
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1995

Parallel Adaptive Mesh Generation and Decomposition Parallel Adaptive Mesh Generation and Decomposition

Poting Wu

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

Report Number:
95-012

Wu, Poting and Houstis, Elias N., "Parallel Adaptive Mesh Generation and Decomposition" (1995).
Department of Computer Science Technical Reports. Paper 1190.
https://docs.lib.purdue.edu/cstech/1190

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PARALLEL ADAPTIVE MESH
GENERAnON AND DECOMPOSITION

Poling Wu
Elias N. HOlISm

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD·TR·9S..()12
February 1995

Parallel Adaptive Mesh Generation and Decomposition

Poting Wu and Elias N. Houstis

Department of Computer Sciences
Purdue University

West Lafayette, Indiana 47907-1398, U.S.A.
e-mail: wu@cs.purdue.edu

October, 1994

Abstract

An important class of methodologies for the parallel processing of computational
models defined on some discrete geometric data structures (i.e., meshes, grids) is
the so called geometry decomposition or splitting approach. Compared to the
sequential processing of such models, the geometry splitting parallel methodology
requires an additional computational phase. It consists of the decomposition of the
associated geometric data structure into a number of balanced subdomains that
satisfy a number of conditions that ensure the load balancing and minimum
communication requirement of the underlying computations on a parallel
hardware platform. It is well known that the implementation of the mesh
decomposition phase requires the solution of a computationally intensive problem.
For this reason several fast heuristics have been proposed. In this paper we explore
a decomposition approach which is part of a parallel adaptive finite element mesh
procedure. The proposed integrated approach consists of five steps. It starts with a
coarse background mesh that is optimally decomposed by applying well known
heuristics. Then, the initial mesh is refined in each subdomain after linking the new
boundaries introduced by its decomposition. Finally, the decomposition of the new
refined mesh is improved so that it satisfies the objectives and conditions of the
mesh decomposition problem. Extensive experimentation indicates the
effectiveness and efficiency of the proposed parallel mesh and decomposition
approach.

- 1 -

1. Introduction

The problem of finite element mesh generation, especially for three dimensional regions, is a well
known hard problem that has occupied the attention of many researchers for long time. Although
significant progress has been made in devising its solution for certain classes of geometric
domains [1-5], its solution for general domains is still an open issue. The need to generate finite
element meshes quickly is a common requirement of most computational fields and it is an
inherent requirement of any adaptive process. Therefore, the need for developing parallel mesh
generation techniques is well justified. Several of the proposed parallel solution methodologies
for finite element equations are based on the partitioning of the corresponding geometric data and
their mapping to the target parallel architecture. Specifically, for message passing machines, the
proposed parallel methodologies are based on some "optimal" decomposition of the associated
finite element mesh. A formulation of this approach and a description of several mesh
decomposition algorithms can be found in ref. [5J and [6J. The disadvantage of this approach is
the fact that the associated partitioning problem is NP-complete for general regions and even for
the case of polynomial time solutions the degree of the polynomial is too high [7J to have
practical importance. Thus, the parallelization of the mesh partitioning phase is necessary.

In this paper we present a parallel methodology that addresses the parallel solution of the mesh
generation and its decomposition simultaneously. In addition, we report the performance of its
implementation on the nCUBE II machine for realistic two dimensional domains. The paper is
organized as follows. Section 2 presents the steps of the proposed parallel mesh generation and
decomposition methodology. Section 3 discusses the approached used for mesh generation and
gives several justifications for its selection. Section 4 discusses the partitioned techniques
implemented for the partitioning of the background mesh. Section 5 defines the subdomain
boundary linking phase. The generation of the final mesh and its decomposition are discussed in
Sections 6 and 7. A preliminary performance evaluation of this approach is presented Section 8
together with a discussion of the results. Finally, the description of the various algorithms needed
to support the implementation of the five phases of the parallel mesh generation and
decomposition are listed in the appendix of ref. [8J in some pseudo language.

2. A Methodology for Parallel Mesh Generation and Decomposition
The problems of mesh generation and its partitioning have been addressed by many researchers.
In this section we present a formulation of a parallel methodology for solving these two problems
simultaneously. Fig. 1 depicts the outline of this methodology for a 2-D region and 4-processor
machine configuration. It consists of five phases that can be described as follows.

1. Generation o£ a coarse background mesh. In this step we generate an
initial "courseN adaptive mesh which we call the background mesh. This
initial mesh is used to split the given domain into "equivalent" subdomains
and to generate in parallel a refinement of the ini tial mesh in each
subdomain (processor). The method used to generate the initial mesh and its
local refinements is based on the quadtree approach. The implementation of
this phase is described in Section 3.

-2-

2. partitioning or tbe background mesh. An "optimal U partitioning of the
initial mesh is generated. Some of the partitioning criteria applied include
load balancing, minimum interface length, and aspect ratio. Several mesh
decomposition schemes are supported which are discussed in Section 4.

3. For.mulation of the subdamain boundaries. For the parallel mesh generation
the subdomain boundaries have to be identified and formed from the mesh
decomposition data.

