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Figure 4.101. Effect on modal amplitudes of varying the initial
amplitude of stationary-crossflow mode (0,3) from 0.005% to 0.5%.
Traveling-crossflow mode (6,2) is initially excited with 0.001% ampli-
tude. Mode type is grouped by color, and initial amplitude is grouped
by line pattern.
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Figure 4.102. Effect on skin friction of varying the initial amplitude
of stationary-crossflow mode (0,3) from 0.005% to 0.5%. Traveling-
crossflow mode (6,2) is initially excited with 0.001% amplitude. Initial
amplitude is grouped by line pattern. Grey and orange curves repre-
sent the laminar and perturbed boundary layers, respectively.



190

Figure 4.103. Effect on modal amplitudes of varying the initial
amplitude of traveling-crossflow mode (6,2) from 0.001% to 0.5%.
Stationary-crossflow mode (0,3) is initially excited with 0.001% ampli-
tude. Mode type is grouped by color, and initial amplitude is grouped
by line pattern.
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Figure 4.104. Effect on skin friction of varying the initial amplitude
of traveling-crossflow mode (6,2) from 0.001% to 0.5%. Stationary-
crossflow mode (0,3) is initially excited with 0.001% amplitude. Initial
amplitude is grouped by line pattern. Grey and orange curves repre-
sent the laminar and perturbed boundary layers, respectively.
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Figure 4.105. Skin friction coefficients for initial amplitudes of
traveling-crossflow mode (6,2) ranging from 0.001% to 0.5%, where
36 temporal modes were retained. Grey and orange curves represent
the laminar and perturbed boundary layers, respectively.
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Figure 4.106. Skin friction coefficients for initial amplitudes of
traveling-crossflow modes (6,2), (7,2), and (9,2) ranging from 0.001%
to 0.5%, where 18 temporal modes were retained. Grey and orange
curves represent the laminar and perturbed boundary layers, respec-
tively.
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Figure 4.107. Skin friction coefficients for initial amplitudes of
traveling-crossflow modes (6,2), (7,2), (8,2) and (9,2) ranging from
0.001% to 0.5%, where 18 temporal modes were retained. Grey and
orange curves represent the laminar and perturbed boundary layers,
respectively.
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Figure 4.108. Amplification factor of the (12,1) harmonic as a func-
tion of initial amplitude for the (0,3) stationary mode, and the (6,2)
traveling mode.
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5. SUMMARY

The use of linear boundary-layer stability theory to predict crossflow-induced tran-

sition has been largely avoided in past work due to the known, highly non-linear

nature of crossflow waves. However, to entirely discard linear theory as an analysis

tool, is to discard a robust and efficient way to compute crossflow waves, and ulti-

mately estimate crossflow-induced transition. In an effort to capitalize on the benefits

of linear theory, a process was developed to perform linear analysis of crossflow waves

in hypersonic flow. This process was applied to analysis of the boundary layer on

the HIFiRE-5 elliptic cone forebody. Guidelines for high-quality grid generation were

developed and applied to the creation of the grids from the present research. Navier-

Stokes mean flows were solved over the HIFiRE-5 elliptic-cone geometry using BCFD,

and were in good agreement with solutions from LAURA and US3D. Stability anal-

ysis was performed on mean flows from the present study, and results were in good

agreement with data in the open literature. Given the good agreement for both mean

flow and stability-analysis results, verification of the process used to perform stability

analysis was deemed successful.

An investigation of various stability analysis techniques was performed using LST,

LPSE, 2pLPSE, and SBG. LST, LPSE, and 2pLPSE analysis was performed using

LASTRAC, and SBG analysis was performed by Paredes. Significant sensitivity to

crossflow growth rates was observed between the various techniques. At the stream-

wise location used to compare the different methods, LPSE growth rates were about

23% greater than LST, and 2pLPSE growth rates were about 15% greater than LPSE.

