
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1994

Study of Intrusion of a Software Trace System in the Execution of Study of Intrusion of a Software Trace System in the Execution of

Parallel Programs Parallel Programs

Kuei Yu Wang

Report Number:
94-078

Wang, Kuei Yu, "Study of Intrusion of a Software Trace System in the Execution of Parallel Programs"
(1994). Department of Computer Science Technical Reports. Paper 1177.
https://docs.lib.purdue.edu/cstech/1177

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

STUDY OF INTRUSION OF A SOFTWARE
TRACE SYSTEM IN THE EXECUTION

OF PARALLEL PROGRAMS

Kuei Yu Wang

Department of Computer Science
Purdue University

West Lafayette, IN 47907

CSD-TR-94-078
November 1994

Study of intrusion of a software trace system in

the execution of parallel programs

Kuei Yu Wang

November 17, 1994

Contents

1 Statement of the problem 2

2 The trace system 2

3 The environment 3

4 Implementations of the Parallel Profiling Library 4

4.1 Profiling without optimization - NOPT . . . 4

4.2 Profiling using I/O buffers - BF 5

4.3 Profiling using the host/node programming paradigm - HN 5

4.4 Profiling using multiple processes per node - MP 7

4.4.1 IPe - message passing (MP/MP) 8

4.4.2 IPe - shared memory (MPISM) 9

4.5 Writing in PFS using double buffering and asynchronous I/O - PIO 9

4.6 General issues . 10

5 Execution time of NAS Integer Sort (IS) Benchmark:
B

5.1 Experiments for both class A and class B

5.2 Output trace files in UNIX. File System (UFS) .

5.3 Output trace files in Parallel File System (PFS) .

6 Analysis of results

1

Class A and Class
11

11

12

12

15

1 Statement of the problem

Any measurement disturbs the physical process being observed. This is a fundamental
law of physics (see Heesenberg's uncertainty principle) and monitoring the execution of
a parallel program cannot be made totally unobtrusive even when specialized hardware
support is available.

In this report, we describe a monitoring system based on software probes inserted into a
parallel program. During the execution of the instrumented program trace data associated
with every event is collected, stored in some internal buffers and written to an external
storage device in a trace file when these buffers are filled. The level of intrusion of this
monitoring system depends upon the overhead of gathering the data associated with each
event and the amount of data. An intrusive system will increase drastically the execution
tme of the parallel program and will alter the behavior of the parallel programs we want
to observe.

In our system as in many other cases, a significant level of intrusion is caused by the act
of storing the trace buffers on some external device, because (a) the limited I/O bandwidth
of parallel systems, (b) the high latency of I/O operations, and (c) the contention for
I/O devices and the interconnects. Several choice to reduce the level of the intrusion, by
selecting the size for the trace buffers, by choosing the mechanism for transporting the trace
buffers to the I/O devices are discussed in this paper.

2 The trace system

The trace system is an event-driven parallel profiling library [2] which monitors and profiles
the execution of parallel programs on the Paragon™ XP/S system running the OSF/1
Mach Operating System. The parallel profiling library is linked to the program to be
profiled. During the execution of the program, trace records are generated by each node
program according to the dynamics of the program. A trace record is produced at each
state switching of a node program (e.g. from compute state to communication state). The
profiling library is also able to generate trace records at regular intervals - the regular
sampling approach. The amount of trace records generated during a parallel program
profiling depends on the number of nodes running the program and on the pattern of state
changes of each node program.

In the initial design of the profiling library, each node program creates its own trace
file and writes to it whenever a trace record is generated. The trace files are created in the
current directory where the parallel program is running. Several performance degradation
factors have been detected.

2

1. The virtually simultaneous and concurrent "opens" of trace files (one for each node)
are serialized by the operating system. The overhead increases as the number of nodes
running the program increases.

2. Similar problem happens to the concurrent writes. The I/O node is overloaded with
simultaneous requests from every node. Although the programs are mostly running
on SPMD mode, the state switchings are expected to happen at distinct but similar
instants.

The effect of I/O node contention is noticeable (increasing the execution time by more
than 100%) for parallel programs running on 64 nodes or more.