4. Parallel mesh rerinement. An adaptive quadtree based mesh refinement
scheme is applied in each subdomain. The use of the quadtree node
distribution data structure allows the determination of the node refinement
before the actual node generation. Therefore, the communication between the
processors is reduced to a minimum.

5. Refinement or initial domain decomposition. After the refinement the
subdomain interfaces may be large even with perfect partitioning of the
initial mesh. In this phase the initial partitioning is modified based on
the refined mesh. The implementation of this phase is described in Section
7.

()
I. Anadaptivemcsh
algorilhm is invoked
to generate an initial
"coarse" mesh.

2. A scheme to split
the initial mesh into
equal-sized subdo­
mains is applied.

3. A linking rourine to form Ihe new subdomain boundaries is called.

4. The mesh algorithm
of step I is applicd to

generate a finer mesh
in parallel.

5. An optimal mesh
splitting scheme 10
minimize the bisec­
tion width is applied.

~

Fig. 1. A methodology for parallel mesh and mesh-decomposition.

Next, we describe the implementation of the above five phases and the needed algorithmic
infrastructure. The user interface of the software tool that supports the above methodology is
depicted in Fig. 2 and described in ref. [9].

-3-

II
I. , . ~,

, • • p. , ..,

.-.
'-BI_.-
IIIIl11
IIIII!!I_.-
Iillllll
IllIIl!I
~i
II!1I1!l_.-
l!!I!iiI
I!Urm

.....

.-."_.-
IIlIIl!!
lIIIlI!l--.....,
liIlilI
mrm_....,

l!!l
1I!1!i!1,_._,
l!!IlI!l
l!!ili!l

.......
···~i·.~.

~'",..~" .

Triangular element mesh generation &
element-wise domain decomposition

Triangular element mesh generation &
node-wise domain decomposition

Quadrilaleral element mesh generation &
element-wise domwn decomposition

==:::::.........""'-"._ ••""._ .. ~ ".",,'.<_ v • , , •
~====~ :::::::~:::: = ~ : : ~

U·1::-~·'-~7"~,·~",~"~"",~.•~,,::,~.<~..~';:r~.~.:=.~."~~'~'~.,,'~'II

Fig. 2. Interfaces of the mesh generation and decomposition methodology defined in Fig.
1. The structure of the finite element matrix associated with these meshes!
decompositions is depicted on the left windows.

- 4-

3. The Initial Refinable Background Mesh Phase

1\vo of the most often used groups of adaptive methods for generation of unstructured meshes are
based on the advancing front and quadtreeloctree techniques. The methods in the first group [lO­
B] are applied on the specified or computed boundaries. In contrast with the first group, the
methods of the second group are applied on an initial coarse mesh which is modified by repeated
refinement. For the implementation of the methods in the last group, the quadtree/octree data
structures are used. A general discussion of these schemes can be found in ref. [14]. A qualitative
comparison of these two groups of methods indicates that the quadtree approach can 1)
automatically derive its input from the geometric information given, 2) easily manage the
smoothness on the outer boundary and in the inside of the object, 3) support adaptation easily, 4)
support the implementation of dynamic mesh decomposition, and 5) be efficiently parallelized
since it allows the refinement strategy to be fonnulated before the actual generation of elements.
We have decided to implement the quadtree approach in all phases of mesh generation approach
proposed in this paper. For completeness, we next describe the steps of this approach and indicate
the various options currently available in the system. These steps are:

Step 1. Decompose domain into quadtree data structure: We have implemented the quadtree
scheme proposed in ref. [15] that defines the node distribution on its related hierarchical
data structure. We create the data structure during the generation of the initial background
mesh and maintain a local or global refinement.

Step 2. Generate element mesh: In this step, triangular or quadrilateral element meshes are
generated by connecting the precomputed nodes in the previous phase. Fig. 3 indicates the
topology of elements that are currently supported. The available adaptive refinements
include: a) element-wise strategies consisting of regular division and bisection as shown
in Fig. 4 [16], and b) node-wise strategies implemented by using the well-defined quadtree
data structure. Fig. 5 depicts an example of a node-wise refinement. In this step we have
adopted the so called neutralfile output/ormat [17] for the element mesh.

TRJI3 TRJ/4 TR//6 TRJ/7

,

I~
5 2

TRI/9

,
8 7

9 3.1 2

'.10'11 6
4 5 2
TRJI13

40 ,4CJ' 40' 48' ~OIO9 3 ~I 102...'1ft, .15 8
.5 8 68.961 8[

7 11 '4 7
I I I I I I

2 2 2 2 2:;' 6-2
QUADI4 QUADI5 QUAD/S QUADI9 QUADIl2 QUADIl6

Fig. 3. Mesh element topology supported by the current parallel quadtree implementation.

-5-

~
(i)
~

(ii)

Fig. 4. Element-wise refinement of a triangle by (i) regular division and (ii) bisection.

4r--t-__3

1L'----+----l2

------11>-

4
r----+-_~3

2"

2'" I

2'

2

Fig. 5. Example of node-wise refinement.

