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Abstract

The availability offered by current data replication and update algorithms varies

with dynamically changing conditions which include the network configuration and sys­

tem load. With dynamic adaptability, systems can switch to an appropriate mechanism

to improve perFormance and availability, In this paper, we present an algorithm to

estimate the overall availability of transaction processing in a distributed database sys­

tem. Our algorithm estimates the system availability of different replication schemas

based on transaction access patterns and the availability of system components. A flow

graph is used to represent and simplify the computation and the combinatorial model.

We illustrate the incorporation of our algorithm into RAID, an adaptable distributed

database system, thus permitting the RAID software to dynamically decide to redis­

tribute data or adopt a more suitable update algorithm. The proposed technique for

the measurement of availability can also be used during the design phase of a system.

[(cywords: Adaptability, Availability, Reliability, Distributed Database, Computer

Network, Performance, Data Replication, Transaction Processing,

1 Introduction

Availability and reliability have become central to the performance characterization of a

computing system [Shr85, GR93]. A common approach to increasing system availability is

the appropriate distribution of data over femote sites. Significant research effort has been

expended in the search for new algorithms to achieve this goal, and numerous mechanisms

for replica distribution and update have been proposed. Examples include voting [Gif79],

dynamic voting [JM87, BGMS89], virtual partition [ASC85, AT89],..;N algorithm [Mae85],

tree quorums [AA91], and multidimensional voting [CAA91]. [DGMS85] and [HBH95] sur­

vey many algorithms and provide guidelines on algorithm selection.
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Each of the proposed approaches for replica control performs well under a particular

set of circumstances. These varying strengths can best be exploited through the concept

of adaptability. RAID, a Robust Adaptable Interoperable Distributed Database System

developed at Purdue University, implemented this concept by dynamically switching al­

gorithms and execution mechanisms [BR89b, BR89a, BB90]. In this paper, we describe a

method to quantitatively evaluate the availability of a distributed database transaction pro­

cessing system. This method serves as the mechanism underlying the adaptability feature

of RAID, allowing RAID to dynamically choose the most suitable updating algorithm and

distribution schema so that high availability is achieved.

Related Work

Previous evaluation methods for availability include the k-out-of-n [B084, GMK87],

event-based reliability [LL86], and multi-state combinatorial [VT93] models. [BP65] also

presents a profound mathematical theory of the reliability of general systems. These models

estimate the availability of computing systems in general and are not tailored to database

transactional systems in particular. Transaction patterns are not taken into consideration

and the presented results are therefore insufficiently precise to aid in the achievement of

adaptability in transaction processing systems.

A technique that takes transactions into consideration is described in [MRS8I]. It

presents a method which uses structure vectors to analyze the Markov process of transition

between the states corresponding to each vector. System availability may be viewed as the

probability that the system is in states which correspond to the successful execution of a

transaction. A serious disadvantage of analyses based on Markov chains is that they involve

a large state space and result in formidably complicated computations. To reduce tills

space, many excessive assumptions are made, resulting in inaccurate conclusions. Related

work also addressed the quantitative analysis of specific replication algorithms. [JM87]

estimates the availability of the dynamic voting algorithm. In [LCS89], the availability of

regeneration-based replica control protocols [PNP86] is evaluated. All these approaches use

Markov process analysis.

In [BHF92, Hel9l] we provided a model for the availability of distributed databases.

The analysis was based on the assumption that the availability of all data js independent.

In most cases, different data items from a distributed database are placed on a single site,

the failure of which renders all data copies at that site inaccessible. Thus, the availability of

different data items is not mutually independent. In this paper, we extend previous work by
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dropping this assumption, and in addition, we present a method of availability evaluation

which we then use to achieve high availability.

Outline of Our Approach

We propose a method to quantitatively calculate the availability of distributed database

transaction systems in terms of the availability of component sites and computer network

links. The method is based on a combinatorial analytical model. The model and the

computation of availability is simplified by using a flow graph to eliminate repeated elements.

With this method, different replication schemes and updating algorithms can be analyzed

and compared on the basis of availability. This evaluation method is incorporated within

RAID to support algorithmic adaptability to changes in the transaction patterns or loads.

The evaluation method considers arrival sites and patterns of transactions and is therefore

more accurate than previously introduced approaches. The algorithm thus obtained is both

simple and efficient.