3 The environment

A distributed memory MIMD system like the Intel Paragon [1] consists of a number of
compute, I/O and service nodes connected by interconnection network, the interconnect.

The I/O nodes manage the system's disk and tape drives, network connections, and
other I/O facilities. Processes on compute nodes access the I/O facilities using standard
OSF/1 system calls, just as if they were directly connected to the I/O facilities.

The Paragon OSF/1 operating system supports three file system types:

UFS UNIX File System, the standard file system type for OSF/1.

NFS Network File System, a file system type that represents a file system on another
computer on the network.

PFS Parallel File System, a file system that is optimized for access by parallel processes.
PFS file systems provide file services at high transfer rates to parallel applications by
striping file data across multiple I/O nodes.

The performance of a disk I/O operation depends on the type of file system used. The
UFS and NFS provide standard Unix interface suitable for applications with moderate
demands for I/O operations. Accessing UFS is quicker than accessing NFS, as the former
corresponds to the local file system and the latter to a file system on another computer.
The Parallel File System, PFS, is tuned to favor parallel and simultaneous accesses oflarge
amount of data from disks (large files usually bigger than 2 GBytes and disk transfer blocks
in the range of MBytes).

3

4 Implementations of the Parallel Profiling Library

Several approaches for optimizing the performance of a parallel profiler have been imple­
mented. The goal is to decrease the intrusion by the parallel library so the data collected
during the profiling reflect accurately the real execution of the program as it was executed
without profiling. Two fronts of optimization are done: a) to decrease the additional time
introduced by profiling library I/O operations in the execution time, b) to avoid significant
changes on the memory reference patterns of a parallel application during the profiling
process.

The naive implementation is a profiling library without any I/O optimization (NOPT),
in which the node programs write performance data into their own trace file as the data
are produced. The second approach, BF, attempts to minimize the number of request for
disk I/O operation by buffering trace records and them sending to the disk as the buffers
become full.

The third approach, HN, adopts the host/node programming paradigm in which there
is a host process in the service node responsible for doing all the I/O operations. The host
and node programs communicate with each other using the message passing mechanism.

The fourth approach, MP, uses multiple processes per node. In each compute node
there exist two processes: the compute process is responsible for doing the real application
job and the trace-writer process is responsible for doing the I/O operations produced by the
execution of profiling on that node. The trace records generated by a compute process are
sent, using message passing routines, to the trace-writer process in the same node and then
the trace-writer writes the data into disk. A variant for the multiple processes approach uses
shared memory, instead of message passing, to exchange information between the compute
process and the trace-writer process.

Also the Parallel I/O (PIO) approach, a variant of BF, writes trace data to the Parallel
File System (PFS) using double buffering mechanism and asynchronous I/O operations.

In the following subsections, we discuss the issues involved in each approach.

4.1 Profiling without optimization - NOPT

No attempt to decrease the overhead of disk I/O is done in this approach (Figure 1.) The
standard Unix file system library routines, such as fopen and fwrite (buffered output), are
used in this version.

This approach imposes less alteration in the memory access behavior of a parallel appli­
cation because besides the memory allocated for the application itself, only some additional

4

D
UPS

11
standard/

I

I/O
operations Compute nodes

Figure 1: Profiling parallel programs without library optimization

memory is used for the profiling. The overhead in execution time of a parallel program pro­
filing is mainly due to the large number of small I/O requests issued by all nodes at the
same time. The concurrent accesses to the I/O node slow down the performance of I/O
operations. This is a "many-to-one" (Compute nodes to I/O node) problem.

4.2 Profiling using I/O buffers - BF

In this approach, we attempt to minimize the number of requests to disk I/O operations
by buffering the trace data in the node program memory (Figure 2.) The larger is the size
of buffer the smaller is the number of I/O operations needed for a certain profiling process.

Significant improvements in the performance are observed when the number of I/O
requests is drastically reduced (probably to one request per node at the end of profiling, for
large number of parall~l compute nodes). But, when we increase the buffer size to decrease
the number of I/O requests, we increase the perturbation on the memory access pattern
of the application, which is highly undesirable for tracing the paging behavior of parallel
programs.