Growth rates computed using 2pLPSE were found to be in excellent agreement with

SBG, which is significant because SBG is roughly 480 times more computationally

expensive than 2pLPSE. Wave properties such as wave angle and phase speed were

found to be relatively insensitive (less than 2% variation) to the type of analysis per-
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formed. Additionally, the sensitivity to marching path was explored using inviscid

streamlines and group-velocity lines. For the present research the two paths were

very similar. As a result, wave angles computed using the group-velocity line were

approximately 0.04◦ less than those computed along the inviscid streamline. Phase

speeds (normalized by velocity at the edge of the boundary layer) computed using

the group-velocity line were approximately 0.002 less than those computed along the

inviscid streamline.

Wave angles and phase speeds at several freestream Reynolds numbers, ranging

from 7.2e6/m to 9.0e6/m, were compared with experimental data obtained in a 2012

test performed in the BAM6QT. Linear computations agreed with the test data,

to within experimental uncertainty, for freestream Reynolds numbers up to about

8.3e6/m. At greater Reynolds numbers, linear theory began to deviate from the test

data beginning with the highest frequencies in the spectrum. At Re/m = 8.9e6, the

greatest deviation occurred near 75kHz, where LST over-predicted the wave angle

by about 11◦, and under-predicted the phase speed by about 0.14. At Re/m = 9.0e6,

the greatest deviation occurred near 65kHz, where LST over-predicted the wave

angle by about 15◦, and under-predicted the phase speed by about 0.2. Based on

these results, it was posited that the measured disturbances evolved linearly up to

8.3e6/m, and beyond this linear limit, non-linear interactions caused the observed

deviation between linear theory and test. For Re/m > 8.3e6, a distinct break from

linear variation in wave angle and phase speed occurred at a particular frequency,

which decreased with increasing Reynolds number. Similar analysis was performed

to compare with BAM6QT data taken in 2015 at a location farther upstream on the

model. These wave-angle and phase-speed comparisons did not agree as well as for

the 2012 dataset. For freestream Re/m ≤ 9.7e6, which based on the 2012 data is

near the linear limit, LST generally over-predicted wave angle and under-predicted

phase speed by about 8◦ and 0.05 across the spectrum, respectively. Possible causes

for the less-good agreement with the 2015 data include, but are not limited to, small
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misalignment between the model and freestream, asymmetric nose-tip roughness, and

interactions between the streamwise array of sensors and the flow.

Traveling-wave amplitude ratios as a function of freestream unit Reynolds number

were compared to LST N-factors for the 2012 Borg test at x = 318mm. The slopes

(i.e. non-dimensional growth rates) in the linear-growth region prior to saturation

were about unity for both test and LST. A similar comparison was made for data

taken at x = 268mm in the 2015 Borg test, but less-good agreement was realized

between test and LST. In this case, the LST growth rate was once again near unity,

which was around 32% less than the measured growth rate. Growth rates from the

2015 Borg test were also compared at x = 318mm on opposite halves of the model

at z = ±39.8mm. The LST growth rate was again near unity, which was around

30% and 90% greater than the growth rates measured at sensors z = 39.8mm and

z = −39.8mm, respectively.

Spanwise wavelengths for stationary-crossflow waves were obtained from infrared

thermography in the 2015 Borg test. LST computations, where the spanwise wave-

length was chosen at each station to maximize the streamwise growth rate, were

compared with the test data at x = 305.1mm. The test data indicated that the

most-amplified spanwise wavelengths were between 3 and 5 mm, with a peak near 4

mm. LST N-factor plotted as a function of spanwise wavelength was in good agree-

ment with test, indicating that the most-amplified stationary waves had spanwise

wavelengths between 3 and 5 mm, with a peak near 4 mm.