The remainder of this paper is organized as follows. In Section 2, we introduce the idea

of adaptability. In Section 3, we first introduce some related concepts and then present our

model and its mathematical foundation. In Section 4, building upon an example illustrative

of the basic ideas of the method, the details of the full algorithm are presented. Section

5 provides examples which demonstrate the ability of the algorithm to support adaptabil­

ity among different replication methods. FinaUy, in Section 6, we offer conclusions and

directions for future work.

2 Adaptability in Distributed Database Systems

In [BR89a], adaptability is classified into four broad categories: structural static, struc­

tural dynamic, algorithmic, and heterogeneous. Structural static adaptability encompasses

software engineering techniques for the development of systems that can be easily main­

tained and adapted to changing requirements throughout their life cycles. Structural dy­

namic adaptability, also called reconfiguration, refers to the restructuring of a running

system in response to failures or performance requirements. A1901ithmic adaptability, sup­

ported as a feature in our prototype RAID system, involves a set of techniques for dynam­

ically sltifting between the execution of several algorithms for a module. For instance, a

transaction system can change to a new concurrency controller, or a distributed system can

adopt a new site failure algorithm. The fourth category is adaptability for heterogeneity,

wluch enables computing systems of different types to work together.
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Figure 1: RAID - a Robust Adaptable Interoperable Distributed System

In the present research, we will focus on algorithmlc adaptability. This capability IS

of prime importance in meeting the challenges posed by the great variety of networking

conditions and system loads associated with modern distributed systems. Adaptability is

particularly crucial in an environment which includes wireless connections, since the network

configuration is dynamic and the network connectivity ranges from total disconnection to

full connection [PB94J. The same need holds for Wide Area Networks (WANs), where the

system load varies substantially depending on such parameters as the time of day and the

type of network [ZB93].

Figure 1 presents a schematic illustration of the architecture of RAID. Users submlt

transactions to the Action Drive1' (AD), which parses logical actions to procedural actions

and submits them to the Replication Controller (RC). The RC consults the replication di·

rectory and forwards the read or write operations to the local Concurrency Controlle1· (CC),

the local Atomicity Controller (AC), or to remote RCs. The CC controls the consistency of

transactions, while the AC coordinates update commitment. Finally, the Access Manager
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manages physical access to data.

High availability can be achieved through a multi-step procedure. System availability is

periodically evaluated, and on that basis a selection is made at tbe time of execution from

among a repertoire of replication mechanisms. Tltis functionality is incorporated within

the RC (Replication Controller), which is illustrated in Figure 2. Inputs to the evaluation

process include transaction patterns, the replication mechanisms, and the availability of

system components. The output 1s then used by the adaptability module in the decision

to switch to a more appropriate replication schema. In the current RAID configuration,

changes between replication mechanisms occur when availability drops below a predefined

threshold value.

As an alternate method, the availability of various algorithms under different conditions

can be pre-computed and then stored as part of the system. The system can then use titis

stored information about algorithmic availability in conjunction with the measurement of

current condition to intelligently select the most appropriate algorithm.
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3 Availability of Distributed Transaction Processing Sys­

tems

In this section, we first introduce the concepts of reliability and availability and discuss the

subtle differences between them. We then present our model for estimating the availability

of a distributed transaction system based on the availability of its components.

3.1 Related Concepts

A system may fail or may inadequately process the working load either because of a

component failure DT due to a slow response which prevents the system from meeting the

required response time. Two concepts are used to describe the frequency of failure occur­

rences in a system: system availability and reliability. System availability is the fraction

of the offered load that is processed within an acceptable response time [GR93]. The

concept of system "eliability refers to the probability that the system is not down during

a given pcriod and is usually measurcd by mean time to failure (MTTF). A system may

have low reliability but high availability. For example, consider a system that crashcs once

witbin a period whicb averages 10 hours and does not exceed 20 hours and which can be

repaired and returns to work in one minute. In this case, the reliability for a one-day period

1s I-probability of crash in one day = 0 because there is always a daily crash, while the

availability is 1 - (Iminj600min) ::;::: 99.83%.

Availability may also be described through availability classes, each of which is defined

by the number of leading nines in the availability figure for a system or model; Le.:

1
llaYlO( 1 _ A)J

where A is the system availability. The real number loglO( 12A ) is called availability degree.

We can further make a differentiation between algorithmic availability and operational

availability [BHF92, HeI91]. If a system responds later than the required response time, the

system is algorithmically available but not operationally available. Algorithmic availability

is determined by the nature of the computing algorithm and the status of the involved

sites and does not depend on the implementation and processing speed. It is intended

to measure the degree of fault-tolerance for component failures provided by replication

methods. It defines a measure of merit through which replication control methods can

be theoretically evaluated, regardless of any specific implementation of these methods or

their system counterparts. Operational availability defines the range and conditions under
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which a replicated database system is not operable, even in the absence of failures aud is

performance failure-dependent.

