
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1994

Contour Ranking on Coarse Grained Machines: A Case Study for Contour Ranking on Coarse Grained Machines: A Case Study for

Low-Level Vision Computations Low-Level Vision Computations

Farooq Hameed

Ashfaq A. Khokhar

Susanne E. Hambrusch
Purdue University, seh@cs.purdue.edu

Jamshed Patel

Report Number:
94-079

Hameed, Farooq; Khokhar, Ashfaq A.; Hambrusch, Susanne E.; and Patel, Jamshed, "Contour Ranking on
Coarse Grained Machines: A Case Study for Low-Level Vision Computations" (1994). Department of
Computer Science Technical Reports. Paper 1178.
https://docs.lib.purdue.edu/cstech/1178

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

CONTOUR RANKING ON COARSE GRAINED
MACHINES: A CASE STUDY FOR LOW­

LEVEL VISION COMPUTATIONS

Farooq Hameed
Susanne E. Hambrusch

Ashfaq A. Khokhar
Jamshed Patel

CSD-TR-94-079
November 1994

Contour Ranking On Coarse Grained Machines: A Case Study
for Low-Level Vision Computations*

Farooq Hameed
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907, USA

hameed@cs.purdue.edu

Ashfaq A. Khokhar
School of Electrical Engineering and
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907, USA

ashfaq@cs.purdue.edu

Susanne E. Hambrusch
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907, USA

seh@cs.purdue.edu

Jamshed Patel
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907, USA

jamshed@ecn.purdue.edu

November 21, 1994

Abstract

In this paper we present parallel solutions for performing image contour ranking on
coarse-grained machines. In contour ranking, a linear representations of the edge contours
is generated from the raw image. We describe solutions that employ different divide-and­
conquer approaches and that use different communication patterns. The combining step of
the divide-and-conquer solutions uses efficient sequential techniques for merging information
about subimages. The proposed solutions are implemented on Intel Delta and Intel Paragon
machines. We discuss performance results and present scalability analysis using different
image and machine sizes.

Keywords: Parallel processing, coarse-grained machines, contour ranking, low-level com­
puter vision, scalability.

-Research supported in part by ARPA under contract DABT63-92-C-00220NR. The views and conclusions
contained in this paper are those of the authors and should not be interpreted as representing official policies,
expressed or implied, of the U.S. government.

1

1 Introduction

Edge operators in low-level vision tasks generate edge contours represented as edge maps in a

2-dimensional image plane. For efficient processing of these edge contours in subsequent mid­

and high-level vision tasks, a more compact and linearized representation is desirable [1,6, 11].

We refer to the process of generating such a linear representations as contour ranking. Contour

ranking can be performed through list ranking on each edge contour. On sequential machines,

doing so results in linear-time solutions for contour ranking. On parallel machines, numerous

fine-grained solutions for list ranking exist, many of them designed for the PRAM [4, 5, 8, 9].

These algorithms are communication intensive and the arising communication patterns are data­

dependent and irregular. Thus, they do not perform well on message-passing, coarse-grained

machines.

In this paper, we present efficient coarse-grained algorithms for contour ranking. Our algo­

rithms exploit the property that an element of an edge contour is connected to one of its eight

nearest neighbors in the image plane. This allows our parallel solutions to employ regular com­

munication patterns which result in a reduction in the communication overhead. Our contour

ranking algorithms use a divide-and-conquer approach. Different ways of dividing the image

result in algorithms with different communication and computation requirements. We present

performance and scalability results for these algorithms on the Intel Delta and Intel Paragon.

We discuss how the communication and computation behavior of the different algorithms im­

pacts the algorithm design of other vision problems.

Let I be an image of size m X n. We refer to a pixel on an edge contour in image I as an

edge point. For each edge point e, succ(e) points to either one of e's eight immediate successors

on the edge contour or it is nil. The successor set of an edge point e is the set containing e and

all other edge points in the reflexive and transitive closure of the succ-relation. An edge point

e with succ(e) = nil is called a head. We assume that an edge point is the successor of at most

one other edge point and that the successor set of every edge point contains exactly one head.

In contour ranking we determine, for every edge point e, the head in the successor set of e and

the size of the successor set of e. We refer to the size of this set as the rank of e. Once the rank

of every edge is known, a final data movement step generates the linear representation.

2

We present algorithms for performing contour ranking on a p-processor machine. Our algo­

rithms make no assumption about the communication network underlying the parallel machine.

For simplicity, we assume that p is a perfect square and that m and n, the dimensions of image

], are both multiples of yp. We assume that image] is partitioned into p rectangular subim­

ages, each of size ,fi X :ft. We number these subimages from]0 to]p-l using a row-major

numbering scheme and assign subimage]k to processor Pk.

In the next section we describe our parallel algorithms in an architecture-independent way.

In Section 3, we present experimental results of implementations based on these algorithms on

the Intel Delta and Intel Paragon. In the final section, we address how our algorithms and

experimental results impact the design of coarse-grained algorithms for other computer vision

and image processing problems.

2 Coarse-grained Contour Ranking Algorithms

Efficient coarse-grained algorithms are generally a combination of fine-grain parallel and se­

quential problem-solving approaches. On coarse-grained machines, divide and conquer strate­

gies often produce efficient solutions. Such strategies typically have a merging step in which the

results computed by different processors are combined to obtain the final solution. Different

merging patterns have varying communication and computation requirements and depending

on machine parameters, may significantly impact overall performance.

In this section we describe different divide-and-conquer algorithms for contour ranking. We

start by defining in Section 2.1 the notations used in the paper, along with a description of

the basic concepts. In Section 2.2, we describe the divide-and-conquer patterns employed in

our algorithms. In Section 2.3, we describe the sequential computations performed by the

processors.