4.3 Profiling using the host/node programming paradigm - HN

In this approach, the compute nodes do not perform any I/O operation related to the
profiling. Instead, the compute nodes send trace records to a host process in the service

5

D
UFS

d
standard,'

I

I/O
operations

-
-I/O

buffer

Compute nodes

Figure 2: Profiling parallel programs using I/O buffers at each compute node.

node using the synchronous message passing mechanism1 . The host process is responsible
for I/O's caused by profiling, and one global trace output file is produced (Figure 3.) The
message buffer in each node program consists of 120 trace records (8160 bytes).

The "many-to-one" problem now depends on the message passing protocol and latency
between compute processes and host process. This approach will be better when the message
passing overhead among nodes is smaller than the I/O overhead between compute nodes
and I/O nodes.

A message buffer is still needed to improve the performance of the profiling, although the
buffer size is smaller compared with the I/O buffers. This approach presents the advantage
over the previous ones (NOPT and BF) by not blocking the application because of the I/O
operations at a smaller cost of memory used for communication buffers. Since the host and
node programs communicate with synchronous message passing mechanism, there are still
blockings caused by the message passing mechanism. The disadvantage of a host program
on service node is the load in the service nodes is usually heavy. Programs in service node
time slice via standard UNIX scheduling; the host program competes for CPU cycles with
all other service users and processes and this may cause delay/blocking in communicating
the compute programs and the host program.

ITo use asynchronous message passing mechanism, we need some scheme for double buffering asyn­
chronous messages, which is not implemented in this version.

6

UFS

--=-"",
,,,
,,,

, ', :
'node

processes

Compute nodes

~,
,,

,,,,,,
,,,,

OS I/O I
blockin~

~D~
I/O node

message
passing communication

Figure 3: Profiling using the host/node programming paradigm.

4.4 Profiling using multiple processes per node - MP

On each compute node there exist two processes: one for executing the parallel application
code (the compute process) and the other (the trace-writer process) responsible for sending
the performance data to the file system. The trace-writer process is responsible for all I/O
operations due to the profiling (e.g. open the trace file, write the trace data and close the
trace file).

This approach has the advantage of releasing the compute process from executing profile­
related I/O (NOPT, BF) and a central server is not needed, in contrast to the host/node
programming paradigm (HN.) The communication between a compute-writer pair is done
through IPC (Inter Process Communication) mechanisms. One problem with multipro­
cessing on compute nodes is the possible load unbalancing and also the introduction of
synchronization problems to parallel applications. For a parallel application with fine grain
synchronization, one compute process participating the synchronization procedure may not
be scheduled because of the context switching between compute process and trace-writer
process on the same node.

Two alternatives have been studied, the first is based on message passing mechanism
(MPjMP) and the second is based on shared memory and semaphores (MPjSM).

7

UFS

message
passing

. compute
process

II Compute node

Compute nodes

Figure 4: Profiling using multiple processes per node: message passing mechanism.

4.4.1 IPC - message passing (MP IMP)

Here the compute and trace-writer processes exchange data using a 8 KBytes message buffer
(Figure 4.)

The problem appears when trying to exchange messages between processes in the same
node. All the compute nodes are running a "normal" Unix scheduler, in which processes
time share the CPU with time slice of 100 milliseconds (100 Hz). The library routines seem
to spin wait on message activity, so they do not relinquish control to the other processes
on the node often. Tests have shown that exchanging messages among processes in dif­
ferent nodes is faster than exchanging messages among processes in the same node. Some
stratagems, such as adding ftick() and or swtch() to relinquish the control of the CPU to
the next scheduled process to the same node, have shown some performance improvements
when compared with the pure message exchange model between compute and trace-writer
processes in the same node.

8

UFS

shared
memory

........ Compute node

Compute nodes

Figure 5: Profiling using multiple processes per node: shared memory mechanism.

4.4.2 IPC - shared memory (MP ISM)

Another way for exchanging data between compute process and trace-writer process is the
communication through a shared memory area. A share memory area is defined for each
compute-writer pair and semaphores are used to protect the concurrent accesses to the
shared area (Figure 5.)