Since operational availability is implementation·dependent, usually it is measured ex­

perimentally and not evaluated theoretically [BFHR90]. It remains as part of our future

work to implement adaptability based on operational availability. At this point, we will

focus on a theoretical evaluation of algorithmlc availability. Possibilities for and obstacles

to the evaluation of operational availability are also briefly described. The model used

here, which has been implemented in the RAID environment, collects statistical data and

assumes that the transaction pattern in the near future will remain similar to that of the

most recently completed transactions.

Reliability and Availability of Systems

The availability of a system depends on the status of its components, which should

be reliable or available during tIle processing period. Those components which should be

reliable are called continUOllS components. For example, the site at which the transaction

arrives must be continuously operational during the transaction processing period. Any

crash, no matter how short, will cause the transaction to abort. Those components which

need only be available (rather than reliable) are called instantaneous components. For

example, consider a data item at a remote site which crashes after the first read operation

arrives but before the transaction sends any additional requests to that site. Later, when the

transaction sends a write operation, the site is up again, leaving the transaction completely

unaware of the remote crash. Therefore, we require only that a remote site be available

when needed.

In tills paper, we assume that the home site of a transaction is reliable and that the

other sites are available. In other words, aU read and write adions are atomic, and there

are no interrupts during tllese actions. To facilitate presentation, only availability will be

referred below.

In summary, the assumptions made in this paper are as follows:

1. All transactions are in themselves correct. Deadlock, access conflicts and other con­

currency control problems are not considered here. Every transaction can therefore

commit if no machine or network crashes.

2. The failure of each site and communication link is independent of any other failure.

3. If a system component is available at the beginning of a transaction, it will be available

during tIle entire lifetime of the transaction.
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Assumption 1 is necessary for all the discussion in this paper. In section 4.1, we will

discuss the implications of dropping assumptions 2 and 3.

3.2 System Availability in terms of System Components

The availability of a database transaction system is defined as the fraction of the number

of transactions that commit within an acceptable time. Let!1 = {t l ,t2 , •.. ,t,.,} be the set

of all transactions under consideration. Let A = (aij)llxn be the matrix of availability of

sites 81,82, ... , 8 n and the links between them. Here Uii is the availability of site 8j and aij

is the availability of the link between site Si and site Sj when i #- j. We use n = (Tij)nxm

to describe the data replication scheme; Tij is 1 if and only if data object i is replicated

at site Sj; otherwise, it is O. P = (PtJ , "', PI,..) describes the probability of the arrival

of the transactions of n. Pt; is the percentage of arrivals of transaction ti in all possible

transactions. U is the access and update mechanism, including such possibilities as ROWA

(Read One Write aU) and QC (quorum consensus). Our goal is to develop an efficient

algorithm to compute the function fu of the availability provided by U and, on that basis,

the transaction system availability of 0:

A(ll) A(A, 1/., U, P)

fu( alb ... , ann, TI I, ...r""" PII , ... , PI",)

We assume aU transactions to be correct and be able to commit if there are no failures

in the component systems. Therefore:

A(n) = ~ PtP(t is commited)
tEO

~PtP(ali requiTed objects di are available for t)
tEO

Since several data items may be located at the same site, they are all either available or un­

available at a given time. The accessibility of these data items is therefore not independent,

and produces:

A(!1) #- ~PIPdlPd2 ...Pdl
<EO

where Pd, is the availability of the data item d,-.

In the following analysis, we assume that the failure of each site is independent. We fur­

ther assume that, during the lifetime of a transaction, a component that is operational upon
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the first access remains so [or all successive accesses. In section 4.1, we will discuss the sce­

nario in which the second access may be denied. Each transaction involves the reading and

writing of some data. For each read or write operation under access mechanism U, several

alternative groups of sites may satisfy a successful execution. Assume a is the total number

of such alternative groups. If group i,l 5 i ~ (1', consists o[ sites Sil, Si2, .•. , Si3, .. " Sinj,

then the probability that all sites are all available is Po; = P(Sil)P(Si2) ...P(Sin;)' Let

At(A, U, 1<.) he the system availability for transaction t. As used in the following recursive

expression, Pi is the availability calculated from the first i alternative groups of sites. In

order to consider network failures, suppose that the transaction t arrives at site k. Let Pkj

be the prol)ahility that all sites in group i are reachable from site k. Then we have

Pi+1 Pi + (I - Pi)hP(SiJlP(Si2) ...P(Si+ln,+,)

PI PklP(SII)P(SI2) ...P(Sln,)

If all links are independent, we can write Pkj = ukil aki2 ...akin; where Uki j is the avail­

ability of a link l)etween k and ij. Then we have:

and

PI

A,(A, U,1/.)