2.1 Notation and Concepts

Let I' be a subimage of]. An edge point h of]' is a head of subimage]' if succ(h) corresponds

to either an edge point not in subimage l' or if succ(h) = nil. An edge point t of]' is a tail

of subimage]' if no edge point of]' has t as its successor. Of particular interest are the heads

3

that lie on the boundary of I' with (non-nil) successors in 1', and the tails that lie on the

boundary of 1'. Assume that these heads and tails are stored in the head list and the tail list

of subimage I', respectively. For every edge pixel in the head or tail list we maintain rank and

head information. At some point in the algorithm, this rank and head information is correct

with respect to (w.r.t.) subimage I'. At later iterations of the algorithm, this information is

correct w.r.t. some other subimage of I which contains I'. Eventually, it will be correct w.r.t.

image I.

Let h be the subimage assigned to processor Pk, 0 S; k S; p - 1. Our algorithms consist of

the following three main steps.

1. Construct the head and tail lists of subimage Ik by performing list ranking operations on

the edge pixels in subimage h. For each edge point on a contour, the rank and head in­

formation with respect to its subimage h is determined. This requires no communication

among the processors.

2. Determine, for each edge point h in the head list of Ik, the rank and head information of

h with respect to image I. In order to compute this information, head and tail lists of

subimages are merged to form head and tail lists of larger subimages. The information

computed for the larger subimages is then used to update the information for the smaller

subimages.

3. Determine the rank and head information w.r.t. image I for every edge pixel in subimage

Ik. This final step is similar to the first one and requires no communication between

processors.

Step 1 and 3 are identical for each algorithm and can be viewed as as preprocessing and

postprocessing, respectively. The following two sections describe and analyze various parallel

solutions for Step 2.

2.2 Communication Patterns for Merging

In this section we describe different algorithms for determining, for each edge point h in the

head list of subimage h, 0 S; k S; p - 1, the head and rank information of h W.r. t. image I. We

4

assume that each processor Pk has determined the head and tail lists of its assigned subimage

Ik and has computed rank and head information w.r.t. Ik. The computation of rank and head

information of edge points w.r.t. image I uses two sequential procedures: Algorithm Merge,

which performs the actual merge of subimages, and Algorithm FinaLUpdate, which updates

rank and head information w.r.t image I. Assume Ii, ... ,1: are T rectangular subimages of

image I whose union forms a rectangular subimage 1'. Algorithm Merge determines the head

and tail lists of l' from the head and tail lists of the T subimages. Assume now that the rank and

head information of the edge points in the head list of I' is correct w.r.t. image I. Algorithm

FinaLUpdate generates, from the updated head list for 1', the head and rank information of

every edge point in the head lists of I~, ... , I; w.r.t. image I. Both procedures are described

in more detail in Section 2.3.

Each one of our algorithms for merging subimages can be classified as either a 2-phase or

I-phase algorithm. The fundamental difference underlying the 2-phase and I-phase approach is

as follows. Assume processor Pi contains the head and tail lists of subimage Ii and processor Pj

contains the head and tail lists of subimage Ij. Assume the next step is to determine the head

and tail lists of subimage l' = Ii U Ij. This can be done by Pi sending its head and tail lists to

Pj and having Pj determine the head and tail lists of I'. At some later point in time, processor

Pj will contain the head and tail lists of I' w.r.t. image I. Pj can then determine the head and

tail lists of Ii and Ij w.r.t. image I. The head and tail lists of Ii w.r.t. I are sent to processor

Pi. This approach can be generalized from 2 to an arbitrary number of processors. We refer to

it as the 2-phase approach. In the forward phase of a 2-phase approach, subimages are merged

in order to compute the head and tail lists of image I. In the backward phase, head and rank

information that is correct w.r.t. image I "flows back" to the smaller subimages, eventually

reaching subimage Ik stored at processor Pk.

An alternative to the 2-phase is the i-phase approach in which both Pi and Pj send their

head and tail lists to each other. This avoids an explicit backward phase at the cost of more

communication in a forward phase. Processors Pi and Pj both, after receiving the other pro­

cessor's head and tail lists, compute the head and tail lists of subimage I'. Both processors

continue to merge subimages until each one knows the head and tail lists of image I. At this

5

point the head and tail lists of subimage h w.r.t. image I are determined within each processor

Pk. The computation done in the backward phase of a 2-phase algorithm is now done within

each processor and requires no communication. We refer to this computation as the implicit

backward phase.

The communication arising in a 2-phase algorithm are all-to-one communication in the for­

ward phase and one-to-all communication in the backward phase. A I-phase algorithm executes

all-to-all broadcasts in the forward phase; Le., every processor broadcasts a message to every

other processor. Each communication operation is performed on subgroups of processors, with

the number of processors in each subgroup depending on the algorithm. We next describe

three 2-phase algorithms and then their I-phase counterparts. The number of processors merg­

ing subimages in the forward phase of a 2-phase algorithm decreases with each iteration. In

the corresponding I-phase algorithm every processor merges subimages at every iteration. The

number of processors merging identical subimages, and thus performing identical computations,

increases after every iteration.

2-Phase Algorithms

The first one of our three 2-phase algorithms for computing head and rank information w.r.t.

image I employs parallelism in an almost trivial way. Every processor Pk sends its head and tail

lists to one common processor, say processor Po. Processor Po determines, for each edge point

h in a head list, the rank and head information of h w.r.t. image I. The updated head lists

are then sent back to the corresponding processors. In this algorithm, called Direct 2-Phase,

the communication between processors occurs in the form of one all-to-one and one one-to-all

operation over the entire machine. Figure 1 contains a brief overview of this algorithm, along

with the other 2-phase algorithms.