Correlation to the linear limit of stationary-crossflow waves provided a conserva-

tive estimator for crossflow-induced transition. The stationary-wave N-factors for the

linear limit were computed to be 8.2, 8.4, and 8.7 using LST, LPSE, and 2pLPSE,

respectively. The traveling-wave amplitude at the linear limit was around 1%. Vari-

ation of crossflow Reynolds number over the surface of the model was similar to that

of crossflow N-factor. Therefore, it seems reasonable that crossflow Reynolds number

at the linear limit may be used as a low-order surrogate for the N-factor if stability

analysis is not feasible for a given application. The value of crossflow Reynolds num-



200

ber at the linear limit was computed to be around 1100. The degree of conservatism

in the linear-limit estimation of transition was roughly approximated using PSD data

from the 2012 Borg test. It was estimated that the linear limit occurred about 26mm

upstream of transition onset, and 56mm upstream of fully-turbulent flow, which oc-

curred near x = 368mm. More experimental data would serve to increase confidence

in the correlation to the linear limit of stationary crossflow in hypersonic boundary

layers, so this would be a useful area to focus future efforts.

Explorations of crossflow sensitivity to wall temperature and yaw angle were con-

ducted. It was determined that a 15 K increase in wall temperature resulted in 0.08

and 0.13 increases in N-factor for stationary and traveling-crossflow waves, respec-

tively. Yaw was found to have a greater impact on crossflow-wave stability. Crossflow

waves were found to be destabilized on the windward side, and stabilized on the lee-

ward side of the model. This correlated with the respective increase and decrease

in crossflow Reynolds number caused by the yaw. The N-factor difference between

identical points on opposite halves of the model was about 2 for a yaw angle of 1◦.

The difference in N-factor at a yaw angle of about 0.4◦ was consistent with the change

in traveling-wave amplitude between opposite halves of the model in the test. Mea-

surements by Chynoweth et al. [80] in the BAM6QT revealed that model installation,

without precise adjustment, could lead to misalignment with the oncoming flow on

the order of 0.25◦. This seems to support the possibility that the asymmetric ampli-

tudes observed in the 2015 Borg test were caused by small misalignment between the

model and the freestream.

Non-linear PSE analysis was used to investigate the interactions between station-

ary and traveling-crossflow waves beyond the linear limit. It was shown that in the

presence of a large-scale stationary wave, there is a spectrum of traveling waves that

will interact and lead to harmonic excitation. Wave angles of two such highly am-

plified traveling-wave harmonic were found to be in good agreement with test data

at high frequencies, where LST over-predicted the test by as much as 30%. For

reasons unknown, similar agreement for phase speed was not realized. The NPSE
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results showed significant growth of traveling-wave harmonics at frequencies greater

than approximately 50kHz, which may have contributed to the break from linear

variation observed in wave angle and phase speed measurements. At freestream

Re/m = 8.9e6, these harmonics were computationally demonstrated to evolve lin-

early near x = 268mm (comparison location for the 2015 test data), and non-linearly

near x = 312mm (comparison location for the 2012 test data). Initial-amplitude

sweeps of both stationary and traveling waves, ranging from 0.001% to 0.5%, were

also conducted. For an initial stationary-wave amplitude near 0.05%, transition on-

set became apparent based on a steep rise in skin-friction, and moved upstream with

increasing initial amplitude. The steep rise in skin friction was not observed for the

sweep of initial amplitude of traveling waves. However, beginning with an initial am-

plitude of 0.005%, the NPSE simulations terminated shortly downstream of a modest

rise in skin friction, which often indicates that transition onset is imminent. The sim-

ulations terminated farther upstream as the initial amplitude of the traveling wave

was increased.

Finally, two recommendations are made for future work. First, it would be benefi-

cial to apply the methods outlined herein to expanding the linear-limit correlation as

more experimental data becomes available. A more-precise assessment of the degree

of conservatism in the linear-limit estimation would also help mature the linear-limit

approach. Second, additional NPSE analysis may help explain why wave angles of

traveling-wave harmonics were predicted to within experimental uncertainty, while

phase speeds were not.
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