Pi + (1 - PdP(sidP(Si2) ...P(SHlnj+l )Uki1Uki2o ..akini

P(Sll)P(S12) ... P(Slnl)UkIIUk12 ..·Uklnl for 15 i:::; a

p.

A(!1) A(A, 1/., U, P)

2: P(I)A,(A, U, 1/.)
'EO

2: P(t)P.
'eO

(3.1)

We will not discuss here the case of dependent network linli.s. Tills situation is similar to

the discussion to be presented below regarding the dropping of assumption 3, i.e., allowing

components to fail in the middle o[ a transaction.

In the next section, we will present a method to efficiently calculate At(A, U,1<.) and

from that point, the calculation of A(ft) is straightforward from formula (3.1).

4 An Efficient Availability Calculation Method

In tills section, we present a method for calculating availability willch is based on the

construction of a flow graph for the availability of each transaction. We present an algorithm
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Figure 3: Data items aTe at sites 81, 52, S3, and 84.

for traversing this graph and computing availability and then discuss its complexity.

4.1 Flow Graph

Our algorithm can best be illustrated through the presentation of a simple concrete

example. We use au example initially introduced in [MRS81].

Consider fOUT data objects Xl> X2, :1:3, and x~ on four sites 5}, 52, 53, and 54. as shown

In Figure 3 and assume they have the following distribution:

• site S2 contains {X2};

• site 53 contains {X2,Xa};

Let us consider a transaction

t, T(X,)T(X.)W(x,}

which arrives at site 52 which, as the home site, must he operable for t. Operation r(x3)

requires either site 51 or 83 to he accessible; l.e., it requires that the link 2 ---.. 1 and site

51 or the link 2 --+ 3 and site 53 be available. Operation T(X4) requires that site 84 be

available. For operation W(X2), since data item X2 is replicated on sites 81,82, and S3, an

update protocol whlch requires two copies as a majority, will thus demand that at least two

links and sites from the set {Sl,S2,8a} be available. These requirements are all reflected by

the flow graph in Figure 4.
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Figure 5: Simplified flow graph of Figure 4

In [MRS81], an up-and-down model was Ilsed to construct a structure vector space which

has 128 states. Therefore, the sufficient and necessary condition for the availability of the

system to transaction t is the existence Df a path from the source to the drain of the search

graph. The system was then analyzed as a Markov process with transitions between each of

these 128 states. While this idea is simple, the large numl)er of states renders a computation

of availability prohibitive. In practice, this up/down structure vector approach is difficult

to apply.

We have observed that, if we Msociate the availability of sites or network links with the

edges of the search graph, we can produce a new flow gmph. Intuitively, while the search

graph of [MRS81] usecl 0/1 value logic to construct a structure vector to search for an all-l

path from the source to the drain, our flow graph employs fuzzy logic (Zad71] to describe

the process and to express availability M the probability of moving from the source to the

drain. Such a flow graph effectively and simply depicts the mathematical formula given in

section 3. To provide a physical metaphor, if a flow of one unit of water leaves the source,

each edge on a path lets pass an amount equal to the availability of the corresponding

component; the amount of water that finally arrives at the drain is the system availability.
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If we remove assumption 3, for each component i, we assume that the availability for

the second access is p~ if the first access succeeds and p~' if the first access fails. In this

instance, we cannot simplify the flow graph of Figure 4, and all paths must be considered.

Given a path, such as 0 -+ 1-+ 2 -+ " -+ 5 -+ 6 -+ 7 -+ 8 -+ 9 -+ 16 in Figure 4, we

can arrive at the probability that the system can pass through this path by multiplying the

availability of all edges of the path. We have

In general, we can express the availability of the Hrst i+l paths recursively as

P;+> P; + (1 - P;) II p~;+')
path ;+1

P,

A,(A, U, 'Il)

II (1)
P;

path 1

Pw

where w is the total number of paths, p~i+1) is Pi if it is the first access, pj if it is the second

access and the first access is on the path, and pj if there is an access to that edge in the

first j - 1 paths.