If the communication network of the p-processor machine is (or contains) a mesh, merging

the subimages in the row-column (or column-row) pattern is natural. Figure 1 contains an

outline of a row-column algorithm, which we call Algorithm Row-Col 2-Phase. For clarity, we

change the indexing so that processor Pi,j is now assigned subimage Ii,j, 0 ::; i, j ::; yIP - 1.

In the forward phase of Row-Col 2-Phase, the head and tail lists of subimage Ii,j are first sent

6

Algorithm Direct 2-Phase

1. Every processor Pk sends its head and tail list to processor Po.

2. Processor Po merges the p lists and determines, for each edge point in a head list, its
rank and head information w.r.t. image I.

3. Processor Po sends the updated head lists back to the corresponding processors.

Algorithm Row-Col 2-Phase

1. Processor Pi,j sends its head and tail lists to processor Pi,O, 0 :S i, j :S -JP - 1.

2. Processor Pi,O merges the received lists, creating head and tails list of subimage I i ,*,

O:Si:S-JP-1.

3. Processor Pi,O sends the newly formed head and tail lists processor Po,o, 0 :S i :S
-JP-1.

4. Processor Po,o forms the head list of image I. It then updates the head list of subimage
Ii,* so that head and rank information is correct w.r.t. image I, 0 :S i :S -JP - 1.

5. Processor Po,o sends the updated head list of Ii,* to processor Pi,O, 0 :S i :S -JP - 1.

6. Using the head and rank information of subimage I i ,* w.r.t. image I, processor Pi,O

determines the head and rank information of Ii,j w.r.t. image I, 0:S i, j :S -JP - 1.

7. Processor Pi,O sends the updated head list of Ii,j to processor Pi,j.

Algorithm Quad-Tree 2-Phase

1. Form p/4 groups, each containing 4 processors, so that processors P 2i ,2j,

P 2i+l,2j,P2i,2j+l, and P 2i+l,2j+l, 0 :S i,j :S -JP/2 - 1 belong to the same group.
Processor P2i,2j is made the leader of the group. Every processor sends its head and
tail lists to the leader in its group.

2. Let I~i,2j = I 2i ,2j U Izi+l,2j U Izi,2j+l U I 2i+l,2j+l. Leader processor P 2i ,2j determines
the head and tail lists of subimage I~i,2j'

3. The leader processors recursively merge their subimages. After the recursion, proces­
sor P 2i ,2j contains the head list of subimage I~i,2j w.r.t. image I.

4. Each leader processor determines the head lists for subimages Izi,2j Izi+l,2j, Izi,2j+l,

and Izi+l,2j+l w.r.t image I.

5. Processor P2i,2j sends the updated head lists back to the corresponding processors in
its group.

Figure 1: Three 2-Phase Algorithms

7

to processor Pi,O' Pi,O creates the head and tail lists of subimage Ii,* = UO::;j::;v'P-11i,j and

sends them to processor Po,o, In the first step of the backward phase, Po,o sends the head list

of subimage Ii,* w.r.t. image I to processor Pi,O' Processor Pi,O now updates the head list of

subimage Ii,j w.r.t. image I and sends it to Pi,j.

The third pattern merges the subimages in a quad-tree like fashion. In the description we

assume that processors are arranged (and can thus be indexed) in a mesh pattern. However,

the quad-tree like merging can be employed efficiently on many other interconnection networks.

In Algorithm Quad-Tree 2-Phase, the head and tail lists offour adjacent subimages are merged

until the head list of image I is known. In the backward phase, head and rank information

w.r.t. image I flows back to the smaller subimages until it reaches subimages Ii,j. An outline

of the algorithm is given in Figure 1.

The above described solutions can also be viewed as partitioning a p-processor machine

into either one, two, and log4 p conceptual levels. In each level, processors are partitioned into

groups, with communication occurring only between processors in the same group. In [3], we

have used this notion of conceptual levels to define a k-Ievel algorithm. One of the conclu­

sions of that work was that for communication operations, 1-, 2-, and logp-Ievel algorithms

give good performance on existing coarse-grained machines. The main reason for this is the

number of processors in existing coarse-grained machines, which is in the hundreds and not

in the thousands. Based on the results of this work, we did not consider general k-Ievel solu­

tions for contour ranking, even though the concepts underlying the described solutions can be

generalized.

I-Phase Algorithms

Each one of the three 2-phase algorithms has a corresponding I-phase algorithm. The 1­

phase algorithms are outlined in Figure 2. Direct I-Phase employs an all-to-all broadcast on p

processors as the single communication operation. Row-ColI-Phase employs two partial all-to­

all broadcasts, the first one within the rows and the second one within the columns. Quad-Tree

I-Phase performs p/4 partial all-to-all broadcasts, each involving four processors, in each one

of the log4 p iterations. Figure 3 shows the all-to-all patterns arising in the two iterations of

8

Algorithm Direct I-Phase
1. Every processor sends its head and tail lists to every other processor.

2. Every processor Pi,j merges the p lists it received and determines, for each edge point
on the head list for subimage Ii,j, the rank and head information w.r.t. image I.

Algorithm Row-Col I-Phase

1. Processor Pi,j sends its head and tail lists to every other processor in row i, 0 :S i, j :S
vP-1.

2. Processor Pi,j merges the received lists, creating head and tails list of subimage Ii,*,

o:S i, j :S vP - 1.

3. Processor Pi,j sends the head and tail lists of subimage I i ,* to every processor in
column i, 0 :S i, j :S vP - 1.

4. Processor Pi,j forms the head lists of image I. It then determines the head list of
subimage Ii,j with respect to image I. This is done by first updating the head list of
Ii,* w.r.t image I, 0 :S i, j :S vP - 1.