Step 3. Adjust generated mesh: One of the difficulties in unstructured FEM mesh generation is to
avoid degenerate elements in certain regions. The usual way to solve this problem is to
adjust the element and node distribution. This adjustment includes mesh smoothing and
side swapping.

Step 4. Maintain adjacency lists: Four types of adjacency lists are maintained in the process of
mesh generation [18]. They include node-node adjacency, node-element adjacency,
element-node adjacency, and element-element adjacency.

4. The Background Mesh Partitioning Phase

The fonnulation and implementation of this phase is done at the topological graph of the finite
element mesh G = (V, E) of a domain .Q, where V denotes the set of elements or nodes and E is the
set of edges of G that represent the connectivity of the vertices V with its neighbors. In this section
we describe a number of heuristics for the element-wise or node-wise partitioning of finite
element meshes (i.e., graph G) that we have implemented and evaluated in the context of the
proposed parallel mesh generation and decomposition strategy. For this we introduce some
notation and the partitioning criteria. Throughout, we denote by dv the number of adjacent

vertices to each vertex v of V, D = {DJ the partitioning of G or domain .Q, Ns the set of

subdomains in D, and IVI = Nil or Ne the size of the mesh or graph G. The optimality criteria

applied is load balancing (the subdomains are of almost equal size), minimum interface length
(minimum number of common edges or nodes between subdomains), and minimum subdomain
connectivity.

4.1. Neighborhood Search Schemes

First we have implemented a class of enumerative heuristics that are based on some neighborhood
search scheme utilizing the connectivity information of the mesh graph G. For these schemes, the
partitioning of G is equivalent to the construction of a traversal tree from graph G. Two well
known neighborhood search schemes, the Depth-First Search (DFS) and the Breadth-First Search
(BFS) have been considered [19]. If the traversal order scheme remains fixed for the entire mesh

-6-

graph G, then the searching strategy is called strip-wise. In case the traversal order is allowed to
change after the formulation of each subdomain, then the search is called domain-wise [20]. The
optimality of these searching strategies depends on the starting vertex. It is usually selected as the
one with minimum degree of connectivity that usually coincides with a boundary node or
element. The criterion for evaluating the optimality of the partitioning obtained by the above
schemes is the bandwidth (w) of the coefficient of the associated finite element matrix. It has been
shown [21] that the maximum partitioning interface C is given by the relation C = (Ns x w) / Nw

A common search strategy that yields partitionings corresponding to finite element matrices with
small bandwidth or profile is the so called pseudo-peripheral node (PPN) [22-25J. Their basic
idea is to minimize the maximum width w or maximize the depth of the traversal tree, since the
bandwidth of the sparse matrix is between w and 2w-l. One of the common disadvantages of the
neighborhood searching strategies is that they often produce disconnected subdomains. One way
to prevent this from happening is to follow a traversal order that is based on the degree of
connectivity of the graph G. A well known ordering scheme is the Reverse Cuthill-McKee (ReM)
[26, 27J. In the appendix of ref. [8J we present our implementations of the above search strategies.

4.2. Eigenvector Spectral Search (ESS)

According to this search the vertices V are visited in the order defined by an eigenvector of the
Laplaciao matrix L(G) of the graph G. The elements of L(G) are defined [28] as follows

{

-I

d,

o

if (vi> v) E E

if i = j, where dj is the degree of Vj

otherwise.

(I)

If we assign a discrete value variable Xi to each vertex of V; then the partitioning problem can be

formulated as the following optimization problem

Minimize

Subject to T -Nx x - n'

Fielder recognized that the second eigenvector of L represents a good measure of the connectivity
of graph G [29-31]. Hendrickson [32] considered combining the use of other eigenvectors to
reduce the computing cost and the communication overhead. He introduced the spectral
quadrisection and spectral octasection schemes. For the improvement of the perfonnance of the
ESS scheme, a multilevel implementation of ESS has been introduced that involves additional
steps such as contraction, interpolation and refinement. These search procedures can be applied in
strip-wise and domain-wise form.

A recursive domain-wise implementation ofESS heuristic (RSB) is presented in ref. [33]. A strip­
wise implementation of ESS is described in ref. [34J. A multilevel implementation of MRSB
appeared in ref. [28]. We have implemented and evaluated the MRSB scheme.

-7-

4.3. Coordinate Axis Splitting

This is another class of enumerative schemes whose main characteristic is that they ignore the
connectivity information of the mesh graph G. We have implemented three such schemes. They
are based on coordinate sorting and partitioning along Cartesian, polar, and symmetric inertial
axis of the graph G.

Cartesian axis splitting: In these schemes the Cartesian coordinates of the mesh nodes or the
element center of mass are sorted and split along each axis. We have non-recursive and recursive
implementations in both strip-wise and domain-wise form. In the case of recursive schemes the
bisection direction can vary for each recursive step. One can choose this direction by splitting
along the longest expansion which can be easily determined [33]. We have implemented a version
of this scheme that compares the "communication cost" of the produced partitioning in both
possible directions and chooses the one corresponding to less cost. This scheme turns out to be
more expensive than the previous one but gives more accurate partitionings.