Given assumptions 2 and 3 above, the search graph in Figure 4 can be simplified to

Figure 5 using algorithm 4.1 to be presented below.

From Figure 5, we can easily compute system availability with regard to transaction t.

If all components are of class 2; i.e., Pij = 0.99 for all i, j, we get

A P2(P23P3 +(1 - P23P3)PI2PI)P24P4

0.99(0.99* 0.99 +(1- 0.99 * 0.99) * 0.99 * 0.99) * 0.99 * 0.99

0.9699.

While this approach is effective in determining algorithmic availability, it cannot be

applied to operational availability. Within the processing of any transaction, different rates

of speed of processing component operations may result in the timely commitment of the

entire transaction despite the slow processing of some operations. This amortization of

processing time cannot be expressed in the flow graph.

4.2 Description of the Algorithm

In the previous section, we used an example to elucidate the basic ideas underlying the

availability evaluation algorithm. In this section, we shall describe this algorithm in general
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terms. For a given transaction t, component availability matrix A, update method U, and

replicalion schema R, a flow graph can be constructed in a straightforward manner in which

each edge is associated with the availability of the corresponding component. For each read

or write operation, one out of a set of site and link groups must be operational, the edges

of whIch are connected into a path. The paths for the set of the site and link groups of

an operation start and end at the same nodes, forming a subgraph corresponding to that

operation. To describe the entire transaction, all the subgraphs are connected to form the

flow graph.

The Dow graph can be simplified if assumptions 1, 2, and 3 are all enforced. We start

a search from the source, with each step involving a subgraph for an operation and any

repeated edges consolidated hy merging subgraphs. We can then calculate the system

availability AdA, U, R) for a given transaction t from this simplified graph. Using formula

(3.1) in section 3.2, we arrive at the availability A(O) of the system. It can be proved that the

flow graph can always be simplified to one without repeated edges. An acyclic subgraph

which starts at one node and ends at onc node is called a sub-flow gmph. AlgDrithm 1

Dutlines the flDW graph simplificatiDn process. Figure 6 prDvides tWD examples Df sub-Dow

graph merging. The subgraphs Dn the left are merged to become the subgraphs on the

right. Algorithm 2 recursively computes the availability Df a sub·flDw graph. On line 4 or

6, any Aj may be computed by the algorithm 2 recursively.

Algorithm 1 : Simplify flow graph

Input: A flow graph

Oulpul: Simplified flow graph

1 begin

2 loop through the sUbgraphs of all operations

3 if an edge of the subgraph appears earlier in one of the paths then

4 merge the tva sUbgraphs;

5 end

6 end

7 end

Algorithm 2 : Calculate availability for a transaction

Inpul: Simplified sub· now graph

Output: System availability

1 begin

2 A=l;

13
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Figure 6: The graphs on the left are simplified to the graphs on the right

3 loop through the sUbgraphs of the input graph

4 initialize B_1 =A_1 A_2 ... A_n of the first path of the sUbgraph

5 loop for every path i of the subgraph

6 B_i+l = B_i + (1-B_i)* A_i1 A_i2 ... A_in_i

7 end

8 A = A * Bi

9 end

10 end

The algorithms presented above are obviously simple. More complex algorithms can be

developed on the basis of tIle ideas presented in section 4.1 to address a scenario in which

assumptions 2 and 3 are dropped. Due to space limitations tltis development will not be

pursued here.

4.3 Complexity

Time complexity can be simply expressed as C * I * n 2 for the ROWA protocol, where

C is a constant, I is the length of the transaction, and n is the number of sites. The time

complexity is proportional to the square of the number e of edges of the flow graph; Le.,

T = C *(;2

In comparison, the structure vector [MRSS1] approach involves a time complexity of C *2C
•
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In theory, the highest possible cost could be C1 * 1 * nC2n , since for any operation

there can be as many as n C2n alternative groups of sites satisfying the site operation. In

practice, many network links and sites often have identical }lfOperties and, by symmetry,

the computation can be greatly reduced.

5 Adapting for High Availability

In this section, we illustrate the use of availability estimation to facilitate the selection

among schemes for replica distribution and control. These examples are meant to be il­

lustrative of the applicability of our measurements in adapting to appropriate schemes and

should not be considered to be exhaustive.