Algorithm Quad-Tree I-Phase

1. Form p/4 groups, each containing 4 processors, so that processors P 2i ,2j

P 2i+l,2j, P2i,2j+l, and P2i+l,2j+l, 0 :S i,j :S vP/2 - 1 belong to the same group.
Number the processors in a group from 1 to 4. Every processor sends its head and
tail lists to every other processor in the same group.

2. Let I~i,2j = hi,2j U12i+l,2j U12i,2j+l Uhi+l,2j+l. A processor in the same group with
P 2i,2j determines the head and tail lists of subimage I~i,2j'

3. All the processors with number I, 1 :S I :S 4, recursively merge their subimages.
After the recursion, every processor in the group with P 2i,2j contains the head list of
subimage I~i,2j w.r.t. image I.

4. Processor Pi,j determines the head list for subimage Ii,j w.r.t image I.

Figure 2: Three I-Phase Algorithms

9

1st iteration 2nd iteration

Figure 3: All-to-all Communication patterns for Algorithms Quad-Tree I-Phase

Algorithm Quad-Tree I-Phase on a 4 X 4 mesh. The processors communicating in the all- to-all

broadcast in the second iteration are linked with arrows of the same type.

Variations on the Basic Algorithms

In this section we describe two variations on the above described approaches. The first one

tries to take advantage of the fact that in many images a significant number of edges exhibit

locality. By this we mean that edges tend to be short in length. Short edge contours can often

be ranked by each processor using the subimages assigned to it and its neighboring processors.

Hence, each one of the algorithms described can be augmented with a neighbor preprocessing

phase. In the neighbor preprocessing phase a processor sends its head and tail lists to its four

adjacent processors (horizontally or vertically adjacent). Edge contours that span across two

subimages are ranked and their entries are removed from the corresponding lists. Contours that

span over more than two subimages are ranked as before. We added the neighbor preprocessing

phase to Algorithms Direct I-phase, Direct 2-phase, and Quad-Tree I-phase and will discuss

the observed advantage in the next section.

On mesh architectures, Algorithm Quad-tree I-phase experiences the following communi­

cation imbalance. The size of the boundary of the subimages, and thus the size of the lists

sent between processors, increases in subsequent iterations. In initial phases, processors com-

10

municate over short distances. As the algorithm proceeds, the communication distances and

associated congestion increases. This is also evident from Figure 3. This imbalance is reduced

by performing a permutation that sends head and tail lists from processor Pi,j to processors

Prev(i),rev(j), where rev(i) is the index obtained by applying the bit-reversal to the binary ex­

pansion of i. The result of applying this permutation is that processors initially communicate

over long distances and, as the size of the lists increases, the distance between communicating

processors and thus edge contention, decreases. We will discuss the performance of Algorithm

Quad-Tree I-phase with this balancing variant in the next section.

2.3 Algorithms Merge and FinaLUpdate

In this section we describe the two sequential algorithms, Algorithm Merge and Algorithm

FinaLUpdate. Both algorithms are used to compute the head and rank of each edge pixel in

the head and tail lists of subimage Ik w.r.t to image I. Algorithm Merge is executed by the

processors in the forward phase and FinaLUpdate is performed in either the explicit or the

implicit backward phase. Before giving a description of Algorithm Merge, we describe relevant

details of the head and tail lists structure. The algorithms assume that edge points of the

head (resp. tail) list of a subimage are arranged as encountered in a clockwise traversal of the

boundary of the subimage. As already mentioned, rank and head information is associated with

every edge point of a head or tail list. We assume that every point t in the tail list knows its

head and, if this head is a member of the head list, t knows its position in the head list. We

thus have links from the tail list of a subimage into the head list of the subimage.

Let If, ... , I~ be r rectangular subimages whose union forms a rectangular subimage 1'.

Algorithm Merge creates the head and tail lists of l' from the head and tail lists of the r

subimages. It uses time linear in the total number of edge points in the head and tail lists

of the r subimages. We describe the algorithm for the case when r = 2. Its generalization is

straightforward.

W.l.o.g. assume that If and I~ are horizontally adjacent, as shown in Figure 4. Notice that

every edge point in the head (resp. tail) list of If is also an edge point in the head (resp. tail)

list of either If or I~, but the converse is not true. The successor of a head on the common

boundary of If and I~ (excluding the four corner points) lies inside 1'. Such heads are not

11

included in the head list of I'. Heads on the four corner points of the common boundary are

included in the head list of I' only if their successor lies outside 1'. Edge points included in the

tail list of I' are selected in a similar fashion. Figure 4 shows the edge points of head and tail

lists of two sample subimages and those of their union.

EE] Head !II Tail

Figure 4: Merging two subimages Ii and I~

Next, we explain the procedure for updating the head and rank information of an edge point

t in the tails list of I'. W.l.o.g., assume that t is also an edge point in the tail list of Ii. Let

h be the head of t in subimage Ii. When h is an edge point of the head list of both Ii and I'

or when h is an edge point not in the head list of Ii, the rank and head information of t does

not change. These situations apply to edge points tl and tz of Figure 4, respectively. The head

(and thus the rank) of t changes only when h is a member of the head list of Ii, but not a

member ofthe head list of 1'. In this case, h lies on the common boundary of Ii and I~. Recall

that there exists a link from edge point t in the tail list to h in the head list. If i = succ(h),

then i is in the tail list of I~. See Figure 5 for an illustration. In order to determine the new

head and rank of t, Algorithm Merge locates i in the tail list of I~ and then finds i's rank and

12

head in I' recursively. Let h* be the new head and let a be the rank of i in I', as shown in

Figure 5. Then, h* is the new head of t in I' and the rank of t in I' is equal to the rank of tin

I{ plus a + 1.