This version has been designed and implemented but the performance results are not
available since semaphore and shared memory were not fully supported on the Paragon at
the time of experiments.

4.5 Writing in PFS using double buffering and asynchronous I/O - PIO

The Parallel File System optimizes the access to large amount of data. In this approach, we
used asynchronous parallel I/O operations and double I/O buffers of size 64 KBytes each
and 128 KBytes each (Figure 6.) The objective of double buffering is to overlap compute
and asynchronous I/O operations.

There are several modes to access a parallel file in PFS. We used M_LOG mode: the

9

Parallel
I/O operations

Compute nodes

-4
I

I
I
I

Parallel ~
I/O nodes"

\
\
\
\
\

•
•

PFS

o
o
o

Figure 6: Writing trace files in PFS.

nodes share the file pointer, the accesses are serialized to prevent nodes from overwriting
each other; there is no coordination of nodes and the operations are asynchronous. One
trace file is used to store all trace data from the nodes. Two types of open operation
have been used, in the first approach each process opens the file asynchronously and in the
second a global open, gopen2 , is performed by all nodes at the same time.

The benefits of PFS are not fully exploited in our implementation because of the size
of the trace files produced. The use of double buffers for asynchronous I/O's improves the
performance of access to the disk, but the same problem of memory perturbation occurs
as the size of buffers increases. Thus the trade-off is between the size of the buffers and
the efficiency of the I/O operations. To achieve the best performance of PFS each request
for write should be in the range of MBytes. Since in most of the profiling cases the trace
files for each node have size about MBytes, and not GBytes, the writing of profiling data
cannot benefit from parallel file operations.

4.6 General issues

The following have to be considered:

• Trace record size - the amount of information needed for analysis. It is preferable to
be power of 2 which facilitates, so we could pack a number of trace records in buffers

2 A global synchronization operation which all nodes in the application have to participate.

10

with the same size as the system I/O buffer size.

• I/O buffer size - should be tuned to the size (or to the multiple of it) used by the Op­
erating System to improve the performance of I/O operations. Non-aligned requests
cause fragmentation of the same into several I/O operations.

• Message buffer size - it also has to be tuned and properly aligned.

• Message passing synchronization - the sender and receiver should be "synchronized";
the recv should be posted before a message is sent to avoid performance degradation,
as explained below.

The Paragon message passing mechanism uses a two-level buffering scheme at desti­
nation process: a user's receive buffer and a system's temporary buffer MBF. When
a message is sent, if the destination process has called irecv, crecv or hrecv, the data
goes straight into the user's receive buffer, which is fast; otherwise, the data goes into
the temporary buffer and is copied when the destination process calls receive.

• Double buffering - it allows proceeding with the computation while performing an
asynchronous operation such as asynchronous message passing routines and asyn­
chronous I/O operations (compute-I/O overlap).

5 Execution time of N AS Integer Sort (IS) Benchmark:
Class A and Class B

The NAS Integer Sort (IS) benchmark tests a sorting operation that is important in "particle
method" codes [3]. This type of application is similar to "particle in cell" applications of
physics, wherein particles are assigned to cells and may drift out. The sorting operation is
used to reassign particles to the appropriate cells.

This benchmark tests both integer computation speed and communication performance.
Although floating point arithmetic is not involved, significant data communication is re­
quired.

5.1 Experiments for both class A and class B

The class A and class B experiments differ from each other in the size of elements (integers)
sorted. The class A experiments sort an array of 524288 (219) integers and the class B
experiments sort an array of 2097152 (221) integers.

11

5.2 Output trace files in UNIX File System (UFS)

1. Benchmark without profiling - base line for the execution time;

2. Profiling without I/O buffering;

3. Profiling using I/O buffers - variants:

• Profiling using a buffer of size 69632 bytes (1024 trace records) for I/O operations
related to profiling;

• Profiling using a buffer of size 139264 bytes (2048 trace records) for I/O opera­
tions;

• Profiling using a buffer of size 348160 bytes (5120 trace records) for I/O opera­
tions;

• Profiling using a buffer of size 609200 bytes (8960 trace records) for I/O opera­
tions;

4. Profiling using the host/node programming paradigm

5. Profiling using multiple processes per node

(a) in-node communication mechanism: synchronous message passing

(b) in-node communication mechanism: shared memory

5.3 Output trace files in Parallel File System (PFS)

1. Output trace files (one for each node) in PFS.

Use asynchronous writes and two write buffers (double buffers) of size 65280 bytes
each.