5.1 Dynamic Data Replication

Figure 7 depicts an illustrative case with two sites, 51 and 52. Two transactions t1 =

{r(b)w(a)} and t2 = {r(a)} have a probability of arrival PI at site 51 and P2 at site 52. In

Figure 7(a), data items a and b are both at site 51, with no data items at site 52- In Figure

7(b), a is also replicated at site th. Configuration (a) has availability

Configuration (b) has availability

Suppose site 51 has availability degree 4, and site 52 and the link have availability degree

3, i.e. al = 0.9999 and a2 = a12 = 0.999. The alteration PI = I - P2 produces the graph

15
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Figure 8: Availability for diITerent transaction arrival probabilities

In Figure 8, which indicates that when PI is above 35%, better availability is arrived at by

not replicating u. When pz is above 65%, higher availability is obtained by replicating a to

site 82 -

5.2 Dynamic Selection of Updating Algorithms

Figure 9 shows a configuration of a distributed database system. Data item d is dis­

tributed on all sites {81 , 82 , 53}' Suppose there are transactions i l = {r( d)w(d)} and

tz:::: {red)}, with t l arriving only at site ,'h at rate PI, t2 arriving at 8 2 and 83 at rates P2

and P3-

•1

I,

d

I,

d
"

t,

Figure 9: Distribution of data item d on sites 81 , 8 2 , and 83
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Figure 10: Availability of ROWA and Quorum Consensus Algorithms

lly the Read-One-Write·All (ROWA) algorithm, a read operation needs only one data

copy to be available, while a write operation requires that all data copies be available. We

then have availability:

By the quorum consensus algorithm, the number of available data copies must exceed

the quorum or operation threshold. If both read and write quorums are two, we have

Ib PIUl(U2U12 + (1- a2al2)u3u13) + P2a2(ula21 +(1- ala2du3(23)

+PaUa(ala31 + (1- alUal)a2a32)

Suppose all al = a13 = 0.9999, a3 = 0.99999, and U2 = aij = 0.999 for every i and j.

In other words, S3 is highly reliable and S2 is not reliable. Let P3 = 2 *P2 indicating that

the majority of access is by Sa. We then arrive at the graph in Figure 10, from which we

conclude that, when PI > 7%, the quorum consensus algorithm produces better availability

than ROWA.

5.3 Voting and Dynamic Voting Algorithms

Suppose there are five sites Sl, S2' ... , S5 with data item d replicated at all sites. Assume

further that all sites have the same availability u and that all links have availability b.

17



The static voting algorithm requires that a majority of total sites be available. In this

case, there must be 3, 4, or 5 sites availablC!. Let Xi denote system availability with at

least i sites. With 5 sites available, we have X s ::: a4 *b\ with at least <1 sites, we have

X 4 ::: Xs+H I-Xs)a4 b3 , and wiLh at least 3 sites, we have the following system availability:

The dynamic voting algorithm reqUIres that a majority of sites in the last majority

partition be available. EvC!n if this partition formed a majority by joining repaired sites an

update is still not allowed in this partition unless all sites are available. Let Xi denote system

availability with at least i sites in a majority partition; if the repair rate is much higher

than failure rate, then X s ::: a4 *b\ X 4 ::: X s + ~~(l- X s)a4b3, X 3 ::: X 4+ !~(1- Xda3b2

X 2 ::: X 3 + !~(1 - X3 )a2b. If, in addition to the probability PI of the update's transaction

arrival, there is another read transaction which arrives at all sites with a total probability

Pz, then

Let sites have availability degree 5 and links have 4, Le. a:::O.99999, b:::O.9999j then we

arrive at the graph in Figure 11. From this graph, it is evident, that the dynamic voting

algorithm offers better availability that the static voting algorithm.

6 Conclusions

In this paper, we have presented a now graph method to simplify the evaluation of

algorithmic availability. Our algorithm is tailored to transaction processing systems. It

can be used to theoretically compare the respective merits of different replication protocols.

We find that using the flow graph approach to evaluate transaction system availability is

simple, efficient and effective.

A number of examples have been presented to illustrate the role played by the proposed

algorithm in our prototype distributed database system to support dynamic adaptability.

Such adaptability enchances system availability by switching to a more apI)ropriate replica

update algorithm or choosing a better data distribution schema. The proposed technique

18
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Figure 11: Static and dynamic voting algorithms

can also be used during the design phase of a system to choose the most appropriate

algorithm.

Future studies will address the following issues.

1. Analytic models about evaluation of operational availability and their integration to

RAID will be considered.

2. Failures of network links are often dependent and we must account for that in our

model.

3. Experimental work will be conducted to verify OUT theoretical estimations.
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