Rank=a+7 Rank=a+l Rank=a

/ I

/ c..--
h*

II 1., _____ II '"fJ
I

I , A ~ t , l) ,
L V II II

1/ IX ./
12 r-- -

1;1'-~
h

j 1/..
t

Figure 5: Following a tail in Algorithm Merge

The position of i in the tail list of I~ could be located through binary search. However,

doing so would cost O(1og m) time per search, where m is the size of the tail list of I~, and not

result in linear time. Algorithm Merge achieves linear time by exploiting the connectivity of the

edge contours. Algorithm Merge first creates links from the heads on the common boundary of

I{ and I~ to the corresponding tails. To set up these links, the head and tail lists containing the

edge points on the common boundary are traversed once. Let h[and t[be the 1 - th element

of the head list of I{ and the tail list of I~, respectively. Assume a link from hi to the entry

corresponding to tj was created, succ(hi) = tj. The link from hi+! to its successor is established

next. The edge point corresponding to SUCC(hi+l), cannot occur before tj-l in the tail list of

I~. Figure 6 shows the only case when succ(hi+1) = tj-l. In order to make the link for hi+b

Algorithm Merge considers consecutive edge points stating with tj-l and terminating with

succ(hi+1). Observe that an arbitrary number of edge points may be traversed. The linking

process requires time linear in the number of heads and tails on the common boundary. The

updating of the head and tail information for edge points in the tail lists also requires linear

time. Hence, the merging of two subimages can be done in linear time.

The merging of more than two subimages (i.e., r > 2) is done in a similar fashion. We first

create the links between heads and tails lying on the common boundaries of the subimages. We

13

Figure 6: Case when the successor of hi+! occurs before the successor of hi

then identify which edge points belong to the head and tail lists of I'. Finally, rank and head

information of the edge points on the tail list of I' is updated, using the above technique. The

time required for constructing the head and tail lists of I' is linear in the total number of edge

points in the head and tail lists of the r subimages.

We conclude this section with a brief description of Algorithm Final_Update. Assume the

rank and head information of the edge points in the head list of I' is correct w.r.t. I. Algorithm

FinaLUpdate uses this information to determine the head and rank information of every edge

point in the head lists of IL ... , I; w.r.t. image I. When FinaLUpdate is performed, the links

from the head lists to the successor edge points in the tail lists are available. Every edge point

h in the head list of subimage Ij, 1 ::s: j ::s: r, determines its head in image l' (by following

links between head and tail lists). The rank and head information of the so determined heads

is available w.r.t. image I. The rank and head information of every h w.r.t. I can now be

determined. The time required for Algorithm FinaLUpdate is linear in the total number of

edge points in the head and tail lists of the r subimages.

3 Experimental Results

The algorithms described in the previous section were implemented on the Intel Paragon and

the Intel Delta. In this section we discuss the performance and analyze the scalability of the

algorithms on these machines.

In our experiments, we used both real and synthetic images. A description of the images is

given in Figure 7 and three of these images are shown in Figure 8. The edge contours of the

images were obtained by applying a sequential edge linking algorithm [2]. As can be seen in

Figure 8, the Van Gogh image has a high edge point density compared to the Earth or Picnic

image. (The edge point density measures the fraction of pixels that are edge points.) Also, the

shape and size of edge contours vary significantly in the images. Some images, e.g., image Text,

14

I Image Size I Description

256 x 256
Picnic 512 x 512 A group photo of a picnic

1204 x 1024
2048 x 2048

House 512 x 512 A house with a car in front
Earth 1024 x 768 Earth taken from a satelite
Van Gogh 640 x 480 A painting by Van Gogh
Anatomy 336 x 896 Human Anatomy
Cockpit 944 x 704 An empty Cockpit
Text 512 x 512 Typewritten text
Diagonal Lines 512 x 512 Image filled with diagonal lines
Vertical Lines 512 x 512 Image filled with vertical lines
Semi Dense Vertical Lines 512 x 512 Image half filled with vertical lines

Figure 7: Description of Images

contain only short edge contours, while others contain a mixture or only long edge contours.

The three synthetic images have an edge point density of either 50 or 100% and they contain

only long edge contours. We use these images to gain insight into the behavior of the algorithms

on images of high edge point densities and the effect of large head and tail list on computation

and communication.

The programs on the Intel Paragon and Intel Delta were written in C. Compilation on the

Paragon and Delta was done with optimization level 4. On the Paragon, it has been observed

that when the main body of the program is put in a loop, the time for subsequent iterations is

significantly lower than the execution time for the first iteration. In [10] this was attributed to

the use of demand paging by the operating system. Our experiments on the Paragon confirmed

this observation. The execution times of the first and the second iteration differed by as much

as a factor of 6. Throughout the paper we report the execution time of the third iteration and

thus eliminate the effects of demand paging on the performance results.

In Section 3.1, we discuss the performance of all algorithms on the Intel Paragon for the

Picnic image of size 512 x 512, varying machine size. In Section 3.2, we discuss the performance

of the algorithms on a 16 X 16-processor Intel Paragon for three images shown in Figure 7 and

three synthetic images. We discuss how image density influences algorithm performance. In

Section 3.3, we compare the performance of the algorithms on the Intel Delta and the Intel

Paragon.

15

(a) (b)

(c)

Figure 8: Picnic, Van Gogh, and Earth image

16

3.1 Performance and Scalability

We use the 512 X 512 Picnic image to illustrate the relative performance of the different al­

gorithms on the Intel Paragon when the machine size varies from 4 to 512 processors. The

conclusions we draw are valid for the other images considered.