2. Output trace files (one for each node) in PFS.

Use asynchronous writes and two write buffers (double buffers) of size 130560 bytes
each.

3. Output one global trace file to PFS.

Use "gopen()" (synchronized open) to open the output file in M-LOG mode and
double buffers of 130560 bytes each.

12

num proc BF - buffer size HN
trace file size IS NOPT 69k 139k 348k 609k (8k msg buffer)
(bytes/node)

CLASS A
8 29.1 29.29

(39508) (0.7%)
16 14.80 15.23 15.37 14.97 14.95 14.92

(72148) (2.9%) (3.9%) (1.1 %) (1.0%) (0.8%)
32 8.17 12.04 9.15 8.24 8.22 8.23 9.38

(137428) (47.4%) (120%) (0.9%) (0.6%) (0.7%) (14.6%)
64 4.88 46.68 32.20 12.80 4.91 4.93 11.30

(267988) (956%) (660%) (262%) (0.6%) (1.0%) (232%)
128 2.88 211.87 195.92 151.89 106.68 3.40 110.57

(529108) (7356%) (6802%) (5274%) (3704%) (18.0%) (3839%)

CLASS B
32 32.32 35.70 33.48 32.51 32.25 34.45 32.82

(137428) (10.5%) (3.6%) (0.6%) (-0.2%) (6.6%) (-0.2%)
64 18.62 60.94 48.27 25.73 18.57 18.67 35.09

(267988) (327%) (259%) (138.2%) (-0.3%) (0.3%) (88.5%)
128 10.46 222.60 196.07 153.44 115.37 10.98 127.36

(529108) (2128%) (1874%) (1467%) (1103%) (5.0%) (1218%)

Table 1: Unix File System - Execution time (in seconds) of Class A and Class B experiments
and the percentage of increase compared with the baseline execution time. Each node
program writes to its own trace files. Trace files are in the Unix File System. The IS
column reports the execution time of the Integer Sort without any instrumentation (the
baseline execution time). There is no buffering of the trace data in the NOPT mode. The
message size in the HN mode is 8kbytes.

load size IS NOPT BF - buffer size HN
69k 139k 348k 609k (8k msg buffer)

.text 173920 182880 183168 183168 183168 183168 183264
.data 24704 25504 25536 25536 25536 25536 25568
.bss 161088 161728 231392 301024 509920 771040 169920

total 359712 370112 440096 509728 718624 979744 378752

Table 2: Load size - Class A and Class B experiment's load sizes: (.text) + (.data) + (.bss).
Section sizes of Paragon OSF/1 operating system object files.

13

num proc PIO - double buffers
trace file size IS 2 * 65k 2 * 130k gopen
(bytes/node) 2 * 130k

CLASS A
32 8.17 8.51 8.53 9.05

(137428) (4.2%) (4.4%) (10.8%)
64 4.88 9.46 5.83 5.87

(267988) (93.8%) (19.5%) (20.3%)
128 2.88 38.20 19.23 17.99

(529108) (1336%) (667.7%) (624.7%)
CLASS B

32 32.32 32.61 32.60 38.41
(137428) (0.9%) (0.9%) (18.8%)

64 18.62 22.13 19.42 19.51
(267988) (18.8%) (4.3%) (4.8%)

128 10.46 42.51 20.92 23.01
(529108) (40.6%) (2.0%) (220%)

Table 3: Parallel I/O approach - Execution time (in seconds) of Class A and Class B
experiments and the percentage of increase compared with the baseline execution time. In
the buffered versions ("2 *65k" and "2 * 130k") each node program writes to its own trace
file in PFS and in the gopen version all the node programs share the same trace file in PFS.

