reduction of the data partitioning
overhead.

References

[1] A mimd implementation of a parallel euler solver for unstructured grids. The Journal of Supercom
puting, 6(0):117-137, V. Venkatakrishman and H. D. Simon and T. J. Barth.

[2] M. AI-Nasra and D. T. Nguyen. An algorithm for domain decomposition in finite element analysis.
Computers and Structures, 39(3/4):227-289, 1991.

[3] C. Aykanat, F. Ozguner, F. Ercal, and P. Sadayappan. Iterative algorithms for solution of large
sparse systems or linear equations on hypecubes. IEEE Transactions on Computers, 37(12):1554
1568, December 1988.

[4] S. Baase. Computer Algorithms: Introduction to design and analysis, pages 145-207. Addison
Wesley, Reading, MA, 1988.

9

[5] S. T. Barnard and H. D. Simon. A fast multilevel implementation of recursive spectral bisection for
partitioning unstructured problems. In Sixth SIAM Conference on Parallel Processing for Scientific
Computing, pages 711-718, 1993.

[6] S.T. Barnard and H.D. Simon. A fast multilevel implementation of recursive spectral bisection
for partiioning unstructures problems. Technical Report RNR~92-033, revised April 93, pp. 1-25.,
NASA Ames Research Center, 1993.

[7] H. Byun, E. N. Houstis, and S.Kortesis.

[8] T. Chan and R. S. Tuminaro. A survey of parallel multigrid algorithms. In A. Noor, editor, Parallel
Computations and their Impact on Mechanics, volume AMD-Vol. 86, pages 155-170. Amer. Soc.
Mech. Engr., Dec. 1987.

[9} T.F. Chan and Y. Saad. Multigrid algorithms on the hypercube multiprocessor. IEEE Trans. on
Computers, G-35(11):969-977, November 1986.

[10] W. M. Chan and A. George. A linear time implementation of the Reverse Cuthill-McKee algorithm.
BIT, 20(0)08-14, 1980.

[11] N. P. Chrisochoides, M. Aboelaze, E. N. Houstis, and C. E. Houstis. The parallelization of some
level 2 and 3 bIas operations on distributed-memory machines. In Advances in Computer Methods
for Partial Differential Equations, pages 127-133. IMACS, 1992.

[12] N. P. Chrisochoides, C. E. Houstis, S. K. Kortesis, E.N. Houstis, P. N. Papachiou, and J. R. Rice.
Domain decomposer: A software tool for mapping pde computations to parallel machines. In
R.Glowinski et al., editor, Domain decomposition methods for partial differential equations IV, pages
341-357. SIAM Publications, 1991-

[13] N. P. Chrisochoides, C.E. Houstis, S.K. Kortesis E.N. Houstis, and J.R. Rice. Automatic Load
Balanced Partitioning Strategies for POE Computations. In E.N. Houstis and D. Gannon, editors,
Proceedings oj International Conference on Supercomputing, pages 99-107, Crete-Greece, 1989. ACM
Press.

[14] N. P. Chrisochoides, E. N. HOllstis, and J. R Rice. Mapping algorithms and software environments
for data parallel pde iterative solvers. Journal of Distributed and Parallel Computing, 21(0):75-95,
1994.

[15] C.Pommerell, M.Annaratone, and W. Fichtner. A set of new mapping and coloring heuristics for
distributed-memory parallel processors. SIAM J. Sci. Stat. Comput., 13(1):194-226, 1992.

[16] R.D. da Cunha and T.R. Hopkins. PIM 1.1: The parallel iterative methods package for systems
of linear equations users guide (FORTRAN 77 version). Techni.cal report, Computing Laboratory,
University of Kent at Canterbury, 1993.

(17] C. Farhat. A simple and efficient automatic fern domain decomposer. Computers and Structures,
28(5)0579-602, 1988.

[18] C. Farhat and H. D.8imon. TOPjDOMDEC - a software tool for mesh partitioning and parallel
processing. Technical Report RNR-93-011, pp.I-28, NASA Ames Research Center, 1993.

[19] C. Farhat and M. Lesoinne. Automatic partitioning of unstrudured meshes for the parallel so
lution of problems in computational mechanics. International Journal for Numerical Methods in
Engineering, 36(0):745-764, 1993.

(20] C. Farhat and E. Wilson. A new finite element concurrent computer program architedure. Int. J.
for Numerical Methods in engineering, 24(0):1771-1702, 1987.

10

[21] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to
graph theory. Czechoslovak Mathematical Journal, 25(100):619-633, 1975.