Paragon Size
Algorithms 2x2 4x4 4x8 8x8 8x16 16x16 16x32

Direct 2-Phase 111.52 37.35 22.17 15.73 15.08 21.37 33.39
Direct I-Phase 111.37 36.42 20.88 13.88 11.93 14.81 22.49
Quad-Tree 2-Phase 111.68 36.96 20.91 13.48 9.99 8.06 7.35
Quad-Tree I-Phase 111.62 36.83 20.66 13.18 9.89 8.27 7.54
Quad-Tree I-Phase Balanced 112.02 37.33 21.33 13.52 9.89 8.89 7.74
Row-Col I-Phase 111.52 36.86 20.45 12.77 9.58 8.46 9.15
Col-Row I-Phase 111.46 37.14 20.54 13.10 9.93 9.31 10.40
Row-Co12-Phase 113.76 37.08 22.30 14.59 11.86 12.26 14.09
Col-Row 2-Phase 113.23 36.87 21.33 14.70 13.93 16.02 13.47
Neighbor Direct I-Phase 118.14 39.11 22.36 14.90 12.50 16.00 22.62
Neighbor Direct 2-Phas 118.08 39.47 22.78 15.71 13.88 19.78 29.80
Neighbor Quad-Tree I-Phase 118.25 39.40 22.54 14.22 10.97 8.52 7.96

Figure 9: Picnic Scene (512 x 512, 3rd iteration, time in msec)

Figure 9 gives the running times of all the algorithms on different sizes of Intel Paragon. The

algorithms include the three 2-phase algorithms described in Figure 1 and the three I-phase

algorithms described in Figure 2. In addition, they include four algorithms based on extensions

and modifications described in Section 2.2. Algorithm Quad-Tree I-Phase Balanced is the

variant of the I-phase quad-tree algorithm including the load balancing step. Neighbor Direct

2-Phase, Neighbor Direct I-Phase, and Neighbor Quad-Tree I-Phase perform the neighbor

communication before proceeding with the actual algorithm.

For machines consisting of fewer than 64 processors, there is no significant difference in

the performance between the different algorithms. This was observed not only for the Picnic

image, but for all images we considered. Recall that each algorithm consists of the three steps

described in Section 2.1. For small machine sizes, Steps 1 and 3 of an algorithm constitute a

significant portion of overall time. To illustrate this point, Figure 10 provides a breakdown of

the total time into communication and computation times for three of the algorithms. (The

17

Picnic (512 x 512) Picnic (512x 512)
30r-~--~-~-~--~-~----, 12.---~--~-~---,---~-~----,

Direct I-Phase
Quad-tree I-Phase
Row-Coli-Phase

......~.::::....,-=::::::.:.:.:.::::::. ,,· .. ··x
... ·.. ·... ·-x

Direct I-Phase
Quad-tree I-Phase
Row-CoIl-Phase

25

5

g
!20
.§
1;:; 15
.g
g
!rIO
o
U

OL--I~6:-----:3~2-----:64:-------"'1:-=2::-8---:25~6:-----::;5:-:12:-----J

Intel Paragon Size (# of processors)
2L-----!-:�6:-----:3~2-----:64:-------..,1:-=2::-8 ---:2~56:-----::;5:-:12:-----J

Intel Paragon Size (# of processors)

(a) (b)

Picnic (512x 512)
IO~~----r--~--~-~--~---,

16

Direct I-Phase
Quad-tree I-Phase
Row-Coil-Phase

32 64 128 256
Intel Paragon Size (# of processors)

512

(c)

Figure 10: Breakdown into Computation, Communication, and Computation m Step 2 m
Algorithms Direct I-Phase, Quad-Tree I-Phase, and Row-CoIl-Phase

breakdown was obtained by observing one of the processors.) Figure 10(a) shows the time spent

on computation in Steps 1 and 3 and in Merge and FinaLUpdate of Step 2. Figure 10(c) shows

the computation time of only Merge and Final_Update procedures within Step 2. It can be

seen that, for small machine sizes, Steps 1 and 3 represent at least 50% of the overall time and

the time of Merge and FinaLUpdate is a relatively small part of the total execution time.

Figure 10(b) shows that for small machines (4 to 64 processors) the communication time

decreases as the machine size increases. This is due to a decrease in synchronization costs. On

small machines, processors have large subimages assigned and these subimages have different

edge point densities. Hence, the time spent by processors in Step 1 on setting up the original

18

head and tail lists varies. Step 2 involves interprocessor communication. A processor Pi finished

with Step 1 and waiting for the head and tail lists of some other processor, say Pj, must wait for

Pj to complete Step 1. For processor Pi the waiting period counts as communication time. This

synchronization overhead increases the communication time on small machines. As machine

size increases, the size of the subimage assigned to a processor decreases, thereby reducing the

synchronization time. The communication time decreases with machine size until the commu­

nication overheads dominate the synchronization cost. After that point, communication time

starts increasing again.

For machines of size less than 64, Algorithms Direct 1-Phase, Quad-Tree 1-Phase, and

Row-CoIl-Phase experience very similar communication times. One reason is that for small

machine sizes there is not much difference between the communication patterns arising in

different algorithms. In addition, the sizes of the head and tail lists are small and because of

the high bandwidth of the Paragon, the time spent in actually sending the data is much smaller

than the message passing overheads (which include synchronization cost and message set-up

time). Hence, most of the communication time is due to message passing overheads, which are

similar for all algorithms.

For machines with more than 64 processors, quad-tree based algorithms and row/column

based 1-phase algorithms give the best performance. The direct algorithms are the slowest, and

the row-col 2-phase algorithms are in between. The computation and communication times

shown in Figure 10 provide some explanation. For the sake of simplicity, assume we are dealing

with square images. For the direct algorithms, we observed that the computation time of

Step 3 increases linearly with machine size. For p processors, p subimages get merged and their

boundary lists are of size at most 4:)p. The increase in the total number of edge points involved

in the merging of subimages is proportional to at most yP. Hence, it is not the increase in the

number of edge pixels, but the increase in the number of head and tail lists and the increase in

the associated overhead that dictates the observed performance. As the machine size increases,

the handling of p head and tail lists dominates the computation time of Step 2 in the direct

algorithms.