Polar/spherical axis splitting: Their basic idea is similar to cartesian axis splitting schemes. In
the polar/spherical axis partitioning schemes, the sorting of the coordinates of nodes or element
center of mass is done along R, e, and Va axis. In addition to the available options in Cartesian
axis splitting schemes, the origin point can be selected as either center of inertia or center of mass.
An implementation of this scheme is described in ref. [35J. Due to the periodicity of the cartesian
to polar coordinates transformations, these schemes can produce disconnected subdomains with
high probability. In our implementation of this scheme this is avoided by appropriate angle
shifting [8].

Inertia axis splitting: This scheme first computes the main symmetry axis from the node
coordinates of the mesh or the coordinates of element mass [35J. Then, it splits the domain into
several subdomains along this axis. It repeats this step until the predefined number of subdomains
is reached. The symmetry axis is obtained by computing the eigenvector corresponding to the

largest eigenvalue of the inertia matrix I = ATA [36J

'" x' '" x_y_ '" x_z_~f ~ll~fl

2>,.;(j ~>~ LYjZi

LZiXj LZjYj LZ~

(2)

where A is the matrix of the mesh coordinates. We have implemented this scheme both in strip­
wise and domain-wise forms. The domain-wise version is based on recursive bisection approach.
An alternative way to compute the main symmetry axis is to use any of the three eigenvectors of
the following inertia matrix

L(l+zn - LXiYj - LXjZ j

l' - LYjXj L(Z~+xn - LYjZj
(3)

- LZjXj -LZjYi L(x~ +l)

- 8 -

It turns out that the eigenvalues and eigenvectors of I and r are related [21]. In addition to the
axis, the user has to specify its origin that in our implementation can be selected either as the
mesh center of inertia or its center of mass.

5. Subdomain Boundary Linking Phase

The natural way to identify (linking) the new boundaries of subdomains is to partition the mesh of
the geometric object element-wise before linking. In case of node-wise partitioning the linking
routine transfonns the node-wise partitioning to element-wise one. In some instances the
partitioning schemes might generate disconnected subdomains and additional holes. To eliminate
these side effects, some refinement decomposition algorithms, to be discussed later, are applied on
the initial partitioning before linking. Mter the refined mesh decomposition, the linking routine
connects the new boundary for each subdomain before proceeding with the final mesh generation
in parallel. This is accomplished by separating the outer boundary polygon from the hole
polygon(s) [9] using the element-element adjacency list to identify the boundary element and the
node-element adjacency list to locate the next boundary element.

6. ParaUel Mesh Generation

For the parallel mesh generation various strategies have been proposed. One strategy [37J is to
generate the mesh of each subdomain in parallel and generate the mesh of the inter-subdomain
region sequentially. In this strategy communication between processor nodes is required for the
generation of the inter-subdomain mesh. Moreover, the generated mesh in each subdomain does
not always have a global smooth node distribution. In our proposed approach, we have selected
the quadtree data structure to supervise the node distribution. Thus, it is easy and efficient to
refine it globally before generating the mesh in parallel. Therefore, during the generation of the
parallel mesh, there is no need for communication between processors. Furthermore, the global
smoothness of the node distribution assures more unifonn mesh elements. In addition, we can use
the same algorithm like a sequential mesh generator to generate the unstructured mesh on each
subdomain in parallel. Similarly, the parallel local mesh smoothing and side swapping can be
done by the use of sequential global mesh smoothing and side swapping. Thus, our approach
resembles the operation of existing sequential mesh generation codes. Fig. 6 depicts a block view
of the implemented parallel mesh generation.

- 9-

Form (he initial mesh
Decompose domain
Link subdomain boundary

Refine quadLree node dislribUlion

,
sequential :

Global mesh smoothing
Global side swapping

Optimal mesh panilioning

Host

Parallel mesh generation
Local mesh smoolhing
Local side swapping

Nodel

Parallel mesh generalion
Local mesh smoolhing
Local side swapping

Node Ns

Fig. 6. A strategy for a parallel final mesh generation of domain .Q based on a given
coarse background mesh of.Q and an initial decomposition.

7. Refinement of Initial Decomposition Phase

The refined parallel mesh obtained by the parallel phase described in Section 4 is decomposed
according to the initial partitioning considered of the background mesh. In general this
decomposition is unbalanced and the interface is not minimum. Thus, it must be appropriate
refined.

Kernighan-Lin algorithm (KL): This scheme attempts to locate the best k exchange pairs of
nodes (elements) among two subdomains using the sum of the first k best gains to search for the
best set of exchange pairs of gains based on some cost function. This searching procedure may
continue even though some local gains are negative. Therefore, it can locally identify a swapping
sequence that will produce the maximum gain. In order to make the improvement as large as
possible, this scheme might be forced to visit all possible pairs with considerable increase in the
execution time [38]. From most of our experiments, the ratio Tk = k / Nn is usually less than 0.05.
Thus, KL is allowed to make significant redundant work. In our implementation we restrict the
checking below nk =!k x Nn where!k is a user defined factor. For the test results presented in
Section 8, the factorfk = 0.05 was used. This gives a speedup more than 300 over the original KL.