[22J J. Flaherty, M. Benantar, and M.S. Krishnamoorthy. Coloring Procedures for Finite Element Com
putation on Shared-Memory Parallel Computers. In A. K. Noor, editor, Adaptive, Multilevel, and
Hierarchical Computational Strategies, volume 157, pages 435-490, New York, 1992. ASME.

[23] J. Flaherty, M. Benantar, C. Ozturan, M. S. Shephard, and B. K. Szymanski. Parallel computation
in adaptive finite element analysis. In C.A. Brebbia and M.H. Aliabadi, editors, Chapter 7: Adaptive
Finite Element and Boundary Element Meihods, London, 1993. Elsevier Applied Science.

[24] G.C. Fox. A review of automatic load balancing and decomposition methods for the hypercube. In
M. Schultz, editor, IMA Institute, pages 63-76. Springer-Verlag, 1986.

[25] A. George and J. W. H. Liu. Algorithms for matrix partitioning and the numerical solution of finite
element systems. SIAM J. Numer. Anal, 15(2):297-327,1978.

(26] A. George and J. W. H. Liu. An implementation of a pseudoperipheral node finder. ACM Transac
tions on Mathematical Software, 5(3):284-295, 1979.

[27] A. George and J. W. H. Liu. Algorithms for matrix partitioning and the numerical solution of finite
element systems. SIAM J. Numer. Anal., 15(2):297-327, April 1978.

[28] N. E. Gibbs and J. W. G. Poole. An algorithm ror reducing the bandwidth and profile of a sparse
matrix. SIAM J. Numer. Anal, 13(2):236-250, 1976.

[29] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the Message
Passing Interface. MIT Press" October 1994.

[30] L. Gross, C. Roll, and W. Schoenauer. Vecfem for mixed finite elements. Technical Report Interner
Bericht Nr. 50/93, Rechenzentrum der Universitat Karlsruhe, December 1993.

[31] G.Yagawa, N. Soneda, and S.Yoshimura. A large scale finite element alalysis using domain decom
position method on a prallel computer. Computers and structures, 38(5/6):615-625, 1991.

[32J B. Hendrickson and R. Leland. An improved spectral load balancing method. In Sixth SIAM
Conference on Parallel Processing for Scientific Computing, pages 953-961, 1993.

(33] J. J. Hopfield. Neural networks and physical systems with emergent collective abilities. Proc. Natl.
Acad. Sci. USA, 79:2554-2558, 1982.

[34J E. N. Houstis, T. S. Papatheodorou, and J. R. Rice. Parallel ELLPACK: An expert system for the
parallel processing of partial differential equations. In Intelligent Mathematical Software Systems,
pages 63-73. North-Holland, Amsterdam, 1990.

(35] E. N. Houstis and J. R. Rice. Parallel ellpack: A development and problem solving environment for
high performance computing machines. In P. W. Gaffney and E. N. Houstis, editors, Programming
Environments for High-Level Scientific Problem Solving, pages 229-241. North-Holland, 1992.

[36] E. N. Houstis, J. R. Rice, N. P. Chrisochoides, H. C. Karathanasis, P. N. Papachiou, M. K. Samartzis,
E. A. Vavalis, K. Y. Wang, and S. Weerawarana. Ellpack: A numerical simulation programming
environment for parallel mimd machines. In D. Marinescu and R. Frost, editors, International
Conference on Supercomputing, pages 96-107, Amsderdam, June 1990. ACM Press NY.

(37] W. Joubert and G. F. Carey. Pcg: A software package for the iterative solution of linear sys
tems on scalar, vector and parallel computers. In Proceedings of 14thIMACS World Congress on
Computational and Applied Mathematics, volume 1, pages 247-250, Atlanta, 1994.

11

[38] B. W. Kernigham and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell
System Technical Journal, 49(2):291-307, February 1970.

[39] S. Kim, E. N. Houstis, and J. R. Rice. Parallel stationary iterative methods and their performance.
In D. Marinescu and R. Frost, editors, INTEL supercomputer users group conference, San Diego,
1994.

[40] Sang~Bae Kim. Parallel Numerical Methods for Partial Differential Equations. Ph.D. Thesis, 1993,
Department of Mathematics, Purdue University. Technical Report CSD-TR-94-000, pp.l-00, Purdue
University, Computer Science, 1993.

[41] D. Kinkaid, J. Respess, and R. Grimes. Algorithm 586: Itpack 2c: A fortran package for solving large
linear systems by adaptive accelerated iterative methods. ACM Tran. Math. Soft., 8(0):302-322,
1982.