The row/column algorithms invoke Algorithm Merge twice, each time merging yP subim-

19

ages. The increase in the number of edge points in the head and tail lists is at most proportional

to yIP. We now observe an increase in the computation and communication time that is propor­

tional to yIP. With the exception of the largest machine considered (i.e., 16 X 32), Algorithms

Row-ColI-phase and Col-Row I-phase match the performance of the quad-tree algorithms. The

quad-tree algorithms invoke Algorithm Merge log4P times and overheads are thus proportional

to log4P.

Figure 9 indicates that I-phase algorithms outperform their 2-phase counterparts. With the

exception of the quad-tree algorithms, 2-phase algorithms were slower than their I-phase coun­

terparts. Recall that in 2-phase algorithms, leader processors perform algorithm FinaLUpdate

on all subimages assigned to them, while in the I-phase algorithms a processor performs Fi­

naLUpdate only on one of its assigned subimages. Hence, the computation time of Step 2 in

a I-phase algorithm is significantly smaller than that of the corresponding 2-phase algorithm.

For the direct algorithms, the computation done in Step 2 of 2-phase algorithms is more than

double that of the computation in the I-phase approach. This decrease in the computation time

for I-phase algorithms is made possible by an increase in the communication time. However,

the high network bandwidth of machines like the Intel Paragon and Intel Delta is underutilized

in the 2-phase algorithms. Hence, the additional communication arising in I-phase algorithms

does not result in a proportional increase in the communication time. For the quad-tree algo­

rithms we observe a much smaller difference between 1- and 2-phase algorithms. In the 2-phase

algorithm, a processor merges and updates always 4 subimages and thus relative difference in

the computation is not significant. This factor, along with the presence of a high bandwidth

network in Paragon, explains small differences between execution times of the quad-tree 1- and

2-phase algorithms.

Figure 9 also indicates that neither the neighbor preprocessing step nor the load balancing

step in the quad-tree algorithms achieves a better performance. With respect to neighbor

preprocessing, one might attribute this to a lack of short edges in the Picnic image. However,

this is not the case. Even in images for which the neighbor preprocessing step eliminated almost

all edge contours (e.g., image Text), we observed no improvement. This behavior is due to the

large message passing overhead of the Paragon, compared to its enormous network bandwidth

20

I Edge Density

Image
S.D. Vert. Lines

50%

Vert. Lines

100% I
Diag. Lines

100% I
Two Step 21.37 21.44 22.70 60.75 106.06 181.31
One Step 14.81 15.35 15.20 35.82 63.70 99.35
Quad-Tree 2-Phase 8.06 7.92 8.67 18.84 28.72 42.29
Quad-Tree I-Phase 8.27 7.43 7.94 17.39 27.36 38.76
Quad-Tree I-Phase Balanced 8.89 8.11 8.43 18.41 29.38 38.94
Row-Call-Phase 8.46 8.88 9.30 42.80 78.87 73.26
Col-Row I-Phase 9.31 8.91 8.64 15.13 22.07 74.09
Row-Col2-Phase 12.26 16.10 13.02 57.52 105.06 110.51
Col-Row 2-Phase 16.02 16.05 16.02 18.12 26.34 110.59
Neighbor Direct I-Phase 16.00 14.98 15.36 36.43 63.15 100.28
Neighbor Direct 2-Phase 19.78 21.18 19.74 60.50 102.43 183.74
Neighbor Quad-Tree I-Phase 8.52 8.31 8.24 18.56 30.00 38.76

Figure 11: Execution times on a 16 X 16 Paragon for six images with different edge densities

and processing power. This makes the preprocessing steps costlier than the savings that accrue

from a reduction of message size in subsequent steps. The implementation of the quad-tree

approach using the load balancing step fails for similar reasons.

3.2 Data Dependence

We next discuss the relative performance of the algorithms when the machine size is constant

and the edge point density of the images varies. We present data for an Intel Paragon of size

16 x 16 on 6 images, each of size 512 x 512. Three real images: Picnic, House, and Text have

edge point densities between 5 and 6%. The remaining three images are synthetic images with

an edge density of either 50 or 100%: Semi-Dense Vertical Lines, Vertical Lines, and Diagonal

Lines. Figure 11 gives the edge point densities and the achieved running times.

Clearly, the running times increase with edge point density. When the edge density increases

from about 5% to 50%, none of the algorithms experiences a proportional slowdown. At the

same time, when the edge point density increases from 50 to 100%, the times double or triple.

The reason lies in the underutilization of the network and processor bandwidth for images with

low densities, as already discussed in the previous section. Figure 11 also shows that in addition

to edge pixel density, the size of the head and tail lists also impacts performance. This can

21

be observed by comparing the running times of the algorithms for image Vertical Lines and

image Diagonal Lines. Although the edge pixel density is the same in both images, the size of

the head and tail lists of image Diagonal Lines is twice the size of head and tail lists of image

Vertical Lines.

The relative performance of algorithms remains basically the same, regardless of edge point

density. The algorithms quad-tree based algorithms give the best (or close to the best) perfor­

mance. Even though Algorithm Col-Row I-Phase is almost perfectly tailored towards image

Vertical Lines, Algorithm Quad-Tree I-Phase does not perform significantly worse. It is inter­

esting to note that the load balancing step performed in Algorithm Quad-Tree I-phase does

not give the expected improvement for the fully dense image consisting of diagonal lines. As

already stated in Section 3.1, the neighbor preprocessing phase does not improve performance

even for image Text (which contains typed text).

3.3 Comparison Between Paragon and Delta

Figure 12 gives the execution times of the algorithms on the images given in Figure 8 on a

16 X 16 Intel Paragon and Intel Delta. The behavior of the algorithms on the Delta is similar

to the one observed for the Paragon. Quad-tree based algorithms give the best performance,

closely followed by the row-column based algorithms. The direct algorithms are the slowest.