Simulated annealing based algorithms: The simulated annealing (SA) algorithm [39] is an
optimization approach that attempts to prevent a poor local optimum by allowing an occasional
uphill move based on some probabilistic strategy. In general SA converges very slow and it is not
applicable for large meshes. We have implemented a double loop modification suggested in ref.
[40,41] that usually converges faster. Another variation of SA is the so called stochastic evolution
(SE) algorithm. This scheme allows the uphill move probability to be updated whenever it is
necessary. To avoid SA searching procedure from cyclically stuck a list of predefined forbidden

- 10-

moves has been introduced. This list is called Tabu list and the scheme Tabu search [42]. This list
is constantly updated and its size effects the performance of the search. A size of 7 is suggested in
ref. [42,43].

Most of the above heuristics are hard to parallelize. To overcome this difficulty a parallel search
heuristic (MOB) was introduced in ref. [44]. Its basic idea is to swap large number of nodes
between two subdomains. All of the above algorithms are described in the appendix of ref. [8].

8. Performance of Parallel Mesh Generation and Decomposition
To test the performance of the proposed parallel mesh generation and decomposition approach,
we have selected several geometric objects including the engine rod head (Fig. 1), engine cap
(Fig. 7a), engine axis (Fig. 7b), and torque arm (Fig. 7c). The software realizing this approach was
run on the nCUBE IT and Sun SPARe 2 hardware platforms. The performance of the parallel
mesh generator is measured in terms of fixed speedup, processor utilization, communication
overhead, and synchronization overhead (idle processor time) [45-49]. The last three indicators
were estimated using the ParaGraph tool. The performance of the parallel decomposition phase is
measured in terms of the satisfiability of the load balancing, interface length, subdomain
connectivity, and bandwidth of diagonal submatrices in the corresponding finite element matrix
obtained using linear triangular elements. All the raw data obtained are reported in ref. [8]. In this
paper we report the performance data obtained for the engine axis geometric object and make
general observations supported by all data obtained so far.

1-1-=1"'1,"'1-,- -+-~+J~
(a) Engine Cap

lit"
(c) Torque Arm

Fig. 7. The geometric objects considered in the performance evaluation of parallel mesh and
decomposition approach include (a) engine cap, (b) engine axis, and (c) torque arm.

8.1. Performance of Parallel Mesh Generation

In Fig. 8a we display the speedup for the parallel mesh generator proposed with respect to its
sequential time (TJ) on a single nCUNE IT processor. These data indicate that the scalability of the

parallel scheme is almost superlinear. Fig. 8b shows its speedup with respect to the execution time

(T/) of a sequential mesh generator measured on a Sun SPARC 2 and converted to the

corresponding time on a single nCUBE IT processor. A speedup of at least 10 has been observed.
Fig. 8c and 8d suggest that the communication overhead is negligeable while the synchronization
overhead varies from 5 to 30% with an average of about 15%. In OUI opinion, this is a noticeable

- 11 -

speedup of the mesh generation phase which combined with the speedup obtained from the
parallel decomposition phase can reduce significant the cost of the preprocessing stages for
parallel FEM computations.

'·sp....dup3-s.da ',-
"•,

"oo••

,­
"~peedup3.dal,,· 0'·

.y~

"
•,
"oo••

"Nu~b .. r 0' proc ..ssors '"
,., L~~_~~_~~~...J

Ie lee
Numb..... of proc .. ssors

(a) SpeedUp. parallel: TJ I Tp (b) SpeedUp - sequential: T/ITp

- o- -'u - " " " " " "--El _

,.
(c) Utilization Count

slales of idle, overhcad, and busy
as funelion of time.

(d) Utilization Summary

ovcr.:lll cumulative percentage of time
in idle, overhead, and busy stales.

Fig. 8. The performance of the proposed parallel mesh generation scheme for the engine axis
geometric domain. (a) displays the speedup with respect to TJ and (b) the speedup

with respect to T/. (c) shows the processor utilization and (d) the cumulative
processor utilization.

8.2. Performance of Constructive Mesh Splitting Algorithm

The objectives of aIL mesh splitting algorithms considered in this paper include load balancing,
minimum interface length, minimum number of interpartioning boundary vertices (IBV), and
minimum subdomain connectivity. Several fonnulations of these partitioning optimality criteria
have been proposed. We have adopted the most common way of measuring these partitioning
indicators where a) load balancing is measured by

(max I Ni-~ I)IN'1
i, j

i=1, ...,Ns j=l, ...,Ns i::J:.j (4)

where Ni and~ denote the number of nodes in subdomains i andj.

• 12-

b) the maximum interface length is computed by

max'" C. .
~ I,)

i = 1

maxc. .'.J

j = 1, ,.., Ns i:t j

i=l, ...,Ns j=l, ...,Ns i:tj

(5)

(6)

where CjJ denotes the number of common edges or nodes between subdomains i andj.

and c) the subdomain connectivity is computed by

maX(Nb .. ~ c. .J,} ~ I,}

i = I

j=l, ...,Ns i:tj (7)

where NbJ denotes the number of neighboring subdomains of subdomainj.