14

num proc IS MP
(trace file size) multiple processes

CLASS A
32 8.17 9.19 (12.5%)
64 4.88 5.41 (10.9%)
128 2.88 3.72 (29.2%)

CLASS B
32 32.32 35.18 (8.8%)
64 18.62 19.53 (4.9%)
128 10.46 11.37 (8.7%)

Table 4: Mutiple processes per node approach. Execution time (in seconds) of Class A and
Class B experiments and the percentage of increase compared with the baseline execution
time. There is one "trace-writer" process per node which is responsible for handling all I/O
requests caused by the trace system generated in that node. Each node has it own trace
file.

6 Analysis of results

The IS benchmark is suitable for studying the overhead of profiling library because of
the communication pattern among node programs; during the sorting computation, each
node exchanges data with all other nodes. The increase in number of nodes executing IS
program causes more message traffics to be generated (an n-to-n communication pattern)
and therefore, the number of trace records generated per node increases proportionally to
the number of nodes. The effect of congestion in I/O system is evidenced and worsen when
IS is executed in large number of nodes.

Among all the profiling approaches we implemented the best result, in term of profiling
execution time, was the BF approach with buffer size about the size of individual trace file
(Table 1.)

The BF approach with a large enough buffer means that no trace data is written to the
permanent storage (disk) during the program profiling step. This approach presents two
major drawbacks:

1. The size of trace output has to be predicted before doing the "best profiling", then a
buffer which is at least as large as the largest trace file must be used.

2. A large buffer may affect the virtual memory reference pattern of the application
being profiled.

15

The purpose of HN approach is to release the compute processes from doing I/O related
to profiling and thus, the need of buffering at each compute nodes as in BF approach.
Although the HN approach would have solved the intrusion in memory behavior present in
BF, it did not show much gain in the execution time of program profilings (see Table 1.)
The overhead in the execution time is mainly because of the heavy load of service nodes in
a Paragon system.

Output data into Parallel File System (PIO approach) using a double buffering scheme
is slightly better than BF approach using the same size of buffers (compare Table 1 and
Table 3), but the execution time is still dilated because of the I/O node contention. In the
first variant of PIO; each node program outputs trace data to it own trace file, each node
produces traces at approximately same pace (thus, the sizes of trace files are about the
same) and all I/O requests fall into the same I/O node to be handled (it happens because
of the implementation of disk stripping polity on the current version of Paragon.) In the
other variant, all node programs output data to a global trace file, the I/O requests are
serialized by the operating system.

The MP/MP approach presented good results despite the time sharing and scheduling
scheme at each compute node level. In this approach, we have achieved a small increase in
the execution time, ranging from 4.9% to 29.2% (Table 4: Class B, 64 nodes and Class A,
128 nodes), using a small buffer size (8 KBytes).

The most important issue on parallel program profiling is the accuracy of collected trace
data. Every software profiling library introduces perturbation in some extent. Although the
BF profiling approach with large I/O buffer did not slow down the program execution, it is
extremely intrusive because it may change the memory reference behavior of the program
under examination. The best approach so far, is the MP/MP profiling approach which
has shown a small overhead introduced in the execution time and little perturbation in the
memory access patterns (because of the small buffer used by profiling library) in each node
program.

References

[1] Intel Corporation, Paragon™ OSF/1 User's Guide, Inter Supercomputer Systems
Division, Beaverton, Oregon, 1993.

[2] K.Y. Wang and D.C.Marinescu, "Correlation of the paging activity of the individual
node programs in the SPMD execution mode" . Proceedings of the Hawaii International
Conference on System Sciences, Jan. 1995 (in press)

16

[3] D. Bailey, E.Barszcz, J.Barton, D.Browning, R.Carter, L.Dagum, R.Fatoohi,
S.Fineberg, P.Frederickson, T.Lasinski, R.Schreiber, H.Simon, V.Venkatakrishnan and
S.Weeratunga "The NAS Parallel Benchmarks". RNR Technical Report RNR-94-007,
March 1994.

17

	Study of Intrusion of a Software Trace System in the Execution of Parallel Programs
	Report Number:
	

	tmp.1307986960.pdf.mzjM9