This similarity is not surprising because of the similar architectures of both machines.

The figure also indicates that the performance of the Paragon is about 10-30% faster com­

pared to that of the Delta. From the technical specifications of the Paragon, a larger difference

between the speeds of the two machines would be expected. In particular, the Paragon has a

much higher network bandwidth compared to the Delta and the processors on the Paragon we

used are 1.5 times faster than the processors on the Delta. The figure shows that the direct

algorithms benefited the most and are 20-40% faster on the Paragon than on the Delta. The

row/ col based algorithms benefit the least, with speedups as low as 10%. We believe that this

non-optimal speedup occurs because of an underutilization of the available resources inherent

to the problem under consideration.

22

Intel Pargon Intel Delta

Algorithms
Earth V.Gogh Picnic Earth V.Gogh Picnic

1024x768 640x480 512x512 1024x768 640x480 512x512

Direct 2-Phase 27.34 25.25 2137 34.23 30.91 25.46

Direct I-Phase 19.89 18.00 14.81 27.89 25.49 21.12

Quad-Tree 2-Phase 12.89 9.29 8.06 16.62 12.68 11.16

Quad-Tree I-Phase 12.62 9.38 827 15.94 12.08 10.82

Quad-Tree I-Phase Bal. 13.05 9.84 8.89 17.77 13.24 11.92

Row-Col 2-Phase 24.10 18.16 1226 21.13 16.53 13.78

Row-Coll-Phase 13.49 11.25 8.46 17.96 14.00 11.82

Col-Row 2-Phase 19.81 16.01 16.02 19.82 17.04 13.79

Col-Row I-Phase 13.58 10.49 931 17.43 14.00 11.86

Neighbor Direct I-Phase 19.58 16.61 16.00 26.86 24.06 20.95

Neighbor Quad-Tree I-Phase 13.23 9.75 8.52 17.23 12.74 11.73

Figure 12: Performance of the algorithms on the Paragon and the Delta using 256 processors

4 Concluding Remarks

We have presented parallel solutions for performing contour ranking on coarse-grained ma­

chines. These solutions employ different divide-and-conquer patterns, different communication

patterns, and they use efficient sequential techniques for merging information about subimages.

The proposed solutions were implemented on Intel Delta and Intel Paragon machines. We dis­

cussed performance results and presented scalability analysis using different image and machine

SIzes.

Our results of the contour ranking algorithms provide insight into the behavior and interplay

of various machine and problem parameters. The results also lead to a design philosophy

for coarse-grained algorithms for a large class of low-level vision tasks. Our contour ranking

algorithms use divide-and-conquer and merge information about subimages in order to compute

the final values. The information needed about a subimage is proportional to the number of

edge points on the boundary of this subimage. The time used for merging subimages is linear in

the number of edge points in the boundary lists of these subimages. A number of other problems

23

on raw images can be solved by algorithms following the same principle. These problems include

component labeling, straight line approximations, and region growing. For example, each one

of our contour ranking algorithms can be turned into a component labeling algorithm by using

a different merging procedure. The performance of these component labeling algorithms will

correspond to the performance for contour ranking.

Various distance computations in an image [7] can also be performed by divide-and-conquer

algorithms. However, the information needed about a subimage may now be quadratic in the

size of the boundary. This results in more data to be communicated. In the presence of a high­

bandwidth communication network, the performance of coarse-grained algorithms for distance

problems is likely to follow the same trend.

References

[1] L. T. Chen, L. S. Davis, and C. P. Kruskal, "Efficient parallel processing of image contours,"
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, no. 1, pp. 69-81,
1993.

[2] P. H. Eichel and E. J. Delp, "Sequential edge linking," Proceedings 22nd Allerton Confer­
ence on Communication, Control, and Computation, Monticello, IL, pp. 782-791, 1984.

[3] S.E. Hambrusch, F. Hameed, and A. Khokhar, "Communication Operations on Coarse­
Grained Architectures," Technical Report, Purdue University, to appear in Parallel Com­
puting, 1994.

[4] T. Heywood and S. Ranka, "Architecture independent analysis of sorting and list ranking
on the hierarchical PRAM model," Proceedings Fourth Symposium on the Frontiers of
Massively Parallel Computation, McLean, VA, pp. 531-4, 1992.

[5] J. JaJa, An Introduction to Parallel Algorithms, Addison-Wesley, 1992.

[6] M.H. Kim, O.H. Ibarra, "Transformations Between Boundary Codes, Run Length Codes,
and Linear Quadtrees," Proceedings of the 8th International Parallel Processing Sympo­
sium, pp. 120-125, 1994.

[7] R. Miller, Q. Stout, "Geometric Algorithms for Digitized Pictures on a Mesh-connected
Computer," IEEE Trans. on PAMI, pp. 216-228, 1985.

[8] M. Reid-Miller, "List ranking and list scan on the Cray C-90," Proceedings Symposium on
Parallel Algorithms and Architectures, Cape May, NJ, pp. 104-113, 1994.

[9] Synthesis of Parallel Algorithms, J.R. Reif, Editor, Morgan Kaufmann, 1993.

24

[10] S. Saini, H. Simon, "Enhancing Applications Performance on Intel Paragon through Dy­
namic Memory Allocation," Proceedings of the Scalable Parallel Libraries Conference, Mis­
sissippi State, MS, pp. 232-239, 1993.

[11] H. Samet, Applications of Spatial Data Structures, Computer Graphics, and Image Pro­
cessing, Addison Wesley, 1990.

25

	Contour Ranking on Coarse Grained Machines: A Case Study for Low-Level Vision Computations
	Report Number:
	

	tmp.1307986960.pdf.tRFOO