Also, the effect of these optimality partitioning criteria can been seen at the structure of the
corresponding finite element matrix K. For example load balancing assures a uniform row
partitioning of matrix K, minimum interface length implies that the interface unknown vector is of
minimum length, the minimum subdomain connectivity guarantees minimum number of non­
diagonal submalrices, and the ordering of the elements in each subdomain determines the
bandwidth of each diagonal submatrix of K which we considered as the fourth partititioning
criterion. In Fig. 9 we display the values of the objective functions corresponding to the first three
criteria for a fine mesh of the engine axis geometric object.

From Fig. 9a and the rest of the data in ref. [8J, we conclude that MRSB is the most expensive
(CPU time requirement) while the cost of the rest varies within a relative small time interval
independently of the mesh size. Fig. 9b suggests that CLO, PLO, CLE, and MRSB produce
equivalent partitionings with respect to interface length criterion. The rest of the heuristic
partitionings have higher interface length with RCM having the highest. Greedy and Inert
partitionings usually have higher subdomain connectivity than the rest. The RCM and Inert
partitionings have higher mv than the rest, specially for fine meshes. With respect to bandwidth
criterion RCM and Inert schemes are the worst. Fig. 10 depicts various partitionings of the engine
axis mesh and displays the structure of the corresponding FEM matrices for linear triangular
elements.

9. Conclusion
In this paper we have proposed a parallel methodology for handling the mesh generation and
decomposition preprocessing phases required by domain decomposition based parallel FEM
computations. A number of options were considered for the implementation of the decomposition
phase. Application specific geometric objects were considered for its evaluation. The preliminary
perfonnance data obtained so far suggest that the proposed methodology is capable of speeding
up significantly these complJtations on message passing hardware platfonns.

- 13 -

Inert Inertia· First Eigenvector
a. e l l_~_:::i__~_-':==::=:::J

CLO PLD CLE I1RSB Gr d"' ReM In.... l
Method

(a) CompUlation Time

•
.~

16 -[]-

" ~
slz..
slz..
"1,,..
,,1,,1'

"

'"

,. ,

10110

"•
"

·••,
•,
o
u

Methods

Canesian Local Optimum

Polar Local Optimum

Cartesian Longest Expansion

Multilevel Recursive Spectral Bisection

Domain-Wise BFS

Strip-Wise BFS

CLO
PLO
CLE

MRSB

Greedy

ReM

....'-...- .-",,-'-

~/A."

D--·-- __
S

_

'" l'--------+-----~~

51z.. 724, part •~
51z.. 2191, "

, •~"lz.. l4!H4, , " " -~

slz.. S96611, 'd " ~
leell

, .-----1

10eee r-~-~~-~-~--~-,

"•o
o
o
u
o

;

•,
o
],
•

724,
2191,

Ha44,
5966B,

slz<'
"1",,
,,1.l'
sl"l'

lellB

5
"0•
"•",
c

'",
0

,,,
,
•,

"L_~_~_~_~_~---.J

CLO PLD CL[I1RSB Gre..d\l ReN Inert
Method

" L~_=_~=_==_~-=___:_...J
CLO PLO CLE I1RSB Gr"",d!l ReM Inert

Method

(b) Maximum Interface Length (e) Subdomain Connectivity

ume r--'--~--~-~--~----,
7~4.

2191,
14044,
59666,

size
size
size
size

pa~t = ~.........-

pa~t = ~-+--

'~"'X',,-~pa~t = 6 _

f-------~----"

'" 1==::==::::=:::==·~::-~---"~'------=-1.~

Ieee

~ 10"000 r-~--~--~-~--~----,

"

"o

·c•>
~ leeee
c
••o•o•

·c•
"c•

.~.~
16 -D­

" ~
7~~, ra~t

2191, ra~t

I~B~~, ra~t

5%66, ra~t

CLE MRSB G~eed!;J RCI1 Ine.-l
Me~hod

51"..
sIze
size
517...

,co
"L_~_~_~_~_~_

,co

5•
••o••

(d) Bandwidlh (e) Intcrpartilioning Boundary Vertices (IBV)

Fig. 9. The perfonnance of seven mesh decomposition heuristics for an engine axis mesh
with respect to (a) their execution time requirement and partitioning characteristics
such as (b) maximum interface length, (c) subdomain connectivity, (d) bandwidth, and
(e) my. The data displayed are for the following heuristics: Cartesian (CLO) and poiar
(PLO) axis splittings with local optimization, Cartesian with longest expansion (CLE),
multilevel recursive spectral bisection (MRSB), domain-wise BFS (Greedy), strip-wise
BFS (ReM) and inertia axis splitting llsing first eigenvector (Inert) .