[42] S. Kirkpatrick, J. C. D. Gelatt, and M. P. Vecchio Optimization by simulated annealing. Science,
220(4598),671-680, 1983.

[43] N.K. Madsen (Lawrence Livermore Laboratories) and R.F. Sincovec (Kansas State University). Algo
rithm 540: Pdecol, general sollocation software far partial differential equations. ACM Transactions
on Mathematical Software, 5(3):326-351, September 1979.

[44] M. Loriot and 1. Fezoui. Mesh-splitting preprocessor. Technical Report unpublished manuscript,
Simulog Inc, 1989.

[45] J. Malone. Automated mesh decomposition and concurrent finite element analysis for hypercube
multiprocessor computers. Compuler Methods in Applied Mechanics and Engineering, 79(0):27-58,
1988.

[46] J.G. Malone. Automated mesh decomposition and concurrent finite element analysis for hypercube
multiprocessor computers. Computer methods in applied mechanics and engineering, 70(0):27-58,
1988.

[47J N. Mansur. Physical optimization algorithms for mapping data to distributed-memory multiproces
sors, phd thesis. Technical Report CRPG-TR92229, Syracuse University, August 1992.

[48] O. A. McBryan, P. O. Frederickson, J. Linden, A. Schueller, I<. Solchenbach, I<. Stueben, C.-A.
Thole, and U. Trottenberg. Multigrid methods on parallel computers - a survey of recent develop
ments. Impact Comput. Sci. Eng., 3:1-75, 1991.

[49] W. F. Mitchell. Adaptive refinement for arbitrary finite element spaces with hierarchical bases. J.
Computational and Applied Math., 36:65-78, 1991.

[50] B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving finite element equations on concurrent com
puters. In A. Noar, editor, Parallel computations and their impact on mechanics, pages 209-226,
1987.

(51] S. Pissanetsky. Ordering for Gauss elimination: Symmetry matrices, Sparse Mairix Technology,
pages 94-158. Academic Press, Orlando, 1984.

[52] J. R. Rice and R. F. Boisvert. Solving elliptic problems using ELLPACK. Springer-Verlag, 1985.

[53] P. Sadayappan and F. Ercal. Nearest-neighbor mapping of finite element graphs onto processor
meshes. IEEE Transactions on computers, G-36(12):1408-1424, December 1987.

[54] M. Schmauder, R. Weiss, and W. Schoenauer. The cadsol program package. Technical Report
Interner Bericht Nr. 46/92, Rechenzentrum der Universitat Karlsruhe, April 1992.

12

[55] W. Schoenauer, E. Schnepf, and H. Mueller. The fidisol program package. Technical Report Interner
Bericht Nr. 27/85, Rechenzentrum der Universitat Karlsruhe, December 1985.

[56] J.N. Shadid and R.S. Thminaro. Sparse iterative algorithm software for large scale MIMD machines:
an initial discussion and implementation. Concurrency: practice and experience, 4(6):481-497, 1992.

[57] H. D. Simon. Partioning of unstructured problems for parallel processing. Computing Systems in
Engineering, 2(2/3):135-148, 1991.

[58] P. Le Tallec, Y. H. De Roeck, and M. Vidrascu. Domain decomposition methods for large linearly
elliptic three-dimensional problems. J. Computational and Applied Math., 34:93-117, 1991.

[59] David K. Melgaard (Kansas State University) and Richard F. Sincovec (Boeing Computer Services
Company). General software for two-dimensional nonlinear partial differential equations. ACM
Transactions on Mathematical Software, 7(1):106-125, March 1981.

[60] Richard F. Sincovec (I{ansas State University) and Niel K. Madsen (Lawrence Livermore Labora
tories). Software for nonlinear partial differential equations. ACM Transactions on Mathematical
Software, 1(3):232-260, September 1975.

[61] S. Weerawarana, KN. Houstis, A.C. Catlin, and J .R. Rice. / /ellpack: A system for simulating
partial differential equations. In Proceedings of lASTED International Conference on Modelling and
Simulation, 1995. to appear.

[62] R. Williams. Performance of dynamic load balancing algorithms for unstructured mesh calculations.
Concurrency: Practice and experience, 3(5):457--481, 1992.

(63] P. Wu and E. N. Houstis. Parallel mesh generation and decomposition. Computer Systems in
Engineering, (CSD-TR-93-075, pp. 1-49), 1994.

13

	Parallel ELLPACK Elliptic PDE Solvers
	Report Number:
	
	Authors

	tmp.1307986960.pdf.XJ4Nq