. 14-

DFS - basic
Communication: 286/143 Bandwidlh: 39/818
Conncctivity: 858 my: 412

BFS - domain-wise
Communication: 18/10 Bandwidth: 34/73
Connectivi£y: 36 IBY: 36

CarieS-an -local optimum
Communicalion: 67/48 Bandwidth: 47/163
Connectivity: 134 IBY: 85

Polar -local optimum
Communication: 51127 Bandwidth: 22/135
Connectivi£y: 102 IBY: 100

BFS - ship-wise
Communication: 62/43 Bandwidlh: 55/101
Connectivity: 124 IBY: 80

Eigenvector Spectral
Communication: 20/10 Bandwidth: 111/861
ConneclivilY: 40 IBY: 36

Polar - recursive bisection
Communication: 131/104 Bandwidth: 13/57
Connectivity: 387 my: 251

Inertia - first eigenvector
Communication: 65/49 Bandwidth: 54/219
Connectivity: 130 my: 114

Fig. 10. The 4-way partitionings of engine axis mesh using various splitting schemes and
the structure of the corresponding FEM matrix. For each partitioning, the values of
the objectives functions of the four partitioning are displayed.

- 15 -

Acknowledgments

This work was supported by NSF grants 9123502-CDA and 9202536-CCR, AFOSR F49620-92­
J-0069 and ARPA grant DAAH04-94-G-001O.

References

1. Chrisochoides, N. P.; Houstis, E. N.; Rice, J. R. (1994) Mapping algorithms and software
environments for data parallel PDE iterative solvers. Journal of Distributed and Parallel
Computing, 21,75-95

2. Cbrisocboides, N. P.; Houstis, E. N.; Houstis, C. E. (1991) Geometry based mapping
strategies for PDE computations. Proceedings of the International Conference on
Supercomputing, Cologne-Gennany, 128-135

3. Houstis, E. N.; Houstis, C. E.; Rice, J. R.,; Weerawarana, S. (1994) PYTHIA: A
computationally intel1igent paradigm to support smart problem solving environments for PDE
based applications. to appear

4. Houstis, E. N.; Rice, J. R. (1992) Parallel ELLPACK: A development and problem solving
environment for high perfonnance computing machines. Programming Environments for
High-Level Scientific Problem Solving (Gaffney, P. w.; Houstis, E. N., Eds), North-Holland,
229-241

5. Kim, S.; Houstis, E. N.; Rice, J. R. (1994) Parallel stationary iterative methods and their
performance. Proceedings of the INTEL supercomputer users group conference (Marinescu,
D.; Frost, R., Eds), San Diego, to appear

6. Farhat, C.; Simon, H. D. (1993) TOPIDOMDEC - a software tool for mesh pnrtitioning and
parallel processing. Technical Report, NASA Ames Research Center, RNR-93-011, 1-28

7. Tragoudas, S. (1994) Min-cut partitioning on underlying tree and graph structures. to appear

8. Wu, P.; Houstis, E. N. (1993) Parallel dynamic mesh generation and domain decomposition.
Technical Report, Purdue University, Department of Computer Sciences, CSD-TR-93-075, 1­
49

9. Wu, P.; Houstis, E. N. (1993) Parallel electronic prototyping of physical objects. Technical
Report, Purdue University, Department of Computer Sciences, CSD~TR-93-026, 1-48

10. Bykat, A. (1976) Automatic generation of triangular grid: I-Subdivision of a general polygon
into convex subregions. II-Triangulation of convex polygons. International Journal for
Numerical Methods in Engineering, 10, 1329-1342

11. Khan, A. 1; Topping, B. H. V. (1991) Parallel adaptive mesh generation. Computing Systems
in Engineering, 2(1), 75-101

12. Lo, S. H. (1991) Automatic mesh generation and adaptation by using contours. International
Journal for Numerical Methods in Engineering, 31, 689-707

13. Sadek, E. A. (1980) A scheme for the automatic generation of triangular finite elements.
International Journal for Numerical Methods in Engineering, IS, 1813-1822

- 16-

14. Cheng, E; Jaromczyk, J. w.; Lin, J.; Chang, S.; Lu, J. (1989) A parallel mesh generation
algorithm based on the vertex label assignment scheme. International Journal for Numerical
Methods in Engineering, 28,1429-144.&

15. Samet, H. (1984) The quadtree and related hierarchical data structures. Computing Surveys,
16(2),187-260

16. Mitchell, W. F. (1987) A comparison of adaptive refinement techniques for elliptic problems.
Technical Report, University of Illinois at Urbana-Champaign, Department of Computer
Science, UIUCDCS-R-87-1375, 1-14

17. PATRAN (1992) A Division of PDA Engineering - PATRAN Plus User Manual, Vol. 1 & 2,
PDA Engineering, PATRAN Division

18. Deljouie-Rakhshandeh, K. (1990) An approach to the generation of triangular grids
possessing few obtuse triangles. International Journal for Numerical Methods in Engineering,
29,1299-1321

19. Baase, S. (1988) Graphs and Digraphs, Computer Algorithms: Introduction to Design and
Analysis, Reading, MA, Addison-Wesley, Ch.4, pp. 145-207

20. Farhat, C. (1988) A simple and efficient automatic FEM domain decomposer. Computers &
Structures, 28(5), 579-602

21. Farhat, c.; Lesoinne, M. (1993) Automatic partitioning of unstructured meshes for the parallel
solution of problems in computational mechanics. International Journal for Numerical
Methods in Engineering, 36, 745-764

22. George, A; Liu, J. W. H. (1979) An implementation of a pseudoperipheral node finder. ACM
Transactions on Mathematical Software, 5(3), 284-295

23. Gibbs, N. E.; Poole, J. W. G.; Stockmeyer, P. K. (1976) An algorithm for reducing the
bandwidth and profile of a sparse matrix. SIAM J. Numer. Anal., 13(2), 236-250

24. Malone, J. G. (1988) Automated mesh decomposition and concurrent finite element analysis
for hypercube multiprocessor computers. Computer Methods in Applied Mechanics and
Engineering, 70, 27-58

25. Pissanetsky, S. (1984) Ordering for Gauss elimination: Symmetry matrices, Sparse Matrix
Technology, Orlando, Academic Press, Ch.4, pp. 94-158

26. Chan, W. M.; George, A. (1980) A linear time implementation of the reverse Cuthill-McKee
algorithm. BIT, 20, 8-14

27. George, A.; Liu, J. W. H. (1978) Algorithms for matrix partitioning and the numerical solution
of finite element systems. SIAM J. Numer. Anal., 15(2),297-327

28. Barnard, S. T.; Simon, H. D. (1993) A fast multilevel implementation of recursive spectral
bisection for partitioning unstructured problems. Proceedings of the Sixth SIAM Conference
on Parallel Processing for Scientific Computing, 711-718

- 17 -

29. Fiedler, M. (1975) A property of eigenvectors of nonnegative symmetric matrices and its
application to graph theory. Czechoslovak Mathematical Journal, 25(100), 619-633

30. Fiedler, M. (1975) Eigenvectors of acyclic matrices. Czechoslovak Mathematical Journal,
25(100),607-618

31. Fiedler, M. (1973) Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,
23(98),298-305

32. Hendrickson, B.; Leland, R. (1993) An improved spectral load balancing method.
Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing,
953-961

33. Simon, H. D. (1991) Partitioning of unstructured problems for parallel processing. Computing
Systems in Engineering, 2(2/3),135-148

34. Venkatakrishnan, v.; Simon, H. D. (1992) A MIMD implementation of a parallel Euler solver
for unstructured grids. The Journal of Supercomputing, 6, 117-137

35. Loriot, M.; Fezoui, L. (1988) Mesh-splitting preprocessor. unpublished manuscripts

36. Williams, R. (1992) Parallel meshes for complex geometry. PML, 302-312

37. Lohner, R.; Camberos, 1.; Merriam, M. (1992) Parallel unstructured grid generation.
Computer Methods in Applied Mechanics and Engineering, 95, 343-357

38. Kernighan, B. W.; Lin, S. (1970) An efficient heuristic procedure for partitioning graphs. The
Bell System Technical Journal, 49, 291-307

39. Kirkpatrick, S.; Gelatt, J. C. D.; Vecchi, M. P. (1983) Optimization by simulated annealing.
Science, 220(4598), 671-680

40. Johnson, D. S.; Aragon, C. R.; McGeoch, L. A.; Schevon, C. (1989) Optimization by
simulated annealing: An experimental evaluation; Part I, Graph partitioning. Operations
Research, 37(6), 865-892

41. Saab, Y. G.; Rao, V. B. (1991) Combinatorial optimization by stochastic evolution. IEEE
Transactions on Computer-Aided Design, 10(4),525-535

42. Hertz, A; Werra, D. (1987) Using Tabu search techniques for graph coloring. Computing, 39,
345-351

43. Glover, E; McMillan, C. (1985/6) Interactive decision software and computer graphics for
architectural and space planning. Annals of Operations Research, 5, 557-573

44. Savage, J. E.; Wloka, M. G. (1991) Parallelism in graph-partitioning. Journal of Parallel and
Distributed Computing, 13,257-272

45. Geist, G. A.; Heath, M. T.; Peyton, B. w.; Worley, P. H. (1992) A users' guide to PICL, a
portable instrumented communication library. Technical Report, Oak Ridge National
Laboratory, Oak Ridge, TN, ORNLITM-1l616, 1-22

- 18 -

46. Geist, G. A.; Heath, M. T.; Peyton, B. w.; Worley, P. H. (1990) PICL: a portable instrumented
communication library, C reference manual. Technical Report, Oak Ridge National
Laboratory, OakRidge, TN, ORNLfTM-I1l30, 1-146

47. Heath, M. T.; Finger, J. E. (1993) ParaGraph: A tool for visualizing performance of parallel
programs, Oak Ridge National Laboratory, Oak Ridge, TN, I-50

48. Heath, M. T. (1993) Recent developments and case studies in performance visualization using
ParaGraph. Performance Measurement and Visualization of Parallel Systems (Haring, G.;
Kotsis, G., Eds.), Amsterdam, The Netherlands, Elsevier Science Publishers, 175-200

49. Heath, M. T.; Finger, J. E. (1991) Visualizing the performance of parallel programs. IEEE
Software, 8(5), 29-39

50. AI-Nasca, M.; Nguyen, D. T. (1991) An algorithm for domain decomposition in finite element
analysis. Computers & Structures, 39(3/4), 277-289

- 19-

	Parallel Adaptive Mesh Generation and Decomposition
	Report Number:
	

	tmp.1307986960.pdf.9TAyc

